

China State Construction Engineering (Hong Kong) Ltd.

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Monthly EM&A Report for August 2014

September 2014

	Name	Signature
Prepared & Checked:	Isabella Yeung	The
Reviewed, Approved & Certified:	Yiu Wah Fung (ETL)	4.

Version: 0	Date:	16 September 2014
------------	-------	-------------------

Disclaimer

This report is prepared for China State Construction Engineering (Hong Kong) Ltd. and is given for its sole benefit in relation to and pursuant to Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works and may not be disclosed to, quoted to or relied upon by any person other than China State Construction Engineering (Hong Kong) Ltd. without our prior written consent. No person (other than China State Construction Engineering (Hong Kong) Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong. Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: OAPANDSNEM00_0_1316L.14 16 September 2014

By Post and Fax: 2407 8382

Engineer's Representative Ove Arup & Partners Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon Hong Kong

Attention: Mr. Dennis Leung

Dear Sir,

Re: Contract No. CV/2007/03 (Environmental Permit No. EP -140/2002)
Development at Anderson Road
Site Formation and Associated Infrastructure Works
Monthly EM&A Report for August 2014

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report for August 2014 received by e-mail on 15 September 2014 and the subsequent revision of the report received by e-mail on 16 September 2014 for our review and comment.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.3 of the Environmental Permit No. EP-140/2002.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

David Yeung

Independent Environmental Checker

c.c. AECOM

CSCEC

Attn.: Mr. Y. W. Fung

Attn.: Mr. C. S. Yeung

Fax: 3922 9797 Fax: 2702 6553

Q:\Projects\OAPANDSNEM00\Corr\OAPANDSNEM00_0_1316L.14.doc

Table of Content

			Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	3
	1.1	Background	3
	1.2	Scope of Report	
	1.3	Project Organization	
	1.4	Summary of Construction Works	
	1.5	Summary of EM&A Programme Requirements	
2	AIR (QUALITY MONITORING	6
	2.1	Monitoring Requirements	6
	2.2	Monitoring Equipment	
	2.3	Monitoring Locations	
	2.4	Monitoring Parameters, Frequency and Duration	
	2.5	Monitoring Methodology	
	2.6	Monitoring Schedule for the Reporting Month	10
	2.7	Monitoring Results	
3	NOIS	E MONITORING	11
	3.1	Monitoring Requirements	11
	3.2	Monitoring Equipment	11
	3.3	Monitoring Locations	
	3.4	Monitoring Parameters, Frequency and Duration	12
	3.5	Monitoring Methodology	12
	3.6	Monitoring Schedule for the Reporting Month	13
	3.7	Monitoring Results	13
4	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	14
	4.1	Site Inspection	
	4.2	Advice on the Solid and Liquid Waste Management Status	
	4.3	Environmental Licenses and Permits	16
	4.4	Implementation Status of Environmental Mitigation Measures	17
	4.5	Summary of Exceedances of the Environmental Quality Performance Limit	17
	4.6	Summary of Complaints, Notification of Summons and Successful Prosecutions.	17
5	FUTU	JRE KEY ISSUES	18
	5.1	Construction Programme for the Coming Two Months	18
	5.2	Key Issues for the Coming Two Months	18
	5.3	Monitoring Schedule for the Coming Month	
6	CON	CLUSIONS AND RECOMMENDATIONS	20
	6.1	Conclusions	20
	6.2	Recommendations	

List of Tables Table 1.1 Contact Information of Key Personnel Table 2.1 Air Quality Monitoring Equipment Table 2.2 Locations of Air Quality Monitoring Stations Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration Summary of 1-hour TSP Monitoring Results in the Reporting Period Table 2.4 Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period Table 3.1 Noise Monitoring Equipment Table 3.2 Locations of Impact Noise Monitoring Stations Noise Monitoring Parameters, Frequency and Duration Table 3.3 Table 3.4 Summary of Impact Noise Monitoring Results in the Reporting Period Table 4.1 Summary of Environmental Licensing and Permit Status

List of Figures

Figure 1.1 General Layout Plan Figure 2.1 Monitoring Locations

List of Appendices

Appendix A	Project Organization Structure
Appendix B	Implementation Schedule of Environmental Mitigation Measures
Appendix C	Summary of Action and Limit Levels
Appendix D	Calibration Certificates of Equipments
Appendix E	EM&A Monitoring Schedules
Appendix F	Air Quality Monitoring Results and their Graphical Presentations
Appendix G	Noise Monitoring Results and their Graphical Presentations
Appendix H	Meteorological Data for August 2014
Appendix I	Event Action Plan
Appendix J	Cumulative Statistics on Exceedances, Complaints, Notification of Summons and
	Successful Prosecutions

EXECUTIVE SUMMARY

The Project "Development at Anderson Road – Site Formation and Associated Infrastructure Works" (hereafter called "the Project") is proposed to form platforms for housing development and associated uses in area of about 20 hectares, and to carry out necessary infrastructural upgrading or improvement works to cater for the proposed development.

China State Construction Engineering (Hong Kong) Limited (CSCE) was commissioned as the Contractor of the Project. AECOM Asia Co. Ltd. (AECOM) was employed by CSCE as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project.

The impact EM&A for the Project includes air quality and noise monitoring. The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.

The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road (Schedule 2 DP) project.

The construction for the Widening of Po Lam Road (Schedule 2 DP) project was commenced on 21 September 2011.

This report documents the findings of EM&A works for ID 1A, ID 2, ID 3, ID 4 and ID 5 conducted in the period between 1 and 31 August 2014. As informed by the Contractor, construction activities in the reporting period were:-

- Site clearance
- · Establishment of temporary access road and temporary drainage
- Slope stabilization and upgrading works
- Temporary traffic arrangement and road work at New Clear Water Bay Road, Sau Mau Ping Road, Sau Fung Street, J2 and J/O Po Lam Road
- Toe / Berm planter and platform drainage construction
- Retaining wall structural works
- Trench excavation and pipe laying
- RE wall panel installation and backfilling
- Pipe pile construction of Footbridge C
- Structural works at Footbridges A, B and C
- · Pipe Jacking at Sau Mau Ping Road
- Earth work and C&D stock pile
- Breaking of rock trench at public road
- Drainage construction at public road
- Construction of the twin 1800mm dia. pipes
- Construction of the coping structure at R15b
- Installation of precast panel to Bridge A
- Installation of noise barriers
- Waterworks
- Mini-pile construction of Footbridge A tower B

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels were recorded for both 1-hour TSP and 24-hour TSP monitoring at all monitoring locations in the reporting month.

Breaches of Action and Limit Levels for Noise

According to the information provided by the Contractor, no Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
- Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of drainage systems and desilting facilities;
- Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Proper mitigation measures should be provided to avoid relocation of treated contaminated soil;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
- Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage:
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project site is located in the East Kowloon District. It is bounded by Anderson Road to the north, the realigned Sau Mau Ping Road to the south, Po Lam Road to the east, and Lee On Road and Shun On Road to the west.
- 1.1.2 The objective of the Project "Development at Anderson Road Site Formation and Associated Infrastructure Works" under Contract CV/2007/03 (hereafter called "the Project") is to provide land for constructing public housing and government and public facilities. The development will provide 16,100 public housing units for 48,000 people in phases between 2015 and 2016.
- 1.1.3 The scope of works of this Project includes construction of site formation, roads, drains and upgrading of existing infrastructure to provide usable land of about 20 hectares for housing and associated government, institution or community uses at the site between existing Anderson Road Quarry and Sau Mau Ping Road in Kwun Tong District.
- 1.1.4 The Project is anticipated to complete in mid 2015.
- 1.1.5 Part of the Project involving widening of existing Po Lam Road is a designated project and is governed by an Environmental Permit (EP) EP-140/2002, while the rest of the Project is non-designated. Baseline monitoring covering the entire Project site was undertaken and baseline monitoring report was prepared prior to commencement of construction of the Project in accordance with Conditions 3.2 and 3.4 of the EP (EP-140/2002) and the Environmental Monitoring and Audit (EM&A) Manual. The construction for the Widening of Po Lam Road was commenced on 21 September 2011.
- 1.1.6 According to the EP and the EM&A Manual of the Project, there is a need of an EM&A programme including air quality and noise monitoring.
- 1.1.7 The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.
- 1.1.8 The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road. (Schedule 2 DP) project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was employed by the Contractor, China State Construction Engineering (Hong Kong) Limited (CSCE), as the Environmental Team (ET) to undertake the EM&A works for the Project. In accordance with the EM&A Manual of the Project, environmental monitoring of air quality, noise and environmental site inspections would be required for this Project.

1.2 Scope of Report

1.2.1 This is the seventy fifth second monthly EM&A Report under the Contract CV/2007/03 - Development at Anderson Road – Site Formation and Associated Infrastructure Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in August 2014 for ID 1A, ID 2, ID 3, ID 4 and ID 5.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
	Chief Resident Engineer	Dennis Leung	3656 3000	3656 3100
ER (Ove Arup)	Senior Resident Engineer	Michael Wright	3656 3000	3656 3100
	Resident Engineer (Safety and Environmental)	Kenneth Lee	3656 3000	3656 3100
IEC (ENVIRON) Independent Environmental Checker		David Yeung	3465 2888	3465 2899
Contractor	Site Agent	C S Yeung	2704 2095	2702 6553
(CSCE)	Environmental Manager	Leo Chung	2704 2095	2702 6553
ET (AECOM) ET Leader		Yiu Wah Fung	3922 9366	2317 7609

1.4 Summary of Construction Works

- 1.4.1 As informed by the Contractor, the Contactor has carried out the following major activities in the reporting month:-
- Site clearance
- Establishment of temporary access road and temporary drainage
- Slope stabilization and upgrading works
- Temporary traffic arrangement and road work at New Clear Water Bay Road, Sau Mau Ping Road, Sau Fung Street, J2 and J/O Po Lam Road
- Toe / Berm planter and platform drainage construction
- Retaining wall structural works
- Trench excavation and pipe laying
- · RE wall panel installation and backfilling
- Pipe pile construction of Footbridge C
- Structural works at Footbridges A, B and C
- Pipe Jacking at Sau Mau Ping Road
- Earth work and C&D stock pile
- Breaking of rock trench at public road
- Drainage construction at public road
- Construction of the twin 1800mm dia. pipes
- Construction of the coping structure at R15b
- Installation of precast panel to Bridge A
- Installation of noise barriers
- Waterworks
- Mini-pile construction of Footbridge A tower B
- 1.4.2 The general layout plan of the Project site showing the contract area is shown in Figure 1.1.
- 1.4.3 The environmental mitigation measures implementation schedule are presented in Appendix B.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise and environmental site inspections for air quality, noise, water quality, chemical and waste management. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming months;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, 1-hour and 24-hour TSP levels at 5 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix C.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170 & GMW-2310)

2.3 Monitoring Locations

2.3.1 Monitoring stations, ID 2, ID 3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Air Quality Monitoring Stations

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	Roof top of the premises facing Anderson Road
2	On Yat House	Roof top of the premises facing Lee On Road
3	Sau Nga House	Roof top of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	Roof top of the premises
5	Sau Mau Ping Catholic Primary School	Roof top of the premises

Monthly EM&A Report for August 2014

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

 Table 2.3
 Air Quality Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
ID 1A, ID 2,	1-hour TSP	At least 3 times every 6 days
ID 3, ID 4 & ID5	24-hour TSP	At least once every 6 days

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (v) No furnace or incinerator flues nearby.
 - (vi) Airflow around the sampler was unrestricted.
 - (vii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (viii) A secured supply of electricity was obtained to operate the samplers.
 - (ix) The sampler was located more than 20 meters from any dripline.
 - (x) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xi) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in Appendix D.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix D.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for environmental monitoring in August 2014 is provided in Appendix E.

2.7 Monitoring Results

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.4 and 2.5 respectively. Detailed air quality monitoring results are presented in Appendix F.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	77.5	72.8 – 82.4	201.5	500
ID 2	77.4	71.8 – 83.0	197.0	500
ID 3	77.8	73.2 – 81.8	203.7	500
ID 4	79.2	74.4 – 83.2	264.6	500
ID 5	78.6	73.2 – 82.4	267.4	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	17.9	10.4 – 25.6	170.2	260
ID 2	22.4	14.4 – 32.9	200.0	260
ID 3	24.4	15.8 – 35.4	200.0	260
ID 4	21.3	9.7 – 31.7	181.3	260
ID 5	24.3	11.2 – 41.3	180.8	260

- 2.7.2 No Action and Limit Level exceedance was recorded for both 1-hour TSP and 24-hour TSP monitoring at all monitoring locations in the reporting month.
- 2.7.3 The event action plan is annexed in Appendix I.
- 2.7.4 Major dust sources during the dust monitoring included construction dust from the Project site, construction dust from other construction sites nearby and nearby traffic emission.
- 2.7.5 Weather information including wind speed and wind direction is annexed in Appendix H. The information was obtained from Hong Kong Observatory Tseung Kwan O Automatic Weather Station and Anemometer Station.

