AECOM

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Monthly EM&A Report for December 2014

January 2015

	Name	Signature		
Prepared & Checked:	Joanne Ko	fordamy		
Reviewed, Approved & Certified:	Yiu Wah Fung (ETL)	7/		
Version: 0	Date:	19 January 2015		
	- 			
Disclaimer				
This report is prepared for China State Construction Engineering (Hong Kong) Ltd. and is given for its sole benefit in relation to and pursuant to Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works and may not be disclosed to, quoted to or relied upon by any person other than China State Construction Engineering (Hong Kong) Ltd. without our prior written consent. No person (other than China State Construction Engineering (Hong Kong) Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. Brate Construction Engineering (Hong Kong) Ltd. This report comes may rely on the report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. Brate Construction Engineering (Hong Kong) Lt				
AECOM Asia Co. Ltd.				
11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong.				
	2) 2317 7609 www.aecom.com			

Ref.: OAPANDSNEM00 0 1374L.14

16 January 2014

By Post and Fax: 2407 8382

Engineer's Representative Ove Arup & Partners Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon Hong Kong

Attention: Mr. Dennis Leung

Dear Sir,

Re: Contract No. CV/2007/03 (Environmental Permit No. EP -140/2002) Development at Anderson Road Site Formation and Associated Infrastructure Works Monthly EM&A Report for December 2014

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report for December 2014 received by e-mail on 14 January 2015 for our review and comment.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.3 of the Environmental Permit No. EP-140/2002.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

David Yeung Independent Environmental Checker

c.c. AECOM Attn.: Mr. Y. W. Fung CSCEC Attn.: Mr. C. S. Yeung Fax: 3922 9797 Fax: 2702 6553

Q:\Projects\OAPANDSNEM00\Corr\OAPANDSNEM00_0_1374L.14.doc

Table of Content

EXECUTIVE SUMMARY1				
1	INTRODUCTION			
	.1 Background 3 .2 Scope of Report 3 .3 Project Organization 3 .4 Summary of Construction Works 4 .5 Summary of EM&A Programme Requirements 5	3 3 1		
2	AIR QUALITY MONITORING6	;		
	2.1 Monitoring Requirements 6 2.2 Monitoring Equipment 6 2.3 Monitoring Locations 6 2.4 Monitoring Parameters, Frequency and Duration 7 2.5 Monitoring Methodology 7 2.6 Monitoring Schedule for the Reporting Month 10 2.7 Monitoring Results 10			
3	NOISE MONITORING11			
	8.1 Monitoring Requirements 11 8.2 Monitoring Equipment 11 8.3 Monitoring Locations 11 8.4 Monitoring Parameters, Frequency and Duration 12 8.5 Monitoring Methodology 12 8.6 Monitoring Schedule for the Reporting Month 13 8.7 Monitoring Results 13	2		
4	ENVIRONMENTAL SITE INSPECTION AND AUDIT14	ŀ		
	Image: Note of the Solid and Liquid Waste Management Status 14 Advice on the Solid and Liquid Waste Management Status 15 Image: Note of the Solid and Liquid Waste Management Status 15 Image: Note of the Solid and Liquid Waste Management Status 15 Image: Note of the Solid and Liquid Waste Management Status 16 Summary of Exceedances of the Environmental Quality Performance Limit 16 Summary of Complaints, Notification of Summons and Successful Prosecutions 16	;; ; ; ; ; ; ; ; ; ;		
5	UTURE KEY ISSUES	;		
	 Construction Programme for the Coming Two Months	3		
6	CONCLUSIONS AND RECOMMENDATIONS)		
	S.1Conclusions20S.2Recommendations20			

List of Tables

- Table 1.1Contact Information of Key Personnel
- Table 2.1
 Air Quality Monitoring Equipment
- Table 2.2Locations of Air Quality Monitoring Stations
- Table 2.3
 Air Quality Monitoring Parameters, Frequency and Duration
- Table 2.4
 Summary of 1-hour TSP Monitoring Results in the Reporting Period
- Table 2.5Summary of 24-hour TSP Monitoring Results in the Reporting Period
- Table 3.1 Noise Monitoring Equipment
- Table 3.2
 Locations of Impact Noise Monitoring Stations
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Summary of Impact Noise Monitoring Results in the Reporting Period
- Table 4.1
 Summary of Environmental Licensing and Permit Status

List of Figures

- Figure 1.1 General Layout Plan
- Figure 2.1 Monitoring Locations

List of Appendices

- Appendix A Project Organization Structure
- Appendix B Implementation Schedule of Environmental Mitigation Measures
- Appendix C Summary of Action and Limit Levels
- Appendix D Calibration Certificates of Equipments
- Appendix E EM&A Monitoring Schedules
- Appendix F Air Quality Monitoring Results and their Graphical Presentations
- Appendix G Noise Monitoring Results and their Graphical Presentations
- Appendix H Meteorological Data for the Reporting Month
- Appendix I Event Action Plan
- Appendix J Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions

China State Construction Engineering (Hong Kong) Ltd. **EXECUTIVE SUMMARY**

The Project "Development at Anderson Road – Site Formation and Associated Infrastructure Works" (hereafter called "the Project") is proposed to form platforms for housing development and associated uses in area of about 20 hectares, and to carry out necessary infrastructural upgrading or improvement works to cater for the proposed development.

China State Construction Engineering (Hong Kong) Limited (CSCE) was commissioned as the Contractor of the Project. AECOM Asia Co. Ltd. (AECOM) was employed by CSCE as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project.

The impact EM&A for the Project includes air quality and noise monitoring. The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.

The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road (Schedule 2 DP) project.

The construction for the Widening of Po Lam Road (Schedule 2 DP) project was commenced on 21 September 2011.

This report documents the findings of EM&A works for ID 1A, ID 2, ID 3, ID 4 and ID 5 conducted in the period between 1 and 31 December 2014. As informed by the Contractor, construction activities in the reporting period were:-

- Slope stabilization and upgrading works at Portion C and E
- Earthwork and C&D stockpile at Portion A, C and R16b
- Temporary traffic arrangement and road work at Po Lam Road, J/O Sau Mau Ping Road and Shun On Road and J/O Po Lam Road
- Toe / Berm planter and platform drainage construction at Portion A, B, C
- Retaining wall structural works and backfilling works at R16b
- Trench excavation and pipe laying at main site and public road
- Structural works of Retaining wall and backfilling at R16b
- Structural works at Footbridges A, B and C
- Breaking of rock trench at public road
- Drainage construction at public road
- Watermain works at main site and Branch M
- Installation of Vertical Artificial and Granite Stone Facing at Skin Wall R15
- Installation of metal barriers at main site and R15b
- Installation of Steel footbridge C
- Asphalt laying at L1, L2 road
- Brick laying at footpath at L4 and L5 road

Breaches of Action and Limit Levels for Air Quality

All 1-hour TSP results were below the Action and Limit Levels in the reporting month.

One (1) exceedance of Action Level was recorded in 17 December 2014 for 24-hour TSP monitoring at ID5. The exceedance was non-project-related. All 24-hour TSP results were below the Limit Level.

Breaches of Action and Limit Levels for Noise

According to the information provided by the Contractor, no Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

China State Construction Engineering (Hong Kong) Ltd. Mon Complaint, Notification of Summons and Successful Prosecution

According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
- Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of drainage systems and desilting facilities;
- Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Proper mitigation measures should be provided to avoid relocation of treated contaminated soil;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
- Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project site is located in the East Kowloon District. It is bounded by Anderson Road to the north, the realigned Sau Mau Ping Road to the south, Po Lam Road to the east, and Lee On Road and Shun On Road to the west.
- 1.1.2 The objective of the Project "Development at Anderson Road Site Formation and Associated Infrastructure Works" under Contract CV/2007/03 (hereafter called "the Project") is to provide land for constructing public housing and government and public facilities. The development will provide 16,100 public housing units for 48,000 people in phases between 2015 and 2016.
- 1.1.3 The scope of works of this Project includes construction of site formation, roads, drains and upgrading of existing infrastructure to provide usable land of about 20 hectares for housing and associated government, institution or community uses at the site between existing Anderson Road Quarry and Sau Mau Ping Road in Kwun Tong District.
- 1.1.4 The Project is anticipated to complete in mid 2015.
- 1.1.5 Part of the Project involving widening of existing Po Lam Road is a designated project and is governed by an Environmental Permit (EP) EP-140/2002, while the rest of the Project is non-designated. Baseline monitoring covering the entire Project site was undertaken and baseline monitoring report was prepared prior to commencement of construction of the Project in accordance with Conditions 3.2 and 3.4 of the EP (EP-140/2002) and the Environmental Monitoring and Audit (EM&A) Manual. The construction for the Widening of Po Lam Road was commenced on 21 September 2011.
- 1.1.6 According to the EP and the EM&A Manual of the Project, there is a need of an EM&A programme including air quality and noise monitoring.
- 1.1.7 The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.
- 1.1.8 The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road. (Schedule 2 DP) project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was employed by the Contractor, China State Construction Engineering (Hong Kong) Limited (CSCE), as the Environmental Team (ET) to undertake the EM&A works for the Project. In accordance with the EM&A Manual of the Project, environmental monitoring of air quality, noise and environmental site inspections would be required for this Project.

1.2 Scope of Report

1.2.1 This is the seventy-ninth monthly EM&A Report under the Contract CV/2007/03 -Development at Anderson Road – Site Formation and Associated Infrastructure Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in December 2014 for ID 1A, ID 2, ID 3, ID 4 and ID 5.

1.3 **Project Organization**

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

				_
Party	Position	Name	Telephone	Fax
	Chief Resident Engineer	Dennis Leung	3656 3000	3656 3100
ER (Ove Arup)	Senior Resident Engineer	Michael Wright	3656 3000	3656 3100
	Resident Engineer (Safety and Environmental)	Kenneth Lee	3656 3000	3656 3100
IEC (ENVIRON)	Independent Environmental Checker	David Yeung	3465 2888	3465 2899
Contractor	Site Agent	C S Yeung	2704 2095	2702 6553
(CSCE)	Environmental Manager	Leo Chung	2704 2095	2702 6553
ET (AECOM)	ET Leader	Yiu Wah Fung	3922 9366	2317 7609

Table 1.1 Contact Information of Key Personnel

1.4 Summary of Construction Works

- 1.4.1 As informed by the Contractor, the Contactor has carried out the following major activities in the reporting month:-
 - Slope stabilization and upgrading works at Portion C and E
 - Earthwork and C&D stockpile at Portion A, C and R16b
 - Temporary traffic arrangement and road work at Po Lam Road, J/O Sau Mau Ping Road and Shun On Road and J/O Po Lam Road
 - Toe / Berm planter and platform drainage construction at Portion A, B, C
 - Retaining wall structural works and backfilling works at R16b
 - Trench excavation and pipe laying at main site and public road
 - Structural works of Retaining wall and backfilling at R16b
 - Structural works at Footbridges A, B and C
 - Breaking of rock trench at public road
 - Drainage construction at public road
 - Watermain works at main site and Branch M
 - Installation of Vertical Artificial and Granite Stone Facing at Skin Wall R15
 - Installation of metal barriers at main site and R15b
 - Installation of Steel footbridge C
 - Asphalt laying at L1, L2 road
 - Brick laying at footpath at L4 and L5 road
- 1.4.2 The general layout plan of the Project site showing the contract area is shown in Figure 1.1.
- 1.4.3 The environmental mitigation measures implementation schedule are presented in Appendix B.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise and environmental site inspections for air quality, noise, water quality, chemical and waste management. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming months;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, 1-hour and 24-hour TSP levels at 5 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix C.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

 Table 2.1
 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170 & GMW-2310)

2.3 Monitoring Locations

2.3.1 Monitoring stations, ID 2, ID 3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 2.2 describes the details of the monitoring stations.