AECOM Asia Co. Ltd. 10 August 2014

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, impact noise levels should be obtained at 5 noise monitoring stations. Impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix C.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion (Model No. NL-31) & B&K (Model No. 2238)
Acoustic Calibrator	Rion (Model No. NC-73)

3.3 Monitoring Locations

3.3.1 Monitoring stations, ID 2, ID3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	1m from the exterior of the roof top façade of the premises facing Anderson Road
2	On Yat House	1m from the exterior of the roof top façade of the premises facing Lee On Road
3	Sau Nga House	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
5	Sau Mau Ping Catholic Primary School	1m from the exterior of the roof top façade of the premises facing Po Lam Road

AECOM Asia Co. Ltd. 11 August 2014

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter and Duration	Frequency
ID 1A, ID 2, ID 3, ID 4 & ID5	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L _{eq} , L ₁₀ and L ₉₀ would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Façade measurements were made at all monitoring locations.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - time measurement: $L_{eq(30\text{-minutes})}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays; $L_{eq(5\text{-minutes})}$ during restricted hours i.e. 19:00-23:00 and 23:00-07:00 of normal weekdays, whole day of Sundays and Public Holidays
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix D.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for environmental monitoring in August 2014 is provided in Appendix E.

3.7 Monitoring Results

3.7.1 The monitoring results for noise are summarized in Table 3.4 and the monitoring data is provided in Appendix G.

Table 3.4 Summary of Impact Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}
ID 1A	59.1	52.4 – 64.3	*65/70
ID 2	62.7	61.6 – 64.1	75
ID 3	61.9	55.0 – 65.2	75
ID 4	62.6	58.1 – 64.8	*65/70
ID 5	61.7	58.3 – 64.4	*65/70

Note: *Daytime noise Limit Level of 70dB(A) applies to education institutions while 65dB(A) applies during school examination period.

- 3.7.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 3.7.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 3.7.4 The event action plan is annexed in Appendix I.
- 3.7.5 Major noise sources during the noise monitoring included construction noise from the Project site, construction noise from other construction sites nearby, nearby traffic noise and noise from school activities and community noise.

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

4.1 Site Inspection

- 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 7, 14, 19 and 27 August 2014. Particular observations and status of non-compliance issued by IEC are described below.
- 4.1.2 The Contractor has rectified most of the observations as identified during environmental site inspection in the reporting month within agreed time frame. Rectifications of remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

4.1.3 Air Quality Impact

- Dark smoke was generated from an excavator at Portion C. The Contractor should maintain all plants/equipment on-site in a good condition as to prevent dark smoke generation.
- Fugitive dust was generated from haul road at Bridge B. The Contractor should provide water spraying on haul road on a regular basis.

4.1.4 Construction Noise Impact

Nil

4.1.5 Water Quality Impact

- Direct discharge of muddy water was observed at Road L4 and R22. The Contractor should treat the muddy water with de-silting facilities prior to discharge.
- Muddy water was observed at R15B. The Contractor should ensure the muddy water is treated with de-silting facilities prior to discharge.

4.1.6 Chemical and Waste Management

- An oil drum at R15B was placed on bare ground without drip tray. The Contractor should provide the oil drum with a drip tray to retain oil leakage, if any.
- General refuse was scattered at R15B. The Contractor should dispose of the refuse properly.
- General refuse was scattered at Footbridge B. The Contractor should dispose of the refuse properly.
- Construction waste was scattered at Footbridge B. The Contractor should dispose of the waste properly.
- The outlet of the drip tray was not plugged. The Contractor should plug all outlets of the drip tray to prevent any oil leakage.

4.1.7 Landscape and Visual Impact

• Nil

4.2 Advice on the Solid and Liquid Waste Management Status

- 4.2.1 The Contractor is registered as a chemical waste producer for this Project. C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 4.2.2 As advised by the Contractor, a total of 2751.1m³ C&D material was generated on site in the reporting month. 526.6m³ of hard rock and large broken concrete was generated and transferred to Anderson Road Quarry for further process.
 - For C&D waste, no of metals was generated and collected by registered recycling collector. 20kg of paper cardboard packing and 10kg of plastic were generated on site and collected by registered recycling collector. No chemical waste was collected by licensed chemical waste collectors. 89.6 tonnes of other types of wastes (e.g. general refuse and tree debris) were generated on site and disposed of at North East New Territories (NENT) Landfill.
- 4.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 4.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

4.3 Environmental Licenses and Permits

4.3.1 The environmental licenses and permits for this Project and valid in the reporting month is summarized in Table 4.1.

Table 4.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	Description Permit No.		Valid Period		Remarks
Reference	Bookiption	i omit itoi	From	То	Komano
EIAO	Environmental Permit	EP-140/2002			Widening of a section of Po Lam Road Improvement works to existing roads
APCO	NA notification	1	16/04/09	1	- Whole Construction Site
WPCO	Discharge License	WT00018111-2014	03/03/14	31/08/14	 Discharge of Construction Runoff
Wi GG	Discharge License	EP670/I/C0613/293	02/02/12	28/02/17	- Discharge from Road L6
WDO	Chemical Waste Producer Registration	5213-292-C3249-32	19/03/08		- Whole Construction Site
	Waste Charges Account	7006839	12/03/08	1	- Whole Construction Site
NCO	Construction Noise Permit	GW-RE0900-14	13/08/14	08/02/15	- Whole Construction Site

4.4 Implementation Status of Environmental Mitigation Measures

- 4.4.1 In response to the site audit findings, the Contractor carried out corrective actions promptly for particular items recorded. Outstanding items were closely monitored to ensure mitigation measures are implemented properly.
- 4.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix B. Many necessary mitigation measures were implemented properly.

4.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 4.5.1 All 1-hour TSP and 24-hour TSP results were below the Action and Limit level at all monitoring locations in the reporting month.
- 4.5.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 4.5.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 4.5.4 Cumulative statistics on exceedances is provided in Appendix J.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 4.6.1 Complaints shall be referred to the ET Leader for action. The ET Leader shall undertake the following procedures upon receipt of any complaint:-
 - Log complaint and date of receipt onto the complaint database and inform the IC(E) immediately:
 - Investigate the complaint to determine its validity, and assess whether the source of the problem is due to works activities;
 - Identify mitigation measures in consultation with the IC(E) if a complaint is valid and due to works;
 - Advise the Contractor if additional mitigation measures are required;
 - Review the Contractor's response to identified mitigation measures, and the updated situation;
 - If the complaint is transferred from EPD, submit interim report to EPD on status of the complaint investigation and follow-up action within the time frame assigned by EPD;
 - Undertake additional monitoring and audit to verify the situation if necessary, and review that circumstances leading to the complaint to not recur:
 - Report investigation results and subsequent actions to complainant (if the source of complaint is EPD, the results should be reported within the time frame assigned by EPD);
 and
 - Record the complaint, investigation, the subsequent actions and the results in the monthly EM&A reports.
- 4.6.2 During any complaint investigation work, the Contractor and the ER shall cooperate with the ET Leader in providing all necessary information and assistance for completion of the investigation. If mitigation measures are identified in the investigation, the Contractor shall promptly carry out the mitigation. The ER shall ensure that all necessary measures have been carried out by the Contractor.
- 4.6.3 Referring to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.
- 4.6.4 Cumulative statistics on complaints, notification of summons and successful prosecutions is provided in Appendix J.

AECOM Asia Co. Ltd. 17 August 2014

5 FUTURE KEY ISSUES

5.1 Construction Programme for the Coming Two Months

- 5.1.1 The major construction works in September and October 2014 will be:-
 - Site clearance
 - Establishment of temporary access road and temporary drainage
 - · Slope stabilization and upgrading works
 - Temporary traffic arrangement and road work at New Clear Water Bay Road, Sau Mau Ping Road, Sau Fung Street, J2 and J/O Po Lam Road
 - Toe / Berm planter and platform drainage construction
 - Retaining wall structural works
 - Trench excavation and pipe laying
 - RE wall panel installation and backfilling
 - Pipe pile construction of Footbridge C
 - Structural works at Footbridges A, B and C
 - · Pipe Jacking at Sau Mau Ping Road
 - Earth work and C&D stock pile
 - · Breaking of rock trench at public road
 - Drainage construction at public road
 - Construction of the twin 1800mm dia. pipes
 - Construction of the coping structure at R15b
 - Installation of precast panel to Bridge A
 - Installation of noise barriers
 - Waterworks
 - · Mini-pile construction of Footbridge A tower B

5.2 Key Issues for the Coming Two Months

- 5.2.1 Key issues to be considered in the coming months included:-
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
 - Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of drainage systems and desilting facilities;
 - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil:
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
 - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
 - Quieter powered mechanical equipment should be used:
 - Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.

5.3 Monitoring Schedule for the Coming Month

5.3.1 The tentative schedule for environmental monitoring in September 2014 is provided in Appendix E.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- 6.1.1 The construction phase of the project commenced in May 2008.
- 6.1.2 1-hour TSP, 24-hour TSP and noise monitoring were carried out in the reporting month.
- 6.1.3 All 1-hour TSP and 24-hour TSP monitoring results complied with the Action / Limit Level at all monitoring locations in the reporting month.
- 6.1.4 According to the Contractor's information, no noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 6.1.5 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 6.1.6 Environmental site inspections were carried out 4 times in August 2014. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 6.1.7 According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

6.2 Recommendations

6.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

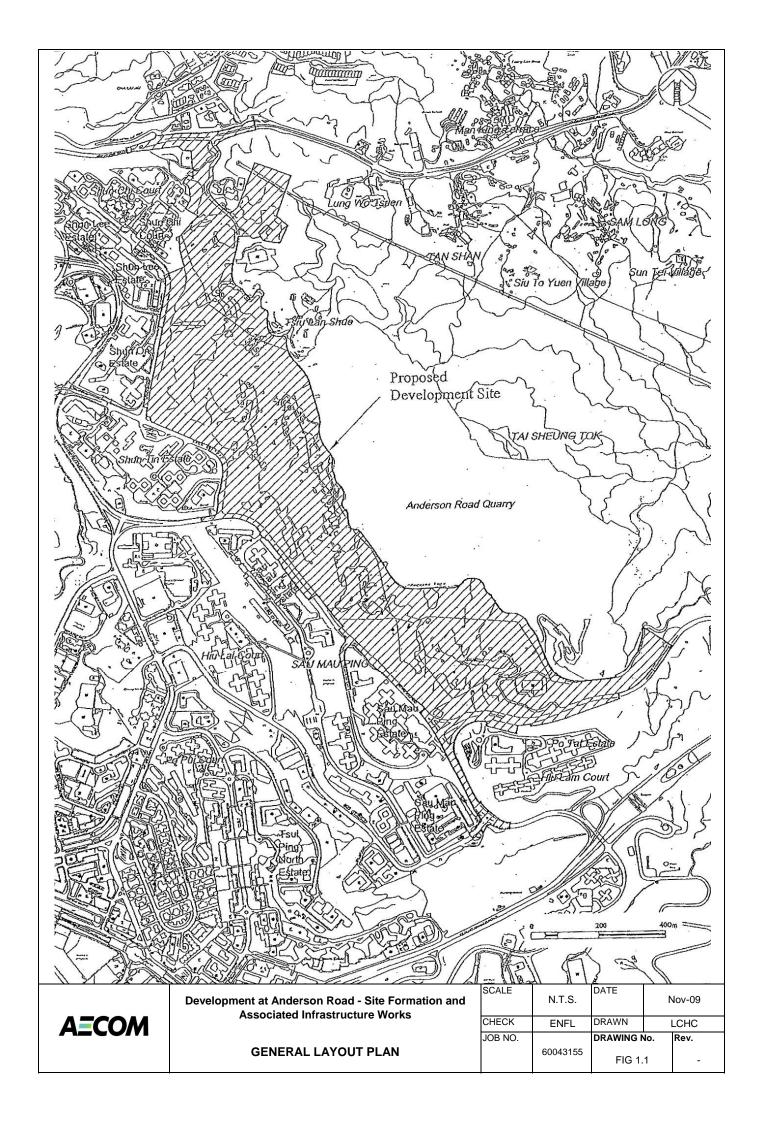
- Proper maintenance to the machineries should be provided to prevent dark smoke.
- Regular spraying of water should be provided to minimise dust impact.

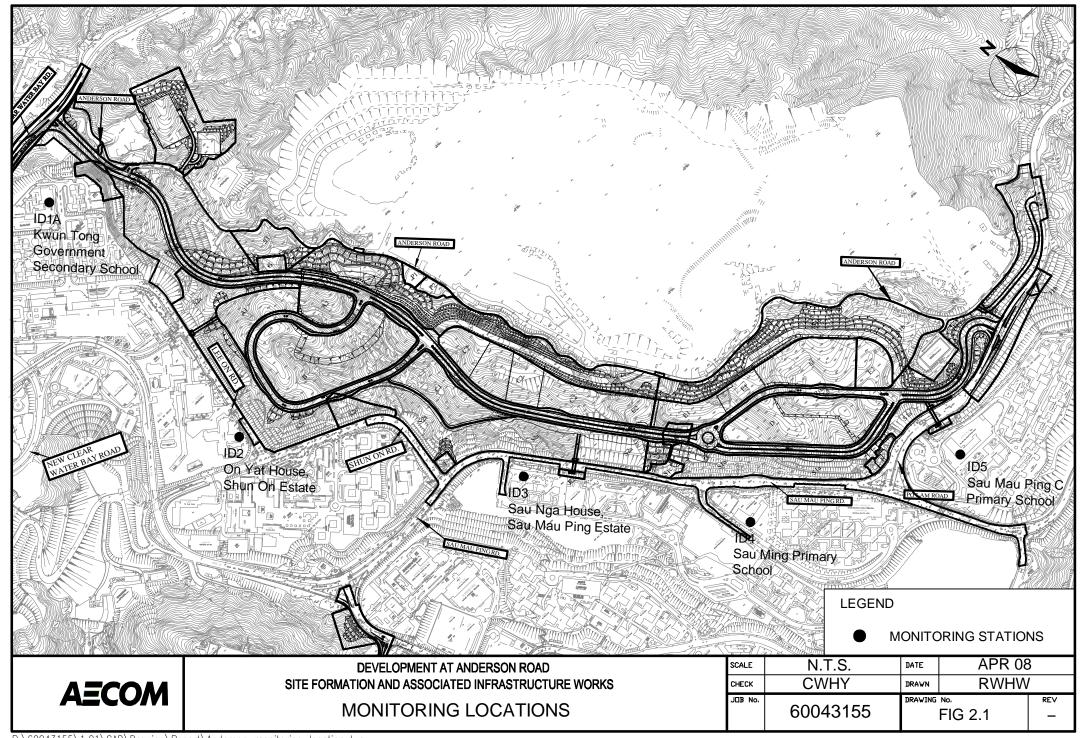
Construction Noise Impact

No specific observation was identified in the reporting month.