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	Roof top of the premises facing Anderson Road
2	On Yat House	Roof top of the premises facing Lee On Road
3	Sau Nga House	Roof top of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	Roof top of the premises
5	Sau Mau Ping Catholic Primary School	Roof top of the premises

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

 Table 2.3
 Air Quality Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
ID 1A, ID 2,	1-hour TSP	At least 3 times every 6 days
ID 3, ID 4 & ID5	24-hour TSP	At least once every 6 days

2.5 Monitoring Methodology

- 2.5.1 24-hour TSP Monitoring
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (v) No furnace or incinerator flues nearby.
 - (vi) Airflow around the sampler was unrestricted.
 - (vii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (viii) A secured supply of electricity was obtained to operate the samplers.
 - (ix) The sampler was located more than 20 meters from any dripline.
 - (x) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xi) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.
 - (b) Preparation of Filter Papers
 - (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
 - (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
 - (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

- (c) Field Monitoring
 - (i) The power supply was checked to ensure the HVS works properly.
 - (ii) The filter holder and the area surrounding the filter were cleaned.
 - (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
 - (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
 - (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
 - (vi) Then the shelter lid was closed and was secured with the aluminium strip.
 - (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
 - (viii) A new flow rate record sheet was set into the flow recorder.
 - (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
 - (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
 - (xi) The initial elapsed time was recorded.
 - (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
 - (xiii) The final elapsed time was recorded.
 - (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - (xv) It was then placed in a clean plastic envelope and sealed.
 - (xvi) All monitoring information was recorded on a standard data sheet.
 - (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.
- (d) Maintenance and Calibration
 - (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
 - (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
 - (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in Appendix D.

- 2.5.2 1-hour TSP Monitoring
 - (a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.
- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix D.

China State Construction Engineering (Hong Kong) Ltd. 2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for environmental monitoring in December 2014 is provided in Appendix E.

2.7 Monitoring Results

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.4 and 2.5 respectively. Detailed air quality monitoring results are presented in Appendix F.

	Average (µg/m ³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
ID 1A	76.1	67.9 – 83.0	201.5	500
ID 2	77.0	68.7 – 83.5	197.0	500
ID 3	77.1	69.5 – 83.5	203.7	500
ID 4	77.6	70.9 – 84.4	264.6	500
ID 5	78.6	71.0 – 84.1	267.4	500

 Table 2.4
 Summary of 1-hour TSP Monitoring Results in the Reporting Period

Та	b	le	2	

2.5

Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
ID 1A	39.2	17.6 – 56.7	170.2	260
ID 2	46.8	24.3 – 76.6	200.0	260
ID 3	94.3	45.3 – 138.9	200.0	260
ID 4	69.6	30.1 – 129.0	181.3	260
ID 5	110.0	12.5 – 259.1	180.8	260

2.7.2 All 1-hour TSP results were below the Action and Limit Levels in the reporting month.

- 2.7.3 One (1) exceedance of Action Level was recorded in 17 December 2014 for 24-hour TSP monitoring at ID5. The exceedance was non-project-related. All 24-hour TSP results were below the Limit Level.
- 2.7.4 The event action plan is annexed in Appendix I.
- 2.7.5 Major dust sources during the dust monitoring included construction dust from the Project site, construction dust from other construction sites nearby and nearby traffic emission.
- 2.7.6 Weather information including wind speed and wind direction is annexed in Appendix H. The information was obtained from Hong Kong Observatory Tseung Kwan O Automatic Weather Station and Anemometer Station.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, impact noise levels should be obtained at 5 noise monitoring stations. Impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix C.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Equipment	Brand and Model
Integrated Sound Level Meter	Rion (Model No. NL-31) & B&K (Model No. 2238)
Acoustic Calibrator	Rion (Model No. NC-73)

Table 3.1 Noise Monitoring Equipment

3.3 Monitoring Locations

3.3.1 Monitoring stations, ID 2, ID3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

 Table 3.2
 Locations of Impact Noise Monitoring Stations

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	1m from the exterior of the roof top façade of the premises facing Anderson Road
2	On Yat House	1m from the exterior of the roof top façade of the premises facing Lee On Road
3	Sau Nga House	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
5	Sau Mau Ping Catholic Primary School	1m from the exterior of the roof top façade of the premises facing Po Lam Road

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

	Table 3.3	Noise Monitoring	Parameters,	Frequency	and Duration
--	-----------	-------------------------	-------------	-----------	--------------

Monitoring Station	Parameter and Duration	Frequency
ID 1A, ID 2, ID 3, ID 4 & ID5	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

3.5 Monitoring Methodology

- 3.5.1 Monitoring Procedure
 - (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
 - (b) Façade measurements were made at all monitoring locations.
 - (c) The battery condition was checked to ensure the correct functioning of the meter.
 - (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00 1900 on normal weekdays; $L_{eq(5-minutes)}$ during restricted hours i.e. 19:00 23:00 and 23:00 07:00 of normal weekdays, whole day of Sundays and Public Holidays
 - (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
 - (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
 - (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
 - (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.
- 3.5.2 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
 - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix D.

China State Construction Engineering (Hong Kong) Ltd. 3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for environmental monitoring in December 2014 is provided in Appendix E.

3.7 Monitoring Results

3.7.1 The monitoring results for noise are summarized in Table 3.4 and the monitoring data is provided in Appendix G.

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),	
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}	
ID 1A	62.1	59.3 – 62.2	*65/70	
ID 2	64.2	61.6 – 65.6	75	
ID 3	67.3	62.4 - 68.9	75	
ID 4	66.0	63.7 – 66.3	*65/70	
ID 5	66	60.3 - 68.6	*65/70	

 Table 3.4
 Summary of Impact Noise Monitoring Results in the Reporting Period

*Daytime noise Limit Level of 70dB(A) applies to education institutions while 65dB(A) applies during school examination period.

- 3.7.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 3.7.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 3.7.4 The event action plan is annexed in Appendix I.
- 3.7.5 Major noise sources during the noise monitoring included construction noise from the Project site, construction noise from other construction sites nearby, nearby traffic noise and noise from school activities and community noise.

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

4.1 Site Inspection

- 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 5 site inspections were carried out on 3, 11, 16, 23 and 30 December 2014. Particular observations and status of non-compliance issued by IEC are described below.
- 4.1.2 The Contractor has rectified most of the observations as identified during the environmental site inspections in the reporting month within an agreed time frame. Rectification of the remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.
- 4.1.3 Air Quality Impact
 - Mud trails were observed outside the site exit of Junction J2. The Contractor should clear the mud trails regularly to keep the public road free of dusty materials.
 - Dusty haul road was observed at Road L1. The Contractor should enhance their dust suppression measures.
- 4.1.4 Construction Noise Impact
 - Nil.
- 4.1.5 Water Quality Impact
 - Stagnant water and general refuse was accumulating at Branch M. The Contractor should clear the stagnant water to prevent mosquito breeding and clear the general refuse regularly to maintain site hygiene and tidiness.
- 4.1.6 Chemical and Waste Management
 - Oil stains were observed below the breaking tip of the breaker at Sau Fung Street. The Contractor should clear the oil stains and insert tarpaulin under the breaking tip to retain any oil leakage.
 - Oil leakage was observed under the excavator at Junction J2. The Contractor should clear the oil stains, and insert tarpaulin under the excavator or implement equivalent measures to retain any oil leakage.
 - An oil drum was observed on bare ground without drip tray at Road L2. The Contractor should place the chemical container inside a drip tray to retain any oil leakage.
 - A generator and chemical containers were observed on bare ground without drip trays at Road L1. The Contractor should provide a drip tray to the generator and chemical containers to retain any oil leakage.
 - Stagnant water and general refuse was accumulating at Branch M. The Contractor should clear the stagnant water to prevent mosquito breeding and clear the general refuse regularly to maintain site hygiene and tidiness.
 - Oil leakage was observed along the road at Branch M. The Contractor should clear the oil stains.
 - The Contractor should improve their housekeeping at Branch M.
 - Oil leakage was observed from a generator on Sau Fung Street. The Contractor should clear the oil stains and provide an intact drip tray to the generator to retain any oil leakage.

- Oil leakage was observed from a welder at Branch X drainage works area on Po Lam Road. The Contractor should clear the oil stains and provide an intact drip tray to the welder to retain any oil leakage.
- General refuse was accumulating on the slope of Portion C2. The Contractor should clear the general refuse regularly to maintain site hygiene and tidiness.
- Stained soil was observed at Road L2. The Contractor should clear the oil stains and dispose of the stained soil as chemical waste.
- 4.1.7 Landscape and Visual Impact
 - Nil

4.2 Advice on the Solid and Liquid Waste Management Status

- 4.2.1 The Contractor is registered as a chemical waste producer for this Project. C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 4.2.2 As advised by the Contractor, a total of 6709.51 m³ C&D material was generated on site in the reporting month. 5438.33 m³ of hard rock and large broken concrete was generated and transferred to Anderson Road Quarry for further process.

For C&D waste, 0 kg of metals was generated and collected by registered recycling collector. 10kg of paper cardboard packing and 10kg of plastic were generated on site and collected by registered recycling collector. No chemical waste was collected by licensed chemical waste collectors. 140.21 tonnes of other types of wastes (e.g. general refuse and tree debris) were generated on site and disposed of at North East New Territories (NENT) Landfill.

- 4.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 4.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

4.3 Environmental Licenses and Permits

4.3.1 The environmental licenses and permits for this Project and valid in the reporting month is summarized in Table 4.1.

Table 4.1 Summary of Environmental Licensing and Permit Status

Statutory	Description	Permit No.	Valid Period		Remarks
Reference	Decemption		From	То	Kontanto
EIAO	Environmental Permit	EP-140/2002			 Widening of a section of Po Lam Road Improvement works to existing roads
APCO	NA notification		16/04/09		- Whole Construction Site

Contract No. CV/2007/03 Development at Anderson Road -Site Formation and Associated Infrastructure Works

China St	China State Construction Engineering (Hong Kong) Ltd.		Monthly EM&A Report for December2014		
WPCO	Discharge License	WT00018111-2014	03/03/14	31/08/14*	- Discharge of Construction Runoff
	Discharge License	EP670/I/C0613/293	02/02/12	28/02/17	- Discharge from Road L6
WDO	Chemical Waste Producer Registration	5213-292-C3249-32	19/03/08		- Whole Construction Site
	Waste Charges Account	7006839	12/03/08		- Whole Construction Site
NCO	Construction Noise Permit	GW-RE0900-14	13/08/14	08/02/15	- Whole Construction Site

Remark: * Renewal of the Discharge License WT00018111-2014 was applied in early July by the Contractor. Its approval is pending.

4.4 **Implementation Status of Environmental Mitigation Measures**

- 4.4.1 In response to the site audit findings, the Contractor carried out corrective actions promptly for particular items recorded. Outstanding items were closely monitored to ensure mitigation measures are implemented properly.
- 4.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix B. Many necessary mitigation measures were implemented properly.