Water Quality Impact

• Effluent should be treated with de-silting facilities prior to discharge.


Chemical and Waste Management


• Sufficient drip tray should be provided to the equipment and chemical containers in order to retain any oil or chemical leakage. Moreover, regular inspection should be conducted to maintain the status of the equipment to prevent any oil leakage and to ensure that maintenance works are carried out in roofed, paved and confined works area only.

Landscape and Visual Impact

No specific observation was identified in the reporting month.



APPENDIX A

Project Organization Structure

Employment Relationship
Working Relationship

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Drai			Ctructure
PION	ect Ore	janization	Structure

SCALE	N.T.S.	DATE		2009	
CHECK	ENFL	DRAWN		LCHC	;
JOB NO.		APPEND	IX		Rev
	60043155		Α		_

APPENDIX B

Implementation Schedule of Environmental Mitigation Measures

Appendix B - Implementation Schedule of Environmental Mitigation Measures

Environmental Mitigation Measures		Location	Implementation Status
Construction N	loise Impact		
Site Formation	Silenced powered mechanical equipment (PME) for most equipment	All construction sites	V
	(including drill rig, backhoe, dump truck, breaker and crane) and the		
	decrease of percentage on time usage of drill rig among the Central Area		
	from 50% to 40% is proposed.		
	Temporary movable noise barrier shall be used to shield the noise	All construction sites	V
	emanating from the drilling rig in order to provide adequate shielding for the		V
	affected NSRs.		
Construction A	ir Quality Impact		
General Site	Mean vehicle speed of haulage trucks at 10km/hr.	All construction sites	V
Practice	Twice daily watering of all open site areas.	All construction sites	@
	Regular watering (once every 1 hour) of all site roads and access roads with	All construction sites	@
	frequent truck movement.	All construction sites	w
	During road transportation of excavated spoil, vehicles should be covered to	All construction sites	V
	avoid dust impact. Wheel washing facilities should be installed at all site		
	exits together with regular watering of the site access roads.		
	Tarpaulin covering of all dusty vehicle loads transported to, from and	All construction sites	V
	between site locations.	All construction sites	
	Establishment and use of vehicle wheel and body washing facilities at the	Site exits	V
	exit points of the site, combined with cleaning of public roads were		

Appendix B EMIS 1 September 2014

	necessary.		
General Site	Suitable side and tailboards on haulage vehicles.	All construction sites	V
Practice	Watering of temporary stockpiles.	All construction sites	V
Blasting	Use of select aggregate and fines to stem the charge with drill holes and watering of blast face.	All construction sites	V
	Use of vacuum extraction drilling methods.	All construction sites	V
	Carefully sequenced blasting.	All construction sites	V
Crushing	Fabric filters installed for the crushing plant.	All construction sites	V
	Water sprays on the crusher.	All construction sites	V
Loading and Unloading	Water sprays at all fixed loading and unloading points (at the crusher and conveyor belts).	All construction sites	V
Points, and conveyor Belt	The loading point at the crusher is enclosed with dust collection system installed.	All construction sites	V
System	When transferring materials from conveyor belt or crusher to the dump trucks, chutes or dust curtains are used for controlling dust.	All construction sites	V
	Cover the conveyor belts with steel roof and canvas sides.	All construction sites	V
Construction W	/ater Quality Impact		
Construction	All active working areas should be bounded to retain storm water with	Site drainage system	V
Phase	sufficient retention time to ensure that suspended solids are not discharged		
	from the site in concentrations above those specified in the TM for the		
	Victoria Harbour (Phase I) WCZ. All fuel storage areas should be bounded		

Appendix B EMIS 2 September 2014

	with drainage directed to an oil interceptor.		
Construction	Separate treatment facilities may be required for effluent from site offices,	Site drainage system	V
Phase	toilets (unless chemical toilets are used) and canteens.		
	Discharged wastewater from the construction sites to surface water and/or	All works area	@
	public drainage systems should be controlled through licensing. Discharge		
	should follow fully the terms and conditions in the licenses.		
	Relevant practice for dealing with various type of construction discharges	All works area	V
	provided in EPD's ProPECC Note PN 1/94 should be adopted.		
Waste Managem	nent		
Waste Disposal	Difference types of wastes should be segregated, stored, transported and	All construction sites	@
	disposed of separately in accordance with the relevant legislative		
	requirements and guidelines as proper practice of waste management.		
	Sorting of wastes should be done on-site. Different types of wastes should	All construction sites	V
	be segregated and stored in different stockpiles, containers or skips to		
	enhance recycling of materials and proper disposal of spoil.		
	Excavated spoil should be used as much as possible to minimize off-side fill	All construction sites	V
	material requirements and disposal of spoil.		
	Chemical waste should be recycled on-site or removed by licenced	All construction sites	V
	companies. It should be handled according to the Code of Practice on the		

Appendix B EMIS 3 September 2014

	Packaging, Labelling and Storage of Chemical wastes. When off-site		
	disposal is required, it should be collected and delivered by licenced		
	contractors to Tsing Yi Chemical Waste Treatment Facility and disposed of		
	in accordance with the Chemical Waste (General) Regulation.		
	Necessary mitigation measures should be adopted to prevent the	All construction sites	V
	uncontrolled disposal of chemical and hazardous waste into air, soil, surface		
	waters and ground waters.		
Waste Storage	Chemical material storage areas should be bounded, constructed of	All construction sites	@
	impervious materials, and have the capacity to contain 120 percent of the		
	total volume of the containers. Indoor storage areas must have sufficient		
	ventilation to prevent the build-up of fumes, and must be capable of		
	evacuating the space in the event of an accidental release. Outdoor storage		
	areas must be covered with a canopy or contain provisions for the safe		
	removal of rainwater. In both cases, storage areas must not be connected to		
	the foul or stormwater sewer system.		
	Dangerous materials as defined under the DGO, including fuel, oil and	All construction sites	V
	lubricants, should be stored and properly labelled on site in accordance with		
	the requirements in the DGO. If transportation of hazardous materials is		
	necessary, hazardous materials, chemical wastes and fuel should be		
	packed or stored in containers or vessels of suitable design and construction		
	to prevent leakage, spillage or escape.		
	Human waste should be discharged into septic tanks provided by the	All construction sites	V
	contractors and removed regularly by a hygiene services company. Refuse		

Appendix B EMIS 4 September 2014

	containers such as open skips should be provided at every work site for use		
	by the workforce. On-site refuse collection points must also be provided.		
Landscape ar	nd Visual		
Additional	Planting and vegetation restoration (including transplanted trees) on soil	Whole development	N/A
Measures	slopes including restoration of grassland, scrub and woodland on slopes		
	around the development platforms and access road. Restoration would be		
	undertaken using predominantly native species.		
Additional	Screen planting along the access roads, to limit impacts of elevated	Whole development	N/A
Measures	structures and rock slopes.		
	Colouring of shotcrete slopes.	Whole development	N/A
	Limited planting on shotcrete slopes.	Whole development	V
	Landscape buffers and planting in and around the development itself to	Whole development	N/A
	screen partially close views of the site.		
	Screen planting in front of retaining walls / granite cladding to those walls to	Whole development	N/A
	reduce glare and visual impacts.		
	Careful design of road elevated structure and abutments, to limit visual	Whole development	V
	impacts.		
	Roadside landscape features / hardworks to limit visual impacts.	Whole development	V
	Conservation of CDG or CDV recovered from the site for re-use in the	Whole development	N/A
	landscape restoration.		
	Preservation (by transplanting if necessary) of any trees identified as being	Whole development	V

Appendix B EMIS 5 September 2014

	of particular landscape value.		
Ecology			
	Woodland planting on soft cut slopes available (about 13.4ha) within the	Soft cut slopes	N/A
	development site. Native species, preferably with documented ecological		
	utility, should be used.		
	Seeds of the native species when possible should be added into the	Soft cut slopes	N/A
	hydroseeding mix. Seedings should be pit planted with placement of slow		
	release fertilizer.		
	Maintenance and service, including weeding, fertilizing, replacement of	Soft cut slopes	N/A
	dead plants, etc. should be performed during the first 1 years of planting to		
	enhance the survival rate of the plants.		
Contaminated	Land		
	In accordance with the approved Contamination Assessment Report (CAR)	Locations specified in CAR	N/A
	and Remediation Action Plan (RAP) in Nov 2006, it is recommended that		(Works In Progress)
	cement solidification / stabilization prior to on-site backfill for heavy metal		
	contaminated soil and excavation followed by disposal at designated landfill		
	for organic contaminated soil. Upon the completion of the proposed		
	remediation exercise as outlined in CAR & RAP, a Remediation Report will		
	be complied for submission to EPD to demonstrate that the proposed soil		
	remediation has been carried out properly and satisfactorily. Results from		
	the confirmation tests will also be included in the Remediation Report.		
	Photos showing the area of excavation, the solidification process, and		
	remediated soil and site shall also be included in the report for reference.		

Appendix B EMIS 6 September 2014

Landfill Gas Hazard									
Fu	urther site investigation should be carried out during the detailed design	The whole development site	N/A						
sta	tage in order to measure landfill gas around the perimeter of the site, to								
re-	e-confirm that there is no preferential pathway for landfill gas migration and								
to	assess the potential for landfill gas hazards on the future development. If								
al	landfill gas hazard is identified, mitigation measures should be proposed								
an	nd implemented to address the hazard.								

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX C

Summary of Action and Limit Levels

Appendix C - Summary of Action and Limit Levels

Table 1 – Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
ID 1A	201.5	500
ID 2	197.0	500
ID 3	203.7	500
ID 4	264.6	500
ID 5	267.4	500

Table 2 – Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
ID 1A	170.2	260
ID 2	200.0	260
ID 3	200.0	260
ID 4	181.3	260
ID 5	180.8	260

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
ID 1A	When one documented	*65 / 70 dB(A)
ID 2	complaint is received	75 dB(A)
ID 3	•	75 dB(A)
ID 4	from any one of the sensitive	*65 / 70 dB(A)
ID 5	receivers	*65 / 70 dB(A)

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period

APPENDIX D

Calibration Certificates of Equipments

Station	Kwun Tong Go	vernment Sec	ondary School (ID1	lA)	Operator:	Leung Yi	u Ting
Date:	Date: 16-Jun-14 Next Due Date:					16-Aug	-14
Pump No.:	763			O.T.S	0843		
Equipment No.:	9-Dec-2	014					
						4	
		***	Ambient C	Condition			
Tempera	ture, Ta	305	Kelvin	Pressu	ıre, Pa	751.9	mmHg

		Oı	ifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	843	Slope, mc 1.99102 Intercept, bc -0.			-0.00616	
Last Calibra	ation Date:	9-Dec-13	n	nc x Qstd + bc =	= [H v (Pa/760)	v (208/Ta)1 ^{1/2}	
Next Calibra	ation Date:	9-Dec-14	ı.	iic x Qsta + bc -	- [H X (Fa//00)	X (298/1a)]	
			W 5.0				
			Calibration of	TSP Sampler			
Calibration	Н		1/2	Qstd	W	[ΔW x (Pa/760) x	(208/Ta)1 ^{1/2}
Point	in. of water	[H x (Pa/760) x (298/Ta)] ^{1/2}		(m³/min)	in. of oil	Y-axis	
1	9.6		2.00	X - axis			
	8.6		2.88	1.45	6.0	2.41	
2	7.7		2.73	1.37	5.0	2.20	
3	5.9	-	2.39	1.20	3.7	1.89	
4	4.1	-	1.99	1.00	2.3	1.49	
5 D. L' D	2.8	<u> </u>	1.65	0.83	1.2	1.08	
By Linear Regre		•		- 0			
Slope, mw =	2.0887	-		Intercept, bw =		-0.629	8
Correlation C	oefficient* = _	0.	9988				
			0.5.6				
Errore the TCD Ei	-14 C-17	1 0	Set Point Ca				
			$td = 1.21 \text{ m}^3/\text{min } (4)$	13 CFM)			
From the Regress	sion Equation, th	ie "Y" value a	ccording to				
		m x (Qstd + b = [W x (P)]	Pa/760) x (298/T	(a) $1^{1/2}$		
				, , , , , , , , ,	/1		
Therefore, S	Set Point $W = (n $	$(a \times Qstd + b)^2$	x (760/Pa)x(T	(a / 298) =	3.	.72	
*If Correlation C	oefficient < 0.99	00, check and	recalibrate again.				
Remarks:							
-							
QC Reviewer:	is CHAN		Signature:	*	Date:	17/6/14	