4.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 4.5.1 All 1-hour TSP results were below the Action and Limit Levels in the reporting month.
- 4.5.2 One (1) exceedance of Action Level was recorded in 17 December 2014 for 24-hour TSP monitoring at ID5. The exceedance was non-project-related. All 24-hour TSP results were below the Limit Level.
- 4.5.3 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 4.5.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 4.5.5 Cumulative statistics on exceedances is provided in Appendix J.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 4.6.1 Complaints shall be referred to the ET Leader for action. The ET Leader shall undertake the following procedures upon receipt of any complaint:-
 - Log complaint and date of receipt onto the complaint database and inform the IC(E) immediately;
 - Investigate the complaint to determine its validity, and assess whether the source of the problem is due to works activities;
 - Identify mitigation measures in consultation with the IC(E) if a complaint is valid and due to works:
 - Advise the Contractor if additional mitigation measures are required;
 - Review the Contractor's response to identified mitigation measures, and the updated situation;
 - If the complaint is transferred from EPD, submit interim report to EPD on status of the complaint investigation and follow-up action within the time frame assigned by EPD;

- Undertake additional monitoring and audit to verify the situation if necessary, and review that circumstances leading to the complaint to not recur;
- Report investigation results and subsequent actions to complainant (if the source of complaint is EPD, the results should be reported within the time frame assigned by EPD); and
- Record the complaint, investigation, the subsequent actions and the results in the monthly EM&A reports.
- 4.6.2 During any complaint investigation work, the Contractor and the ER shall cooperate with the ET Leader in providing all necessary information and assistance for completion of the investigation. If mitigation measures are identified in the investigation, the Contractor shall promptly carry out the mitigation. The ER shall ensure that all necessary measures have been carried out by the Contractor.
- 4.6.3 Referring to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.
- 4.6.4 Cumulative statistics on complaints, notification of summons and successful prosecutions is provided in Appendix J.

5 FUTURE KEY ISSUES

5.1 Construction Programme for the Coming Two Months

- 5.1.1 The major construction works in January and February 2015 will be:-
 - Slope stabilization and upgrading works at Portion C and E
 - Earthwork and C&D stockpile at Portion A, C and R16b
 - Temporary traffic arrangement and road work at Po Lam Road, J/O Sau Mau Ping Road and Shun On Road and J/O Po Lam Road
 - Toe / Berm planter and platform drainage construction at Portion A, B, C
 - Retaining wall structural works and backfilling works at R16b
 - Trench excavation and pipe laying at main site and public road
 - Structural works of Retaining wall and backfilling at R16b
 - Structural works at Footbridges A, B and C
 - Breaking of rock trench at public road
 - Drainage construction at public road
 - Watermain works at main site and Branch M
 - Installation of Vertical Artificial and Granite Stone Facing at Skin Wall R15
 - Installation of metal barriers at main site and R15b
 - Installation of Steel footbridge C
 - Asphalt laying at L1, L2 road
 - Brick laying at footpath at L4 and L5 road
 - Installation of Tower crane at Footbridge A
 - Installation of Steel deck of footbridge B and C

5.2 Key Issues for the Coming Two Months

- 5.2.1 Key issues to be considered in the coming months included:-
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
 - Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of drainage systems and desilting facilities;
 - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
 - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.

5.3 Monitoring Schedule for the Coming Month

5.3.1 The tentative schedule for environmental monitoring in January 2015 is provided in Appendix E.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- 6.1.1 The construction phase of the project commenced in May 2008.
- 6.1.2 1-hour TSP, 24-hour TSP and noise monitoring were carried out in the reporting month.
- 6.1.3 All 1-hour TSP results were below the Action and Limit Levels in the reporting month.
- 6.1.4 One (1) exceedance of Action Level was recorded in 17 December 2014 for 24-hour TSP monitoring at ID5. The exceedance was non-project-related. All 24-hour TSP results were below the Limit Level.
- 6.1.5 According to the Contractor's information, no noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 6.1.6 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 6.1.7 Environmental site inspections were carried out 5 times in December 2014. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 6.1.8 According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

China State Construction Engineering (Hong Kong) Ltd. 6.2 Recommendations

6.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

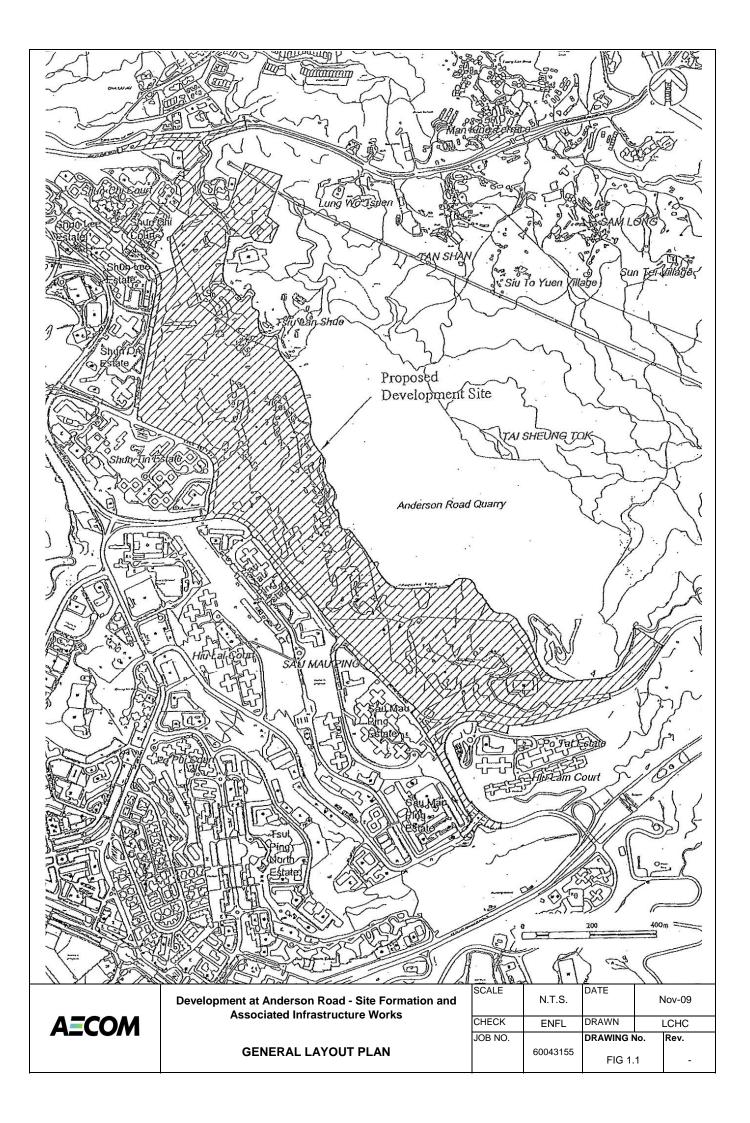
- Clearance of mud trails regularly to keep the public road free of dusty materials.
- Enhancement of dust suppression measures.