Station	On Yat House (<u>I</u> D2)			Operator:	Leung Yi	u Ting
Date:	16-Jun-14	_			Next Due Date:	16-Aug	-14
Pump No.:	1654			V	erified Against:	O.T.S	0843
Equipment No.:	A-001-61T			I	Expiration Date:	9-Dec-2	1014
			Ambient C	Yan dikian		P	
Tammana	tura Ta	305			uno. Do	751.0	
Tempera	ture, 1a	303	Kelvin	Pressu	ire, Pa	751.9	mmHg
		Oı	rifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	843	Slope, mc	1.99		Intercept, bc	-0.00616
Last Calibra		9-Dec-13					
Next Calibra		9-Dec-14	n	nc x Qstd + bc =	= [H x (Pa/760)	x (298/Ta)]"2	
		*					
		7	Calibration of	TSP Sampler Qstd			
Calibration Point	H in. of water	[H x (Pa/7	[H x (Pa/760) x (298/Ta)] ^{1/2}		W in. of oil	[ΔW x (Pa/760) x Y-ax	
1	8.4		2.85	1.43	5.8	2.37	
2	6.5		2.51	1.26	4.2	2.01	
3	5.2		2.24	1.13	3.1	1.73	
4	4		1.97	0.99	2.2	1.46	
5	3.0		1.70	0.86	1.5	1.20)
By Linear Regr		X					
	2.0511	_		Intercept, bw =		-0.57	19
Correlation C	oefficient* =	0	.9998				
		10.40					
			Set Point C	alculation			
From the TSP Fi	eld Calibration (Curve, take Qs	$std = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
From the Regres	sion Equation, th	ne "Y" value a	according to				
		m x	Qstd + b = [W x (I	Pa/760) x (298/T	$(a)l^{1/2}$		
			Z (-	(=> = / =	· /)		
Therefore, S	Set Point $W = (r$	n x Qstd + b)	$r^2 \times (760 / Pa) \times (760 / Pa)$	Γa / 298) =	3	.77	8
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.				
Remarks:							
1					IIIAA		
						_ //	
QC Reviewer:	WS CHAN		Signature:	21	Date:	17/6/14	

Station	Sau Nga House	<u>(</u> ID3)			Operator:	Leung Yi	u Ting			
Date:	16-Jun-14				Next Due Date:	16-Aug	j-14			
Pump No.:	No.: 1272 Verified Against: 0.T.S - 0843									
Equipment No.:	A-001-31T	Expiration Date: 9-Dec-2014								
			Ambient C	Condition			10-72-72			
Tempera	ture, Ta	305	Kelvin	Pressu	re, Pa	751.9	mmHg			
		Oı	ifice Transfer Sta	ndard Informat	ion					
Equipme	ent No.:	843	Slope, mc	1.99	102	Intercept, bc	-0.00616			
Last Calibra	ation Date:	9-Dec-13		nc x Qstd + bc =	- III = (Da/760)	v (209/Ta)1 ^{1/2}				
Next Calibra	ation Date:	9-Dec-14	1	ne x Qsta + be =	- [H X (Pa//00)	x (296/1a)]				
		•								
			Calibration of	TSP Sampler						
Calibration	Н		1/2	Qstd	W	[ΔW x (Pa/760)	x (298/Ta)] ^{1/2}			
Point	in. of water	[H x (Pa/7)	60) x (298/Ta)] ^{1/2}	(m³/min)	in. of oil	Y-axis				
				X - axis						
1	8.2	 	2.82	1.42	5.5	2.3				
2	6.5	-	2.51	1.26	4.4	2.00				
3	5.4	+	2.28	1.15	3.4	1.81				
4	4.3	-	2.04	1.03	2.4	1.52				
5	3.3		1.79	0.90	1.5	1.20)			
By Linear Regr		•								
Slope, mw =		_		Intercept, bw =		-0.71	14			
Correlation C	oefficient* = _	0	.9954							
- 1 map r	110111 1		Set Point C							
			$std = 1.21 \text{ m}^3/\text{min} (4)$	43 CFM)						
From the Regres	sion Equation, th	ie "Y" value a	ccording to							
		m x	Qstd + b = [W x (I)]	Pa/760) x (298/T	$[a]^{1/2}$					
			\$0 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	,	-					
Therefore,	Set Point $W = (n + 1)^{-1}$	n x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3	.76				
*If Correlation C	Coefficient < 0.99	90, check and	recalibrate again.							
Remarks:										
OCP .	1.10 / 1/4 1		Signature:	PI		17/6/10				
UK Keviewer	IN SI Ham		Nignature:		Date:	1//4///	1			

Station	Sau Ming Prim	ary School (II	94)		Operator:	Shum Kar	n Yuen
Date:	14-Jun-14	_			Next Due Date:	14-Auş	g-14
Pump No.: 1275 Verified Against: 0.T.S 0843							
Equipment No.:	A-001-28T					9-Dec-2	
					1		
			Ambient (Condition			
Tempera	ture, Ta	305.5	Kelvin	Pressu	ire, Pa	752.4	mmHg
		Oı	ifice Transfer Sta	ndard Informat	tion		
Equipme	ent No.:	843	Slope, mc	1.99	102	Intercept, bc	-0.00616
Last Calibra	ation Date:	9-Dec-13		nc x Qstd + bc =	= [H v (Pa/760)	v (208/Ta)1 ^{1/2}	
Next Calibra	ation Date:	9-Dec-14		ne x Qstu + be -	- [11 x (1 a/ /00)	x (296/1a)j	
200							
			Calibration of				
Calibration	Н	FIX (D /M	(0) (000 / 17)	Qstd (m³/min)	W	[ΔW x (Pa/760) z	x (298/Ta)1 ^{1/2}
Point	in. of water	[H x (Pa/7)	[H x (Pa/760) x (298/Ta)] ^{1/2}		in. of oil	Y-axis	
1	8.5		2.87	X - axis 1.44	5.7	2.35	j
2	6.6		2.52	1.27	4.5	2.08	3
3	5.5		2.30	1.16	3.4	1.81	
4	4.4		2.06	1.04	2.4	1.52	
5	3.3		1.79	0.90	1.6	1.24	
By Linear Regr	ession of Y on 2	X					
Slope, mw =	2.1104			Intercept, bw =		-0.652	23
Correlation C	oefficient* =	0	.9969				
			Set Point C				
			$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
From the Regress	sion Equation, th	ne "Y" value a	ccording to				
		m x	Qstd + b = [W x (I)]	Pa/760) x (298/T	(a)1 ^{1/2}		
					/1		
Therefore, S	Set Point W = (r	n x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3.	.74	
#TC G 1							
*If Correlation C	coefficient < 0.99	90, check and	recalibrate again.				
D 1							
Remarks:				PROCESSIAN AND AND AND AND AND AND AND AND AND A			
-							
OC Reviewer	115 CHM	ı	Signature:	DI.	Data	11. 16/14	(

Station	Sau Mau Ping C	Catholic Prima	ry School (ID5)		Operator:	Shum Kar	n Yuen
Date:	14-Jun-14		,			14-Aug	
Pump No.:	10088	_				O.T.S	
Equipment No .:		9-Dec-2					
					i		
			Ambient (Condition			
Tempera	ıre, Pa	752.4	mmHg				
		Or	ifice Transfer Sta	ndard Informa	tion		**
Equipme	ent No.:	843	Slope, mc	1.99	102	Intercept, bc	-0.00616
Last Calibra	ation Date:	9-Dec-13		mc x Qstd + bc =	- (U v (Da/760)	- (200/T-)1 ^{1/2}	
Next Calibra	ation Date:	9-Dec-14		me x Qstu + be -	- [H X (Pa//60)	x (298/1a)]	
		•					
			Calibration of			-	
Calibration Point	H in. of water	[H x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-ax	
1	8.3		2.83	1.42	5.9	2.39	
2	7.2		2.64	1.33	4.7	2.13	
3	5.4		2.28	1.15	3.5	1.84	
4	4.3		2.04	1.03	2.6	1.58	
5	2.8		1.64	0.83	1.5	1.20	
By Linear Regr	ession of Y on X						
Slope, $mw = \frac{1}{2}$	1.9669	_	1	Intercept, bw =		-0.437	19
Correlation C	oefficient* = _	0.	9978				
			_				
From the TCD Ei	-14 C-1:1		Set Point Ca				
From the Regress			$d = 1.21 \text{ m}^3/\text{min } (4)$	43 CFM)			
rom the Regress	sion Equation, th	e i vaiue ac	cording to				
		m x (Qstd + b = [W x (P	Pa/760) x (298/T	$[a]^{1/2}$		
Therefore, S	et Point W = (m)	$(x \text{ Qstd} + b)^2$	x (760 / Pa) x (T	(a / 298) =	3.	91	
*If Correlation C	oefficient < 0.00	O check and r	racalibrata accin				
2. Considion C	0.99	o, check and f	ccanorate again.				
Remarks:							
							*
-				3 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1			
QC Reviewer:	WS CHAN		Signature:	21	Date:	16/6/14	

Station	Kwun Tong Gov	vernment Seco	ondary School (ID1	A)	Operator:	Leung Yi	u Ting	
Date:	15-Aug-14				Next Due Date:	15-Oct-	-14	
Pump No.:	763	-				O.T.S (
Equipment No.:	A-001-64T					9-Dec-2		
			Ambient C	Condition				
Tempera	ture, Ta	304	Kelvin	Pressu	re, Pa	752.9	mmHg	
			ifice Transfer Sta					
Equipme		843	Slope, mc	1.99	102	Intercept, bc	-0.00616	
Last Calibra	ation Date:	9-Dec-13	n	nc x Qstd + bc =	= [H x (Pa/760)	$x(298/Ta)l^{1/2}$		
Next Calibra	ation Date:	9-Dec-14						
		•						
		1	Calibration of					
Calibration Point	H in. of water	[H x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-ax		
1	8.8		2.92	1.47	5.9	2.39		
2	7.5		2.70	1.36	5.0	2.20		
3	5.8		2.37	1.19	3.5	1.84		
4	4.1		2.00	1.01	2.2	1.46		
5	2.8		1.65	0.83	1.4	1.17		
By Linear Regr	515-91.3	ζ.						
Slope, mw =				Intercept, bw =		-0.474	1 7	
Correlation C		- 0	9988	• •				
			Set Point C			460		
			$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)				
From the Regres	sion Equation, th	ne "Y" value a	ccording to					
		m x	Qstd + b = [W x (I)]	Pa/760) x (298/T	$[a]^{1/2}$		*	
Therefore, S	Set Point $W = (n$	n x Qstd + b)	² x (760 / Pa) x (1	Γa / 298) =	3	.66		
*If Correlation C	Coefficient < 0.99	90, check and	recalibrate again.					
Remarks:								
	1. (C 1/1.A	,	202	PI		0 1-1		
QC Reviewer:	WS CHAN	1	Signature:	41	Date:	18/8/14	-	

Station	On Yat House (ID2)			Operator:	Leung Yi	u Ting		
Date:	15-Aug-14	_			Next Due Date:	15-Oct	-14		
Pump No.:	1654	_	Verified Against: O.T.S 0843						
Equipment No.:	A-001-61T	Expiration Date: 9-Dec-2014							
	-				•				
			Ambient C	Condition					
Tempera	ture, Ta	304	Kelvin	Pressu	re, Pa	752.9	mmHg		
			10			N2790007 053805 HT			
1885.0-2-0	1	Oı	ifice Transfer Sta	ndard Informat	tion				
Equipme	ent No.:	843	Slope, mc	1.99	102	Intercept, bc	-0.00616		
Last Calibra	ation Date:	9-Dec-13		nc x Qstd + bc =	- III -: (Do/760)	- (209/Ta)1 ^{1/2}			
Next Calibra	ation Date:	9-Dec-14	I	ne x Qsta + be =	= [H X (Pa//00)	x (298/1a)]			
		,	(a (e						
			Calibration of	TSP Sampler					
Calibration	Н	Last Line Committee Committee	1/2	Qstd	W	[ΔW x (Pa/760) :	x (298/Ta)1 ^{1/2}		
Point	in. of water	[H x (Pa/7)	60) x (298/Ta)] ^{1/2}	(m³/min)	in. of oil	Y-ax			
1	9.5	1	2.07	X - axis	<i></i>	2.24			
1	8.5		2.87	1.44	5.7	2.35			
2	6.4		2.49	1.25	4.2	2.02			
3	5.2		2.25	1.13	3.0	1.71			
4	4.2		2.02	1.02	2.2	1.46			
5 D- 1 : D	3.0	,	1.71	0.86	1.4	1.17	(
By Linear Regr Slope, mw =		X		Intoncent how -		-0.63	01		
Correlation C	S - 100 (1300) William	-	.9977	Intercept, bw =		-0.03	91		
Correlation	oemcient" – _	U	.9977	•					
			Set Point C	alculation					
From the TSD Fi	ald Calibration (Curve take O	$std = 1.21 \text{ m}^3/\text{min } (4)$						
From the Regres				45 CI WI)					
From the Regres	sion Equation, u	ie i vaiue a	eccording to						
		m x	$\mathbf{Qstd} + \mathbf{b} = [\mathbf{W} \ \mathbf{x} \ (]$	Pa/760) x (298/T	[a]] ^{1/2}				
Therefore,	Set Point $W = (r$	$n \times Qstd + b$	2 x (760 / Pa) x (2	Ta / 298) =	3	.67			
4100		20 1 1 1	111						
*If Correlation (Coefficient < 0.9	90, check and	recalibrate again.						
D 1									
Remarks:						11 000			
OC Reviewer	b C CHAN		Signature:	71	Date	18/0/111			
OU INVIEWEL.									