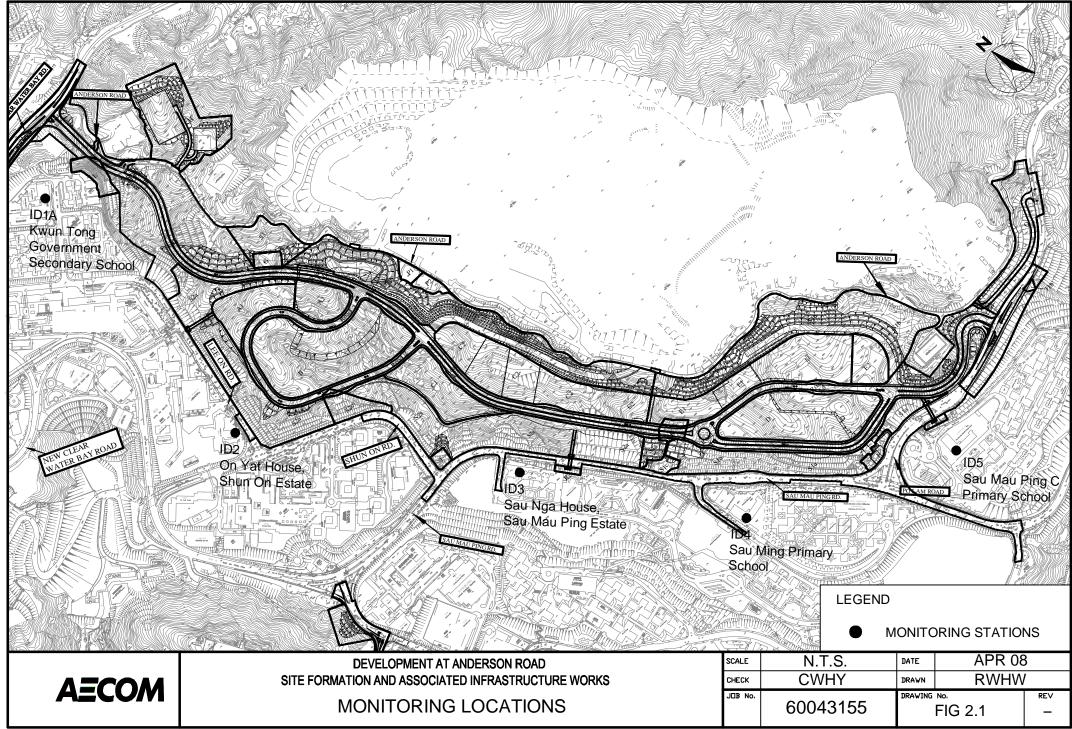
Construction Noise Impact

• No specific observation was identified in the reporting month.

Water Quality Impact

• Stagnant water should be cleared regularly.