Station	Sau Nga House	(ID3)			Operator:	Leung Yiu	ı Ting			
Date:	15-Aug-14	<u>-</u>			Next Due Date:	15-Oct-	14			
Pump No.:	1272			V	erified Against:	O.T.S ()843			
Equipment No.:	A-001-31T			F	Expiration Date:	9-Dec-2	014			
			Ambient C	Condition		MA AN ADMINISTRAÇÃO				
Tempera	ture, Ta	304	Kelvin	Pressu	re, Pa	752.9	mmHg			
		Oı	ifice Transfer Sta	ndard Informat	tion					
Equipme	ent No.:	843	Slope, mc	1.99	102	Intercept, bc	-0.00616			
Last Calibra	ntion Date:	9-Dec-13	Dec-13 mc x Qstd + bc = $[H \times (Pa/760) \times (298/Ta)]^{1/2}$							
Next Calibra	ation Date:	9-Dec-14		uc x Qstu + bc	[11 x (1 a/ /00)	X (270/14)]	gat. Als			
entition of the second of	474	•	Calibration of	TCD Campler	N.	-				
		T	Canbration of	Qstd						
Calibration Point	H in. of water	[H x (Pa/7	60) x (298/Ta)] ^{1/2}	(m^3/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-ax i	11			
1	8.1		2.80	1.41	5.6	2.33				
2	6.5		2.51	1.26	4.4	2.07				
3	5.5	3.5	1.84							
4	4.3		2.04	1.03	2.4	1.53				
5	3.1		1.74	0.88	1.7	1.28				
By Linear Regr	ession of Y on X	K								
	2.0397	-		Intercept, bw =		-0.531	.6			
Correlation C	oefficient* =	0	.9978							
	0.000									
			Set Point C							
			$std = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)						
From the Regres	sion Equation, th	ne "Y" value a	according to							
		m x	Qstd + b = [W x (I	Pa/760) x (298/T	$[a]^{1/2}$					
Therefore 9	Set Point W = (r	n v Oetd + h)	o ² x (760 / Pa) x (7	Γ ₂ / 208) =	2	.86				
Therefore, i	oct i omt w – (i	ii x Qsid + 0)	/ X(/00/14)X(14/290) -		.00				
*If Correlation C	Coefficient < 0.99	90, check and	recalibrate again.							
D 1										
Remarks:										
		1100 ×								
QC Reviewer:	WS CHAN	,	Signature:	RI	Date:	18/8/14	F			

Station	Sau Ming Prima	ry School (ID	4)	Operator: Shum Kam Yuen					
Date:	14-Aug-14	_			Next Due Date:	14-Oct	-14		
Pump No.:	1275			V	erified Against:	O.T.S (0843		
Equipment No.:	A-001-28T			E	Expiration Date:	9-Dec-2	:014		
			Ambient C	Condition			2000		
Temperar	ture, Ta	302	Kelvin	Pressu	re, Pa	752.8	mmHg		
							W. 10. 10.00 (A)		
		Or	ifice Transfer Sta	ndard Informat	tion				
Equipme	ent No.:	843	Slope, mc	1.99	102	Intercept, bc	-0.00616		
Last Calibra	ation Date:	9-Dec-13		nc x Qstd + bc =	- III (D-/7(0)	- (200/TF-)1 ^{1/2}			
Next Calibra	ation Date:	9-Dec-14	I	nc x Qsta + bc =	= [H X (Pa//60)	x (298/1a)]			
		•	1						
			Calibration of	TSP Sampler					
Calibration	Н		1.0	Qstd	W	[ΔW x (Pa/760) x	v (208/Ta)1 ^{1/2}		
Point	in. of water	[H x (Pa/7)	50) x (298/Ta)] ^{1/2}	(m³/min)	in. of oil	Y-axi			
X - axis									
1	8.4	-	2.87	1.44	5.8	2.38	***		
2	6.4		2.50	1.26	4.4	2.07			
3	5.5		2.32	1.17	3.4	1.82			
4	4.3	-	2.05	1.03	2.5	1.56			
5	3.3		1.80	0.91	1.8	1.33	}		
By Linear Regr		K.					W-1274		
Slope, mw =		-		Intercept, bw =		-0.507	74		
Correlation C	oefficient* = _	0	.9981						
			Set Point C						
			$ttd = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)					
From the Regres	sion Equation, th	ne "Y" value a	ccording to						
		m v	Qstd + b = [W x (I)]	Pa/760) v (208/T	$[a]^{1/2}$				
		m A	Quita D [W Z ((250/1					
Therefore, S	Set Point W = (r	n x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3	3.81			
*If Correlation C	Coefficient < 0.99	90, check and	recalibrate again.						
Remarks:									
						10 1			
QC Reviewer:	WS CHAN	1	Signature:	RI	Date:	15/8/14	į		

Station	Sau Mau Ping C	Catholic Prima	ry School (ID5)		Operator:	Shum Kan	Yuen		
Date:	14-Aug-14	_			Next Due Date:	14-Oct	-14		
Pump No.:	10088			V	erified Against:	O.T.S (0843		
Equipment No.:	A-001-13T			I	Expiration Date:	9-Dec-2	014		
2000		1-10-10-10-10-10-1	Ambient C						
Tempera	ture, Ta	302	Kelvin	Pressu	ire, Pa	752.8	mmHg		
		Oı	rifice Transfer Sta	ndard Informat	tion				
Equipme	ent No.:	843	Slope, mc	1.99		Intercept, bc	-0.00616		
Last Calibra		9-Dec-13	mc x Qstd + bc = $[H \times (Pa/760) \times (298/Ta)]^{1/2}$						
Next Calibra	ation Date:	9-Dec-14	r	nc x Qstd + bc =	= [H x (Pa/760)	x (298/Ta)]" ²			
	110	•	6 111 6	TOP C	*				
	Ι	T	Calibration of	Qstd					
Calibration Point	H in. of water	[H x (Pa/7	60) x (298/Ta)] ^{1/2}	(m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-ax i	· · · · · · · · · · · · · · · · · · ·		
1	8.1		2.81	1.41	5.9	2.40			
2	7.2		2.65	1.33	4.6	2.12			
3						1.85			
4	4.3		2.05	1.03	2.4	1.53			
5	2.9		1.68	0.85	1.4	1.17			
By Linear Regr		X							
Slope, mw =	2.1295			Intercept, bw =		-0.652	20		
Correlation C	oefficient* = _	0	.9965						
n 1 man n		~	Set Point C						
			$std = 1.21 \text{ m}^3/\text{min} (4)$	43 CFM)					
From the Regres	sion Equation, th	ne "Y" value a	eccording to						
		m x	Qstd + b = [W x (]	Pa/760) x (298/1	[a]] ^{1/2}				
Th f	C-4 D-1-4 W		o ² x (760 / Pa) x (7	F- / 200)		70			
Inerefore,	Set Point $W = (1$	n x Qsta + b)	x (/60 / Pa) x (1a / 298) =	3	.79			
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.	(10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		15.00		
Remarks:			P173-10-100						
OC P :	115 011	/	G!	PI	D	12-10 /11			
QC Reviewer:	WS CHAN	J	Signature:	21	Date:	15/8/14			

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Dec 09, 2013 Rootsmeter S/N 0438320 Ta (K) - Operator Tisch Orifice I.D 0843 Pa (mm) -										
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)				
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4140 0.9940 0.8870 0.8450 0.6990	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00				

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0174 1.0131 1.0109 1.0098 1.0044	0.7195 1.0192 1.1397 1.1950 1.4369	1.4295 2.0216 2.2602 2.3705 2.8590		0.9957 0.9915 0.9894 0.9883 0.9830	0.7042 0.9975 1.1155 1.1696 1.4063	0.8761 1.2390 1.3852 1.4528 1.7522
Qstd slop	(b) =	1.99102 -0.00616 0.99996	n e n	Qa slope intercept coefficie	= (b) $=$	1.24674 -0.00378 0.99996
y axis =	SQRT[H2O(F	Pa/760) (298/I	[a)]	y axis =	SQRT [H2O (T	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:			3)	Laser Du	st Moni	tor		
	acturer/Brand:			SIBATA				
Model	No.:		_	LD-3				
	ment No.:			A.005.07				
Sensit	ivity Adjustment	Scale Setting:		557 CPI	/			
Opera	tor:			Mike She	k (MSKN	1)		
Standa	rd Equipment							
	Addition of the Control of the Contr							
Equip		Rupprech		the same of the sa				
Venue		Cyberpor		ring Seco	naary So	chool)		
Model		Series 14		A D 240 00	20002			
Serial	NO:	Control:		DAB21989	-	V . 40500		
Last C	alibration Date*:	Sensor: 10 May 2		00C14365	9803	K _o : <u>12500</u>		
Last	anbration bate .	_ TO May 2	014		-		****	
*Remar	ks: Recommend	ed interval for h	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result							
0	: : . A . P	01-0-11-1		0 . !!! !!		557 00		
	ivity Adjustment					557 CP		
Sensit	ivity Adjustment	Scale Setting (7	Affer Ca	alibration)	1.	_557 CP	IVI	
Hour	Date	Time		Amb	ient	Concentration	Total	Count/
100000000000000000000000000000000000000	(dd-mm-yy)	(10.00000000000000000000000000000000000		Cond		(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	11-05-14		10:30	26.7	75	0.04434	1775	29.58
2	11-05-14		11:30	26.7	75	0.04716	1880	31.33
3	11-05-14		12:30	26.8	76	0.04927	1964	32.73
4	11-05-14		13:30	26.8	75	0.05035	2015	33.58
Note:		lata was measu				shnick TEOM®		
		was logged by						
	3. Count/minut	te was calculate	ea by (I	otal Coul	11/60)			
By Line	ar Regression of	Y or X						
	(K-factor):		015					
	ation coefficient:		982					
V / P P:				0.45				
Validit	y of Calibration F	Record: 11	May 20	015				
DI								
Remark	is:							
					1./			
QC Re	eviewer: YW F	ung	Signat	ture:	9/	Date	: 12 Ma	y 2014

Model N Equipme	ent No.: ity Adjustment	Scale Setting:	-	Laser Dust Monitor SIBATA LD-3 A.005.08a 702 CPM Mike Shek (MSKM)					
•		4-2		WING OTT	ok (MON		35 HH-1		
Standard	Equipment								
Equipme Venue: Model N	lo.:	Rupprech Cyberpor Series 14	t (Pui ` 100AB	Ying Seco	ondary S				
Serial N	0:	Control: Sensor:	-	0AB2198 00C1436		K _o : 128	500		
Last Cal	libration Date*:	10 May 2		0001430	39003	No. 120	500		
*Remarks	: Recommend	ed interval for h	ardwa	re calibra	ation is 1	year			
Calibratio	on Result						4 S. MAR.		
		Scale Setting (E Scale Setting (A				702 702	CPM CPM		
Hour	Date (dd-mm-yy)	Time		Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis	
1	11-05-14	09:45 - 1	0:45	26.7	75	0.04568	1713	28.50	
2	11-05-14	10:45 - 1	1:45	26.7	75	0.04857	1819	30.32	
3	11-05-14		2:45	26.8	76	0.05063	1903	31.72	
4	11-05-14	7.50	3:45	26.8	75	0.05116	1922	32.03	
	Total Count Count/minut	was logged by e was calculate	Laser	Dust Mor	nitor	tashnick TEOM [®]			
	Regression of								
	<-factor):		0016						
	tion coefficient: of Calibration F		984 May 2	015					
Remarks	:			1					
QC Rev	riewer: <u>YW</u> F	-ung	Signa	iture:	4/		Date: 12	2 May 2014	

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting:		Laser Du SIBATA LD-3 A.005.09a 797 CPM Mike She	a 1			
Equipr		Rupprechi				L N		
Venue		Cyberport		ing Seco	ndary Sc	nooi)		
Model		Series 140		A D24000	0000			
Serial	No:	Control:		AB21989		K _o : 12500		- 10-1 00
1 4 0	alibuatian Data*.	Sensor:		0C14365	9803	K _o : <u>12500</u>		
Last C	Calibration Date*:	10 May 20)14					
*Remar	ks: Recommend	ed interval for ha	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result	all and a second						
	ivity Adjustment ivity Adjustment					797 CP 797 CP		
Hour	Date	Time		Amb	ient	Concentration ¹	Total	Count/
rioui	(dd-mm-yy)			Conc		(mg/m ³)	Count ²	Minute ³
	(44)))			Temp	R.H.	Y-axis		X-axis
				(°C)	(%)	3 700000000		
1	11-05-14	13:30 - 1	4:30	26.8	75	0.05034	2017	33.62
2	11-05-14	14:30 - 1	15:30	26.9	76	0.05211	2084	34.73
3	11-05-14	15:30 - 1	16:30	26.9	76	0.05163	2066	34.43
4	11-05-14		17:30	26.9	76	0.05272	2113	35.22
Slope Corre	2. Total Count 3. Count/minut ar Regression of (K-factor): lation coefficient: ty of Calibration F	0.0	Laser [Oust Mon Total Cou	itor	ashnick TEOM [™]		
		Fung	Signa	ture:	9/	Date	e: 12 Ma	ay 2014

Model Equipr	acturer/Brand: No.: nent No.: ivity Adjustment	Scale Setti		Laser Du SIBATA LD-3 A.005.10 753 CPN	а	tor		
Opera	•		_	Mike She	600 0000 000	1)		
Standar	rd Equipment			****				
Equipr Venue Model	: No.:	Cybe Serie	precht & Par erport (Pui \ es 1400AB	ing Seco	ndary So	chool)		
Serial Last C	No: alibration Date*:	Cont Sens 10 M		0AB21989 00C14365		K _o : _1250	00	
*Remarl	ks: Recommend	ed interval	for hardwar	e calibrat	ion is 1 y	year		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment		• ,				CPM CPM	
Hour	Date (dd-mm-yy)	Ti	me	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	11-05-14	13:45	- 14:45	26.8	75	0.04984	1996	33.27
2	11-05-14		- 15:45	26.9	76	0.05196	2077	34.62
3	11-05-14	15:45	- 16:45	26.9	76	0.05141	2055	34.25
4	11-05-14		- 17:45	26.9	76	0.05263	2109	35.15
Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient: y of Calibration F	was logge e was calc Y or X	d by Laser [Oust Mon otal Cou	itor	ashnick TEOM [®]		
Siliain			2					
QC Re	eviewer: YW F	ung	_ Signa	ture:	4/	Da	ate: 12 Ma	y 2014

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting	g: _	Laser Du SIBATA LD-3 A.005.11 799 CPI Mike She	а И			
	(New York)	_						
Equipr			echt & Pa			, ,		
Venue			port (Pui \	ring Seco	ndary So	chool)		
Model	46 NTHE		1400AB	0400400	20000			
Serial	NO:	Contro		DAB21989		V . 40500		
Loot C	alibration Data*	Senso		00C1436	9803	K _o : <u>12500</u>	,	
Last C	alibration Date*:	_10 Ma	y 2014					
*Remar	ks: Recommend	ed interval fo	or hardwar	re calibra	tion is 1 v	vear		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 00		,		
Calibra	tion Result							
Sensit	ivity Adjustment	Scale Setting	g (Before	Calibratio	n):	799 CF	PM	
Sensit	ivity Adjustment	Scale Setting	g (After Ca	alibration):	799 CF	PM	
Hour	Date	Tim	е	Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	18-05-14	09:00 -	10:00	28.3	77	0.04527	1815	30.25
2	18-05-14	10:00 -	11:00	28.3	77	0.04811	1923	32.05
3	18-05-14	11:00 -	12:00	28.3	77	0.05103	2041	34.02
4	18-05-14	12:00 -	13:00	28.4	77	0.05366	2157	35.95
Note:	 Monitoring of 	lata was mea	asured by	Rupprec	ht & Pata	ashnick TEOM®		R-12
	Total Count	was logged	by Laser [Dust Mon	itor			
	Count/minut	e was calcul	ated by (T	Total Cou	nt/60)			
	ar Regression of							
	(K-factor):	-	0.0015					
Correl	ation coefficient:	_	0.9987					
Validit	y of Calibration F	Record: _	18 May 20	015				
Remark	e.							
Temark	.5.		* 100	TO .				
	400							
					11	/		
QC Re	eviewer: YW F	-ung	Signa	ture:		Date	e: 19 Ma	y 2014

Model Equipm	acturer/Brand: No.: nent No.: vity Adjustment S	Scale Settin		Laser Dust Monitor SIBATA LD-3B A.005.13a 643 CPM					
Operat	tor:		_!	Mike She	k (MSKM)			
Standar	d Equipment								
	: No.:	Cyber Series Contro Senso 10 Ma	or: 120 by 2014	ing Seco AB21989 0C14365	ndary Sc 99803 99803	K _o : _12500			
Calibrat	tion Result								
	ivity Adjustment ivity Adjustment					643 CF	PM PM		
Hour	Date (dd-mm-yy)	Tin	ne		dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis	
1	18-05-14	09:30 -	10:30	28.3	77	0.04614	1846	30.77	
2	18-05-14	10:30 -	11:30	28.3	77	0.04823	1934	32.23	
3	18-05-14	11:30 -	12:30	28.3	77	0.05152	2053	34.22	
4	18-05-14	12:30 -	13:30	28.4	77	0.05391	2162	36.03	
Slope	Monitoring of 2. Total Count 3. Count/minuter Regression of (K-factor): ation coefficient:	was logged te was calcu Y or X	by Laser I	Just Mon	itor	shnick TEOM®			
Validit	y of Calibration I	Record:	18 May 2	015					
Remark	KS:								
OC B	eviewer VW	Funa	Signa	iture:	4/	Da	te: 19 Ma	ay 2014	

		а И			
	Mike She	k (MSKN	1)		
1170			***		
Cyberport (Pui Y Series 1400AB Control: 140 Sensor: 120 10 May 2014	/ing Seco 0AB21989 00C14365	99803 99803	K _o : <u>12500</u>		
				200	
Setting (After Ca	alibration)): [*]			
Time	Cond Temp	lition R.H.	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
45 - 13:45	28.4	77	0.05027	2158	35.97
	28.5	76	0.05161	2211	36.85
	28.5	76	0.05235	2247	37.45
45 - 16:45	28.4	77	0.05203	2233	37.22
ogged by Laser Escalculated by (TX) 0.0014 0.9969	Oust Moni otal Cour	tor	shnick TEOM®		
	Rupprecht & Pail Cyberport (Pui Y Series 1400AB Control: 140 Sensor: 120 10 May 2014 terval for hardwar e Setting (Before 0 Setting (After Ca Time 45 - 13:45 45 - 14:45 45 - 15:45 45 - 16:45 Vas measured by ogged by Laser Description of the control of the co	Rupprecht & Patashnick Cyberport (Pui Ying Second Series 1400AB	Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary Scotes 1400AB	Cyberport (Pui Ying Secondary School) Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 10 May 2014 Serval for hardware calibration is 1 year Setting (Before Calibration): 786	Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary School) Series 1400AB

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄竹 坑 道 3.7 號 利 達 中 心 地 下 , 9 樓 , 1.2 樓 , 1.3 樓 及 2.0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0305 06-01

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) **B&K**

Microphone

Type/Model No.:

2238

B&K 4188

Serial/Equipment No.:

N.009.04 2285692

2250420

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO. LTD.

Address of Customer:

Request No.:

05-Mar-2014

Date of receipt:

Date of test:

07-Mar-2014

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 Serial No.

Expiry Date:

Traceable to:

Signal generator Signal generator

DS 360 DS 360

2288444 33873 61227

22-Jun-2014 15-Apr-2014 15-Apr-2014 CIGISMEC CEPREI **CEPREI**

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

12-Mar-2014

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0702 01-01

Page

٥f

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B & K

B & K

Type/Model No.:

2238

Serial/Equipment No.:

2800927 / N.009.06

4188

Adaptors used:

2791211

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer: Request No.:

Date of receipt:

02-Jul-2014

Date of test:

03-Jul-2014

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444 33873

20-Jun-2015

CIGISMEC

Signal generator

DS 360

61227

09-Apr-2015 09-Apr-2015

CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

in/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date:

04-Jul-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0702 01-02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.: **B&K**

B & K

2238

4188

Serial/Equipment No.:

2800930 / N.009.07

2250455

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No. Date of receipt:

02-Jul-2014

Date of test:

03-Jul-2014

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator

Signal generator

Model:

B&K 4226

DS 360 DS 360 Serial No. 2288444

33873 61227 **Expiry Date:**

20-Jun-2015 09-Apr-2015 09-Apr-2015

Traceable to: CIGISMEC

CEPREI **CEPREI**

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 10 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

√lin/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Huang

Approved Signatory:

Date:

04-Jul-2014

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0305 06-02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Microphone

B&K 2250

B&K

Type/Model No.: Serial/Equipment No.:

1.011.01 2681366

4950 2665582

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO. LTD.

Address of Customer:

Request No .:

Date of receipt:

05-Mar-2014

Date of test:

07-Mar-2014

Reference equipment used in the calibration

Description:

Serial No.

Expiry Date: 22-Jun-2014

Traceable to: CIGISMEC

Multi function sound calibrator Signal generator Signal generator

B&K 4226 DS 360 DS 360

Model:

2288444 33873 61227

15-Apr-2014 15-Apr-2014 **CEPREI** CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of ±20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

A/Feng Jun Qi

Actual Measurement data are documented on worksheets

Huang Jian M

Approved Signatory:

Date:

12-Mar-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-01

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Rion Co., Ltd. NI -31

Microphone Rion Co., Ltd.

Type/Model No.: Serial/Equipment No.:

00320528 / N.007.03A

UC-53A 90565

Adaptors used:

Item submitted by

Customer Name: Address of Customer: AECOM ASIA CO., LTD.

Request No .:

Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator

Model: B&K 4226

DS 360 DS 360 2288444 33873

Serial No. 61227

Expiry Date:

22-Jun-2014 15-Apr-2014 15-Apr-2014

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity:

22 ± 1 °C 60 ± 10 %

1000 ± 10 hPa

Air pressure:

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

Date: 11-Nov-2013 Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-02

Page:

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.:

NC-73

Serial/Equipment No.:

10307223 / N.004.08

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

Request No .:

Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2239857 2346941 61227 US36087050 GB41300350	Expiry Date: 17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014 10-Dec-2013 15-Apr-2014	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
Universal counter	53132A	MY40003662	15-Apr-2014	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

11-Nov-2013

Company Chop:

Comments: The results reported in this/certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

ENGINA

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0408 01-02

Page:

of

2

Item tested

Description: Manufacturer: Acoustical Calibrator (Class 1)

Rion Co., Ltd.

Type/Model No.: Serial/Equipment No.: NC-74 34246490

Adaptors used:

Yes

004 10

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

Date of receipt:

08-Apr-2014

Date of test:

15-Apr-2014

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	17-Apr-2014	SCL
Preamplifier	B&K 2673	2239857	10-Apr-2015	CEPREI
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI
Signal generator	DS 360	61227	09-Apr-2015	CEPREI
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B 1, and the lab calibration procedure SMTP004-CA-156.
- The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique. 2,
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

23-Apr-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

APPENDIX E

EM&A Monitoring Schedules

CV/2007/03 - Development at Anderson Road Impact Air Quality and Noise Monitoring Schedule for August 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			·		01-Aug	02-Aug
03-Aug	04-Aug	05-Aug	06-Aug	07-Aug	08-Aug	09-Aug
			24-hour TSP			
			1-hour TSP			
			Noise			
			(ID1-5)			
10-Aug	11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug
		24-hour TSP				
		1-hour TSP				
		Noise (ID1-5)				
17-Aug	18-Aug	(1D1-3) 19-Aug	20-Aug	21-Aug	22-Aug	23-Aug
17 /tag	24-hour TSP	10 7 (ug	20 / tug	21 / tug	ZZ / tug	24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					
	(ID1-5)					(ID1-5)
24-Aug	25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug
					24-hour TSP	
					1-hour TSP	
					Noise	
04.4					(ID1-5)	
31-Aug						

CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for September 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	01-Sep	02-Sep	03-Sep		05-Sep	06-Sep
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		
07-Sep	08-Sep	09-Sep	10-Sep	11-Sep	12-Sep	13-Sep
			24-hour TSP			
			1-hour TSP			
			Noise			
44.0	45.0	40.0	(ID1-5)	40.0	40.0	00.0
14-Sep	15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep
		24-hour TSP				
		1-hour TSP Noise				
		(ID1-5)				
21-Sep	22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep
2100	24-hour TSP	20 000	21000	20 000	20 000	24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					
	(ID1-5)					(ID1-5)
28-Sep		30-Sep				,

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX F

Air Quality Monitoring Results and their Graphical Presentations

Appendix F Air Quality Monitoring Results

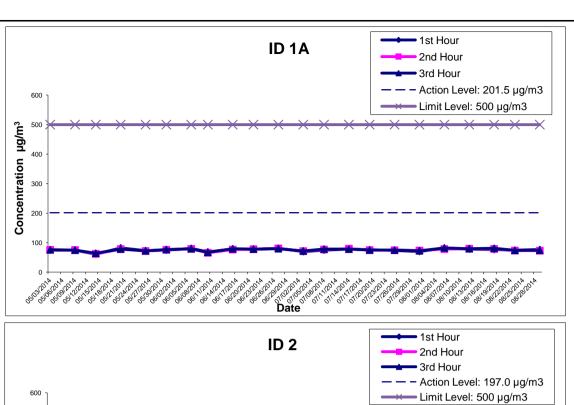
1-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

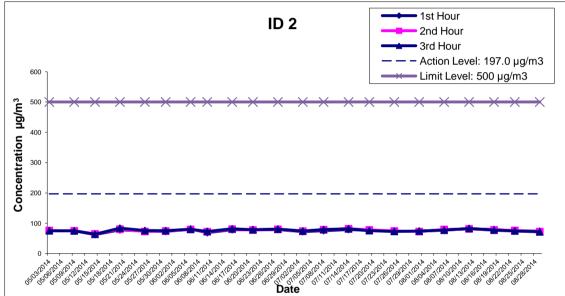
	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
06-Aug-14	10:50	81.6	78.4	82.4
12-Aug-14	14:10	78.3	79.6	79.7
18-Aug-14	10:50	76.5	78.8	81.1
23-Aug-14	10:37	74.6	73.3	74.0
29-Aug-14	13:25	76.6	72.8	74.6
			Average	77.5
			Min	72.8
			Max	82.4

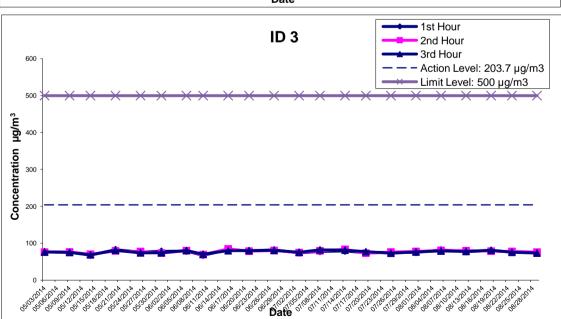
1-hour TSP Monitoring Results at Station ID 2 (On Yat House)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
06-Aug-14	10:59	78.2	79.6	77.2
12-Aug-14	13:30	82.1	81.6	83.0
18-Aug-14	10:58	79.4	78.2	77.5
23-Aug-14	10:51	75.2	76.3	74.8
29-Aug-14	13:10	74.0	72.4	71.8
			Average	77.4
			Min	71.8
			Max	83.0