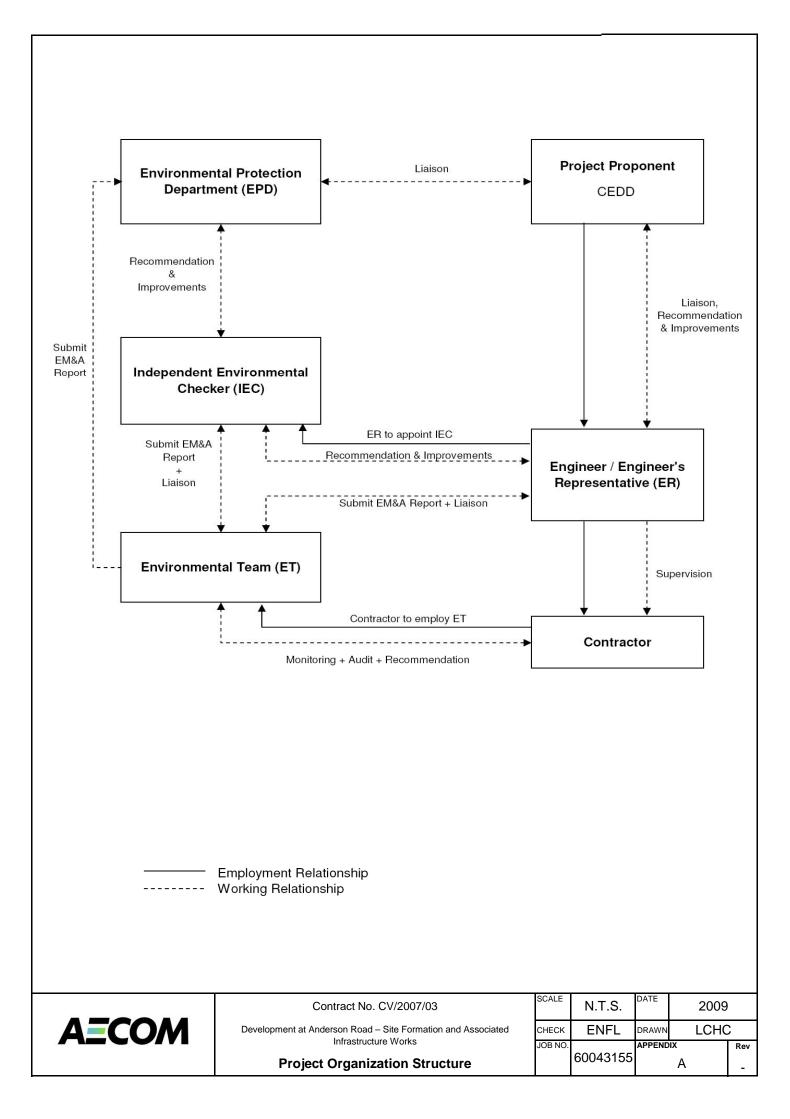

Chemical and Waste Management


- Clearance of oil stains on ground.
- Sufficient drip tray should be provided to the equipment and chemical containers in order to retain any oil or chemical leakage. Moreover, regular inspection should be conducted to maintain the status of the equipment to prevent any oil leakage and to ensure that maintenance works are carried out in roofed, paved and confined works area only.
- Clearance of general refuse regularly.
- Improvement on housekeeping for the whole construction site.
- Storing useful construction materials properly.

Landscape and Visual Impact

• No specific observation was identified in the reporting month.

FIGURES



P:\60043155\1.01\CAD\Drawing\Report\Anderson_monitoring_location.dwg

APPENDIX A

Project Organization Structure

APPENDIX B

Implementation Schedule of Environmental Mitigation Measures

Appendix B - Implementation Schedule of Environmental Mitigation Measures

Environmental M	Aitigation Measures	Location	Implementation Status
Construction N	loise Impact		
Site Formation	Silenced powered mechanical equipment (PME) for most equipment	All construction sites	V
	(including drill rig, backhoe, dump truck, breaker and crane) and the		
	decrease of percentage on time usage of drill rig among the Central Area		
	from 50% to 40% is proposed.		
	Temporary movable noise barrier shall be used to shield the noise	All construction sites	V
	emanating from the drilling rig in order to provide adequate shielding for the		V
	affected NSRs.		
Construction A	ir Quality Impact		
General Site	Mean vehicle speed of haulage trucks at 10km/hr.	All construction sites	V
Practice	Twice daily watering of all open site areas.	All construction sites	@
	Regular watering (once every 1 hour) of all site roads and access roads with	All construction sites	@
	frequent truck movement.	All construction sites	<u>w</u>
	During road transportation of excavated spoil, vehicles should be covered to	All construction sites	V
	avoid dust impact. Wheel washing facilities should be installed at all site		
	exits together with regular watering of the site access roads.		
	Tarpaulin covering of all dusty vehicle loads transported to, from and	All construction sites	V
	between site locations.	All construction sites	
	Establishment and use of vehicle wheel and body washing facilities at the	Site exits	V
	exit points of the site, combined with cleaning of public roads were		

	necessary.		
General Site	Suitable side and tailboards on haulage vehicles.	All construction sites	V
Practice	Watering of temporary stockpiles.	All construction sites	V
Blasting	Use of select aggregate and fines to stem the charge with drill holes and watering of blast face.	All construction sites	V
	Use of vacuum extraction drilling methods.	All construction sites	V
	Carefully sequenced blasting.	All construction sites	V
Crushing	Fabric filters installed for the crushing plant.	All construction sites	V
	Water sprays on the crusher.	All construction sites	V
Loading and Unloading	Water sprays at all fixed loading and unloading points (at the crusher and conveyor belts).	All construction sites	V
Points, and conveyor Belt	The loading point at the crusher is enclosed with dust collection system installed.	All construction sites	V
System	When transferring materials from conveyor belt or crusher to the dump trucks, chutes or dust curtains are used for controlling dust.	All construction sites	V
	Cover the conveyor belts with steel roof and canvas sides.	All construction sites	V
Construction V	Vater Quality Impact	· · · · · · · ·	
Construction	All active working areas should be bounded to retain storm water with	Site drainage system	V
Phase	sufficient retention time to ensure that suspended solids are not discharged		
	from the site in concentrations above those specified in the TM for the		
	Victoria Harbour (Phase I) WCZ. All fuel storage areas should be bounded		

	with drainage directed to an oil interceptor.		
Construction	Separate treatment facilities may be required for effluent from site offices,	Site drainage system	V
Phase	toilets (unless chemical toilets are used) and canteens.		
	Discharged wastewater from the construction sites to surface water and/or	All works area	V
	public drainage systems should be controlled through licensing. Discharge		
	should follow fully the terms and conditions in the licenses.		
	Relevant practice for dealing with various type of construction discharges	All works area	V
	provided in EPD's ProPECC Note PN 1/94 should be adopted.		
Waste Managem	nent		
Waste Disposal	Difference types of wastes should be segregated, stored, transported and	All construction sites	@
	disposed of separately in accordance with the relevant legislative		
	requirements and guidelines as proper practice of waste management.		
	Sorting of wastes should be done on-site. Different types of wastes should	All construction sites	V
	be segregated and stored in different stockpiles, containers or skips to		
	enhance recycling of materials and proper disposal of spoil.		
	Excavated spoil should be used as much as possible to minimize off-side fill	All construction sites	V
	material requirements and disposal of spoil.		
	Chemical waste should be recycled on-site or removed by licenced	All construction sites	V
	companies. It should be handled according to the Code of Practice on the		