1-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

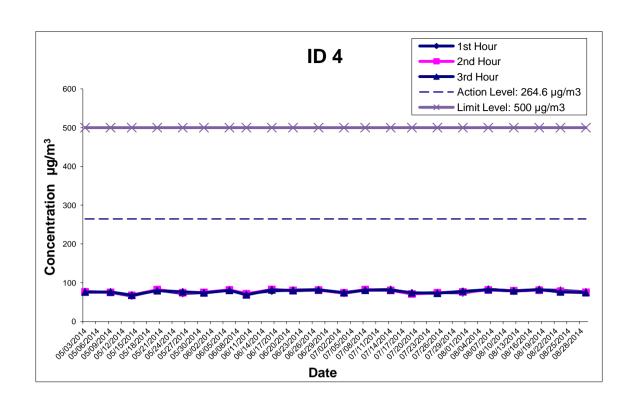

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
06-Aug-14	10:25	81.8	80.4	78.8
12-Aug-14	11:00	77.1	79.6	77.7
18-Aug-14	10:25	79.6	78.5	81.0
23-Aug-14	13:50	76.2	77.6	75.3
29-Aug-14	10:55	74.3	75.8	73.2
			Average	77.8
			Min	73.2
			Max	81.8

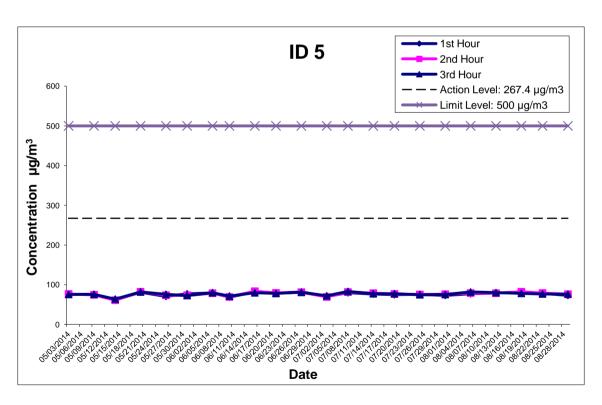

1-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)


	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
06-Aug-14	10:10	83.2	81.3	82.2
12-Aug-14	10:45	78.2	79.3	79.0
18-Aug-14	10:15	81.7	80.6	82.4
23-Aug-14	14:16	80.5	78.0	76.3
29-Aug-14	10:35	76.4	75.2	74.4
			Average	79.2
			Min	74.4
			Max	83.2

1-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
06-Aug-14	9:35	77.4	79.2	81.9
12-Aug-14	9:45	79.1	78.8	80.2
18-Aug-14	10:03	81.6	82.4	78.4
23-Aug-14	10:12	78.8	79.2	76.9
29-Aug-14	9:55	73.2	76.2	76.4
			Average	78.6
			Min	73.2
			Max	82.4




AECOM

<u>Development at Anderson Road - Site Formation</u> <u>and Associated Infrastructure Works</u>

Graphical Presentations of Impact 1-hour TSP
Monitoring Results

SCALE	N.T.S.	DATE	Sep-14	
CHECK	FYW	DRAWN	IYYS	3
JOB NO.		APPEND	IX No.	Rev.
	60043155	F		-

Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Sep-1	14
	CHECK		DRAWN	IYYS	3
Graphical Presentations of Impact 1-hour TSP	JOB NO.		APPENDIX No.		Rev.
Monitoring Results		60043155	ı	F	-

Appendix F

Air Quality Monitoring Results

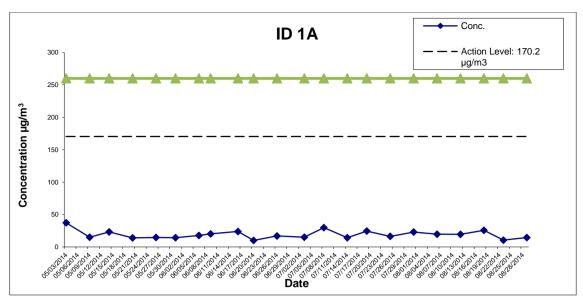
24-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

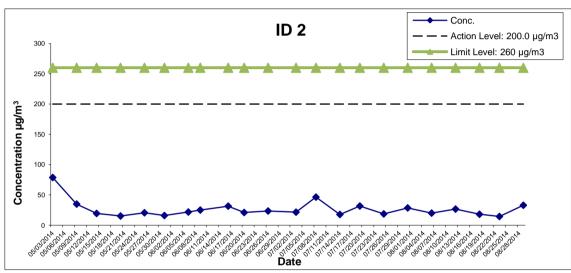
Date	Weather	Air	Atmospheric	eric Flow Rate (m³/min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate Elapse Time		e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
06-Aug-14	Rainy	28.1	1003.6	1.28	1.29	1.29	1855.5	2.7372	2.7736	0.0364	19895.79	19919.79	24.00	19.6
12-Aug-14	Fine	28.9	1003.3	1.29	1.29	1.29	1851.6	2.6899	2.7259	0.0360	19919.79	19943.79	24.00	19.4
18-Aug-14	Sunny	29.6	1008.2	1.28	1.29	1.29	1853.0	2.7396	2.7871	0.0475	19943.79	19967.79	24.00	25.6
23-Aug-14	Cloudy	29.1	1009.8	1.29	1.29	1.29	1859.1	2.7404	2.7598	0.0194	19967.79	19991.79	24.00	10.4
29-Aug-14	Sunny	30.1	1012.5	1.29	1.29	1.29	1854.6	2.6900	2.7168	0.0268	19991.79	20015.79	24.00	14.5
													Average	17.9
													Min	10.4
													Max	25.6

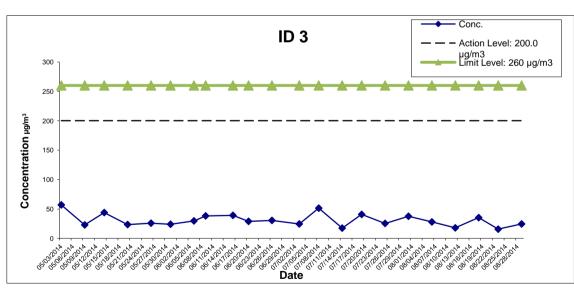
24-hour TSP Monitoring Results at Station ID 2 (On Yat House)

Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Filter W	eight (g)	Particulate	Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
06-Aug-14	Rainy	28.1	1003.6	1.27	1.28	1.28	1841.8	2.7378	2.7746	0.0368	17255.12	17279.12	24.00	20.0
12-Aug-14	Fine	28.9	1003.3	1.30	1.30	1.30	1871.6	2.6859	2.7357	0.0498	17279.12	17303.12	24.00	26.6
18-Aug-14	Sunny	29.6	1008.2	1.27	1.28	1.28	1839.2	2.7244	2.7576	0.0332	17303.12	17327.12	24.00	18.1
23-Aug-14	Cloudy	29.1	1009.8	1.29	1.28	1.29	1852.7	2.7235	2.7501	0.0266	17327.12	17351.12	24.00	14.4
29-Aug-14	Sunny	30.1	1012.5	1.28	1.28	1.28	1840.9	2.6890	2.7496	0.0606	17351.12	17375.12	24.00	32.9
													Average	22.4
													Min	14.4
													Max	32.9

24-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

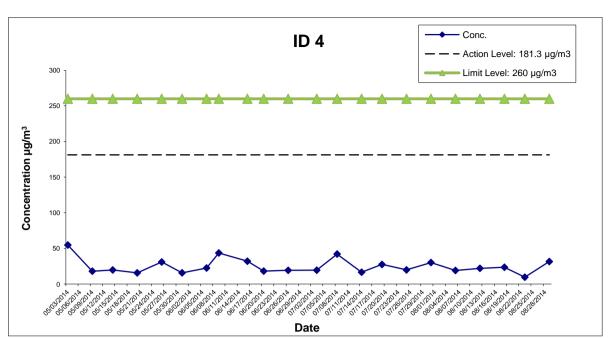

Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Filter W	eight (g)	Particulate Elapse Time		e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
06-Aug-14	Rainy	28.1	1003.6	1.29	1.29	1.29	1856.5	2.7524	2.8045	0.0521	19499.01	19523.01	24.00	28.1
12-Aug-14	Fine	28.9	1003.3	1.26	1.29	1.28	1836.6	2.6939	2.7270	0.0331	19523.01	19547.01	24.00	18.0
18-Aug-14	Sunny	29.6	1008.2	1.28	1.29	1.29	1853.9	2.7461	2.8117	0.0656	19547.01	19571.01	24.00	35.4
23-Aug-14	Cloudy	29.1	1009.8	1.29	1.29	1.29	1860.1	2.7223	2.7517	0.0294	19571.01	19595.01	24.00	15.8
29-Aug-14	Sunny	30.1	1012.5	1.29	1.29	1.29	1855.7	2.7022	2.7479	0.0457	19595.01	19619.01	24.00	24.6
													Average	24.4
													Min	15.8
													Max	35.4

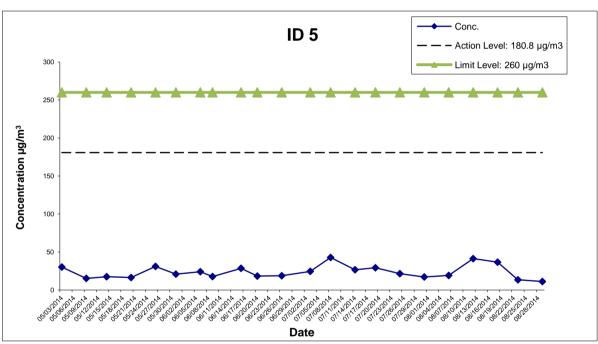

24-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)


Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Filter Weight (g)		Particulate Elapse Time		Sampling	Conc.	
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
06-Aug-14	Sunny	30.5	1004.4	1.28	1.29	1.29	1851.9	2.7567	2.7922	0.0355	20180.27	20204.27	24.00	19.2
12-Aug-14	Sunny	30.5	1000.3	1.28	1.28	1.28	1847.5	2.6908	2.7317	0.0409	20204.27	20228.27	24.00	22.1
18-Aug-14	Fine	29.9	1009.6	1.28	1.29	1.28	1849.1	2.7478	2.7915	0.0437	20228.27	20252.27	24.00	23.6
23-Aug-14	Cloudy	28.7	1007.3	1.29	1.29	1.29	1856.0	2.7300	2.7480	0.0180	20252.27	20276.27	24.00	9.7
29-Aug-14	Sunny	30.8	1003.0	1.29	1.29	1.29	1854.3	2.6829	2.7416	0.0587	20276.27	20300.27	24.00	31.7
													Average	21.3
													Min	9.7
													Max	31.7

24-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Filter Weight (g)		Particulate Elapse Time		e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
06-Aug-14	Sunny	30.5	1004.4	1.28	1.29	1.28	1846.5	2.7260	2.7613	0.0353	15010.37	15034.37	24.00	19.1
12-Aug-14	Sunny	30.5	1000.3	1.28	1.28	1.28	1842.3	2.6898	2.7659	0.0761	15034.37	15058.37	24.00	41.3
18-Aug-14	Fine	29.9	1009.6	1.28	1.29	1.28	1843.8	2.7488	2.8163	0.0675	15058.37	15082.37	24.00	36.6
23-Aug-14	Cloudy	28.7	1007.3	1.27	1.27	1.27	1831.0	2.6789	2.7035	0.0246	15082.37	15106.37	24.00	13.4
29-Aug-14	Sunny	30.8	1003.0	1.28	1.28	1.28	1845.6	2.7412	2.7618	0.0206	15106.37	15130.37	24.00	11.2
													Average	24.3
													Min	11.2
													Max	41.3





AECOM

Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Sep-1	14
	CHECK		DRAWN	IYYS	3
Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPEND	X No.	Rev.
Monitoring Results		60043155	ı	=	-

<u>Development at Anderson Road - Site Formation</u>
and Associated Infrastructure Works
Graphical Presentations of Impact 24-hour TSP

Monitoring Results

		60043155	ı	F	-
	JOB NO.		APPEND	IX No.	Rev.
	CHECK	FYW	DRAWN	IYYS	3
L	SCALE	N.T.S.	DATE	Sep-1	4

APPENDIX G

Noise Monitoring Results and their Graphical Presentations

Appendix G Noise Monitoring Results

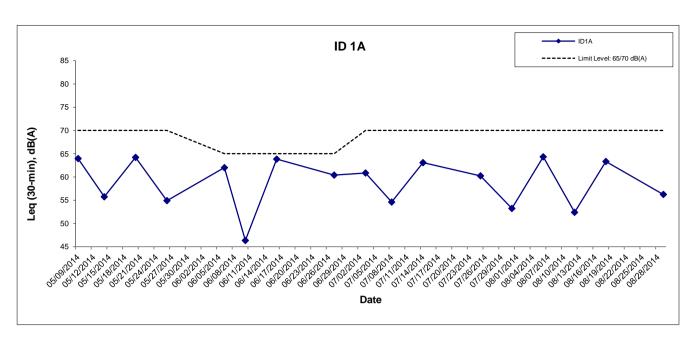
Daytime Noise Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

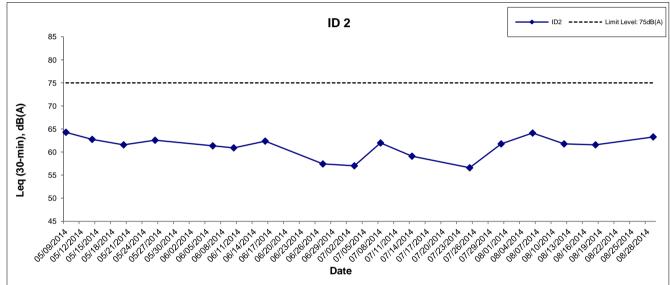
	Weather	Noise	e Level for	30-min, d	B(A) ⁺	Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
06-Aug-14	Cloudy	13:00	61.4	67.8	65.2	64.3	57.8	70	N
12-Aug-14	Fine	14:15	57.0	60.4	58.9	52.4	57.8	70	N
18-Aug-14	Sunny	10:50	61.2	66.4	64.4	63.3	57.8	70	N
29-Aug-14	Sunny	13:30	57.5	61.6	60.1	56.2	57.8	70	N
		Min	57.0	60.4		52.4			
		Max	61.4	67.8		64.3			
		Average				59.1			

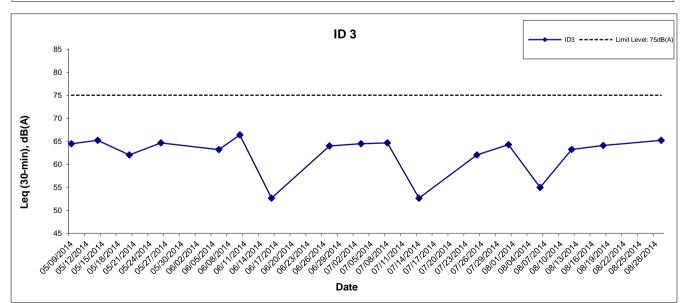
Daytime Noise Monitoring Results at Station ID 2 (On Yat House)

	Weather	Noise Level for 30-min, dB(A) ⁺				Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A) Lim 62.0 62.0	Limit Level, dB(A)	Exceedance (Y/N)
06-Aug-14	Cloudy	11:00	62.6	69.4	66.2	64.1	62.0	75	N
12-Aug-14	Fine	13:30	60.0	66.0	64.9	61.8	62.0	75	N
18-Aug-14	Sunny	10:58	62.6	67.4	64.8	61.6	62.0	75	N
29-Aug-14	Sunny	13:15	61.5	66.5	65.7	63.3	62.0	75	N
		Min	60.0	66.0		61.6			
		Max	62.6	69.4		64.1			
		Average				62.7			

Daytime Noise Monitoring Results at Station ID 3 (Sau Nga House)

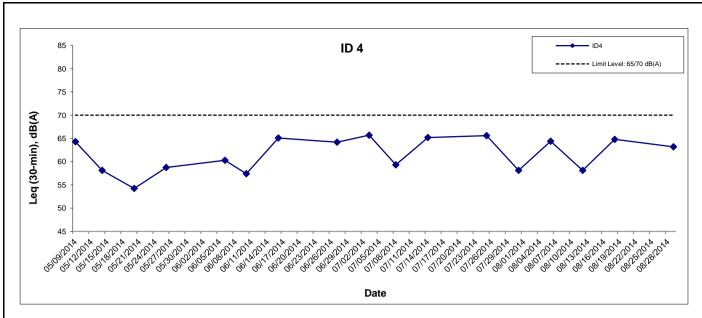

	Weather	Noise Level for 30-min, dB(A) ⁺				Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
06-Aug-14	Cloudy	13:43	60.5	67.4	64.6	55.0	64.1	75	N
12-Aug-14	Fine	11:05	60.0	68.4	66.7	63.2	64.1	75	N
18-Aug-14	Sunny	13:02	62.0	66.9	64.1	64.1	64.1	75	N
29-Aug-14	Sunny	11:00	62.0	69.0	67.7	65.2	64.1	75	N
		Min	60.0	66.9		55.0			
		Max	62.0	69.0		65.2			
		Average				61.9			

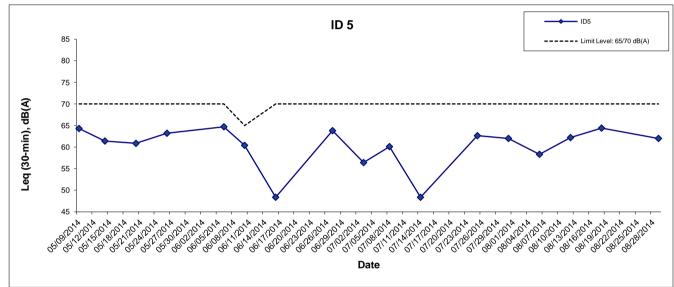

⁺ - Façade measurement ** - Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period. Daytime Noise Monitoring Results at Station ID 4 (Sau Ming Primary School)


	Weather	Noise Level for 30-min, dB(A) ⁺				Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level** dB(A) 70 70 70 70 70	Exceedance (Y/N)
06-Aug-14	Cloudy	16:20	61.6	67.7	64.4	64.4	65.7	70	N
12-Aug-14	Fine	10:50	63.0	67.5	66.4	58.1	65.7	70	N
18-Aug-14	Sunny	14:40	62.6	68.2	64.8	64.8	65.7	70	N
29-Aug-14	Sunny	10:40	61.5	64.5	63.2	63.2	65.7	70	N
		Min	61.5	64.5		58.1			
		Max	63.0	68.2		64.8			
		Average				62.6			

Daytime Noise Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

	Weather	Noise Level for 30-min, dB(A) ⁺				Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
06-Aug-14	Cloudy	15:03	63.4	68.3	65.6	58.3	64.7	70	N
12-Aug-14	Fine	9:50	59.5	63.5	62.2	62.2	64.7	70	N
18-Aug-14	Sunny	14:00	61.7	67.0	64.4	64.4	64.7	70	N
29-Aug-14	Sunny	10:00	60.0	63.5	62.0	62.0	64.7	70	N
		Min	59.5	63.5		58.3			
		Max	63.4	68.3		64.4			
		Average				61.7			




AECOM

Development at Anderson Road - Site Formation and
Associated Infrastructure Works

Graphical Presentations of Noise Monit	oring Results
---	---------------

L	SCALE	N.T.S.	DATE	Sep-1	4
	CHECK	FYW	DRAWN	IYYS	ò
	JOB NO.		APPENDI	x	Rev
,		60043155		G	-

A=COM

Development at Anderson Road - Site Formation and
Associated Infrastructure Works

Graphical Presentations of Noise Monitoring Results

SCALE	N.T.S.	DATE	Sep-1	4
CHECK	FYW	DRAWN	IYYS	3
JOB NO.		APPENDIX		Rev
	60043155		G	_

APPENDIX H

Meteorological Data for the Reporting Month

Climatological Information Services > Extracts of Climatological Data > Extract of Automatic Weather Station > Station: Tseung Kwan O Automatic Weather Station, Year: 2014, Month: August

Extract of Meteorological Observations for Tseung Kwan O Automatic Weather Station, August 2014 (Table 1)

	Mean		Air Temperatur	e	Mean Dew Point Temperature (deg C)	Relative Humidity			
Date	Pressure at M.S.L. (hPa)	Max. (deg C)	Mean (deg C)	Min. (deg C)		Max. (%)	Mean (%)	Min (%)	
Aug 1	****	36.2	30.2	25.5	25.1	97	76	51	
Aug 2	****	33.7	28.1#	24.4	25.5#	98	87#	61	
Aug 3	****	33.3	28.7	25.2	25.8	99	85	63	
Aug 4	****	33.5	29.2	26.7	26.1	98	85	62	
Aug 5	****	31.9	28.4	26.2	26.3	100	89	6	
Aug 6	****	30.1	27.4	25.4	26.0	99	92	80	
Aug 7	****	32.4	28.2	26.2	26.0	100	88	66	
Aug 8	****	34.1	29.6	26.2	25.1	97	78	57	
Aug 9	****	33.4	29.9	27.2	25.4	92	77	61	
Aug 10	****	33.3	29.3	26.7	25.7	98	81	61	
Aug 11	****	33.2	29.7	27.0	25.6	93	79	62	
Aug 12	****	33.9	28.5	25.0	25.7	99	85	61	
Aug 13	****	27.3	25.2	23.9	24.9	100	98	95	
Aug 14	****	31.1	27.4	24.7	25.6	100	90	73	
Aug 15	****	33.5	28.9	25.3	24.9	100	81	56	
Aug 16	****	33.3	29.0	26.2	24.8	95	79	60	
Aug 17	****	34.0	29.0	25.4	24.8	95	79	58	
Aug 18	****	33.4	29.5	26.3	24.6	93	76	54	
Aug 19	****	31.2	26.7	24.0	25.1	99	91	69	
Aug 20	****	25.9	24.0	22.8	23.6	100	97	88	
Aug 21	****	29.7	25.6	22.9	24.2	100	92	72	
Aug 22	****	31.2	27.3	24.9	24.8	100	87	66	
Aug 23	****	32.4	27.8	25.1	24.7	99	84	63	
Aug 24	****	32.2	27.5	24.3	24.4	99	84	60	
Aug 25	****	34.0	28.6	25.2	25.0	99	82	52	
Aug 26	****	33.2	28.9	26.3	25.1	96	81	58	
Aug 27	*****	30.6	28.5	27.1	25.0	93	82	68	
Aug 28	****	31.7	28.8	27.4	25.7	93	84	66	
Aug 29	*****	32.9	28.5	25.9	24.9	96	82	5.9	
Aug 30	*****	33.0	29.0	25.7	24.8	96	79	53	
Aug 31	****	31.0	28.4	25.3	25.6	99	85	72	

Mean	*****	32.3	28.3#	25.5	25.2#	97	84#	64
Maximum	*****	36.2	30.2#	27.4	26.3#	100	98#	95
Minimum	*****	25.9	24.0#	22.8	23.6#	92	76#	51

Extract of Meteorological Observations for Tseung Kwan O Automatic Weather Station, August 2014 (Table 2)

			August 2014
Date	Total Rainfall (mm)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
Aug 1	5.5	230	6.1
Aug 2	0.5#	230#	4.5#
Aug 3	17.0	240	4.8
Aug 4	11.5	230	4.3
Aug 5	0.0	080	4.2
Aug 6	9.5	240	4.2
Aug 7	67.0	***#	****#
Aug 8	0.0	***	****
Aug 9	0.0	***	****
Aug 10	5.5	***	****
Aug 11	0.0	***	****
Aug 12	44.5	***	****
Aug 13	167.5	***	****
Aug 14	0.5	***	****
Aug 15	0.0	***	****
Aug 16	0.0	***	****
Aug 17	0.0	***	****
Aug 18	0.0	***	****
Aug 19	74.5	***	****
Aug 20	66.5	***	****
Aug 21	12.0	***#	****#
Aug 22	0.0	180	4.3
Aug 23	0.0	190	4.7
Aug 24	0.0	190	4.2
Aug 25	0.0	140	4.4
Aug 26	0.0	020	6.6
Aug 27	0.0	030	8.5
Aug 28	0.0	130	7.3
Aug 29	0.0	020	6.8
Aug 30	0.0	020	6.3
Aug 31	0.0	130	6.0
Mean		020#	5.4#
Total	482.0#		

Maximum	167.5#	 8.5#
Minimum	0.0#	 4.2#

^{***} unavailable

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected

[#] missing (less than 24 hourly observations a day)

APPENDIX I

Event Action Plan

Appendix I – Event Action Plan

Event and Action Plan for Air Quality

Event	ACTION				
	ET	IC(E)	ER	Contractor	
ACTION LEVEL					
Exceedance for one sample	 Identify source Inform IC(E) and ER. Repeat measurement to confirm finding. Increase monitoring frequency to daily 	Check monitoring data submitted by ET. Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice. Amend working methods if appropriate.	
Exceedance for two or more consecutive samples	 Identify source. Inform IC(E) and ER. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with IC(E) and Contractor for remedial actions required. If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented.	 Submit proposal for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 	

Event and Action Plan for Air Quality

Event	ACTION				
	ET	IC(E)	ER	Contractor	
LIMIT LEVEL					
Exceedance for one sample	 Identify source. Inform ER and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals Amend proposal if appropriate. 	
Exceedance for two or more consecutive samples	 Identify source. Inform ER and EPD. Repeat measurements to confirm finding. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation to by implemented. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise implementation of remedial measures.	 Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with IC(E), agree with Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop the portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 	

Event and Action Plan for Noise

Event	Action				
	ET	IC(E)	ER	Contractor	
	 Notify IC(E) and Contractor. Carry out investigation. Report the results of investigation to IC(E) and Contractor. Discuss with Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented.	 Submit noise mitigation proposals to IC(E). Implement noise mitigation proposals. 	
	 Notify IC(E), ER, EPD and Contractor. Identify sources. Repeat measurements to confirm finding. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IC(E), ER and EPD the causes and actions taken for the exceedance. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by ER until the exceedance is abated. 	

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J - Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this	Total no. recorded since
		month	project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	14
	Limit	-	1
Noise	Action	-	32
	Limit	-	1

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. recorded in this month	Total no. recorded since project commencement
Environmental complaints	-	-	-	-	74
Notification of summons	-	-	-	-	6
Successful Prosecutions	-	-	-	-	2