	Packaging, Labelling and Storage of Chemical wastes. When off-site		
	disposal is required, it should be collected and delivered by licenced		
	contractors to Tsing Yi Chemical Waste Treatment Facility and disposed of		
	in accordance with the Chemical Waste (General) Regulation.		
	Necessary mitigation measures should be adopted to prevent the	All construction sites	V
	uncontrolled disposal of chemical and hazardous waste into air, soil, surface		
	waters and ground waters.		
Waste Storage	Chemical material storage areas should be bounded, constructed of	All construction sites	@
	impervious materials and have the capacity to contain 120 percent of the		
	total volume of the containers. Indoor storage areas must have sufficient		
	ventilation to prevent the build-up of fumes, and must be capable of		
	evacuating the space in the event of an accidental release. Outdoor storage		
	areas must be covered with a canopy or contain provisions for the safe		
	removal of rainwater. In both cases, storage areas must not be connected to		
	the foul or stormwater sewer system.		
	Dangerous materials as defined under the DGO, including fuel, oil and	All construction sites	V
	lubricants, should be stored and properly labelled on site in accordance with		
	the requirements in the DGO. If transportation of hazardous materials is		
	necessary, hazardous materials, chemical wastes and fuel should be		
	packed or stored in containers or vessels of suitable design and construction		
	to prevent leakage, spillage or escape.		
	Human waste should be discharged into septic tanks provided by the	All construction sites	V
	contractors and removed regularly by a hygiene services company. Refuse		
			÷

	containers such as open skips should be provided at every work site for use		
	by the workforce. On-site refuse collection points must also be provided.		
Landscape a	nd Visual	·	
Additional	Planting and vegetation restoration (including transplanted trees) on soil	Whole development	N/A
Measures	slopes including restoration of grassland, scrub and woodland on slopes		
	around the development platforms and access road. Restoration would be		
	undertaken using predominantly native species.		
Additional	Screen planting along the access roads, to limit impacts of elevated	Whole development	N/A
Measures	structures and rock slopes.		
	Colouring of shotcrete slopes.	Whole development	N/A
	Limited planting on shotcrete slopes.	Whole development	V
	Landscape buffers and planting in and around the development itself to	Whole development	N/A
	screen partially close views of the site.		
	Screen planting in front of retaining walls / granite cladding to those walls to	Whole development	N/A
	reduce glare and visual impacts.		
	Careful design of road elevated structure and abutments, to limit visual	Whole development	V
	impacts.		
	Roadside landscape features / hardworks to limit visual impacts.	Whole development	V
	Conservation of CDG or CDV recovered from the site for re-use in the	Whole development	N/A
	landscape restoration.		
	Preservation (by transplanting if necessary) of any trees identified as being	Whole development	V

China State Construction Engineering (Hong Kong) Ltd.

	of particular landscape value.		
Ecology			
	Woodland planting on soft cut slopes available (about 13.4ha) within the	Soft cut slopes	N/A
	development site. Native species, preferably with documented ecological		
	utility, should be used.		
	Seeds of the native species when possible should be added into the	Soft cut slopes	N/A
	hydroseeding mix. Seedings should be pit planted with placement of slow		
	release fertilizer.		
	Maintenance and service, including weeding, fertilizing, replacement of	Soft cut slopes	N/A
	dead plants, etc. should be performed during the first 1 years of planting to		
	enhance the survival rate of the plants.		
Contamin	ated Land		
	In accordance with the approved Contamination Assessment Report (CAR)	Locations specified in CAR	N/A
	and Remediation Action Plan (RAP) in Nov 2006, it is recommended that		(Works In Progress)
	cement solidification / stabilization prior to on-site backfill for heavy metal		
	contaminated soil and excavation followed by disposal at designated landfill		
	for organic contaminated soil. Upon the completion of the proposed		
	remediation exercise as outlined in CAR & RAP, a Remediation Report will		
	be complied for submission to EPD to demonstrate that the proposed soil		
	remediation has been carried out properly and satisfactorily. Results from		
	the confirmation tests will also be included in the Remediation Report.		
	Photos showing the area of excavation, the solidification process, and		
	remediated soil and site shall also be included in the report for reference.		

China State Construction Engineering (Hong Kong) Ltd.

Landfill Gas Hazard						
	Further site investigation should be carried out during the detailed design	The whole development site	N/A			
	stage in order to measure landfill gas around the perimeter of the site, to					
	re-confirm that there is no preferential pathway for landfill gas migration and					
	to assess the potential for landfill gas hazards on the future development. If					
	a landfill gas hazard is identified, mitigation measures should be proposed					
	and implemented to address the hazard.					

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX C

Summary of Action and Limit Levels

Appendix C - Summary of Action and Limit Levels

Location	Action Level	Limit Level
ID 1A	201.5	500
ID 2	197.0	500
ID 3	203.7	500
ID 4	264.6	500
ID 5	267.4	500

Table 1 – Action and Limit Levels for 1-hour TSP

Table 2 – Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
ID 1A	170.2	260
ID 2	200.0	260
ID 3	200.0	260
ID 4	181.3	260
ID 5	180.8	260

Location	Action Level	Limit Level
ID 1A	When one documented	*65 / 70 dB(A)
ID 2	complaint is received	75 dB(A)
ID 3		75 dB(A)
ID 4	from any one of the sensitive	*65 / 70 dB(A)
ID 5	receivers	*65 / 70 dB(A)

*Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period

APPENDIX D

Calibration Certificates of Equipments

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

Station	Kwun Tong Gov	vernment Secondary School (ID1A)	Operator:	Leung Yiu Ting
Date:	14-Oct-14	-	Next Due Date:	13-Dec-14
Pump No.:	763		Verified Against:	O.T.S 0843
Equipment No.:	A-001-64T		Expiration Date:	9-Dec-2014

Ambient Condition					
Temperature, Ta	303.1	Kelvin	Pressure, Pa	762.9	mmH

Orifice Transfer Standard Information							
Equipment No .:	843	Slope, mc	1.99102	Intercept, bc	-0.00616		
Last Calibration Date:	Calibration Date: 9-Dec-13						
Next Calibration Date: 9-Dec-14 $mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2}$							

		Calibration of	TSP Sampler		
Calibration Point	H in. of water	[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	W in. of oil	$\frac{\left[\Delta W \ge (Pa/760) \le (298/Ta)\right]^{1/2}}{Y-axis}$
1	8.5	2.90	1.46	6.1	2.45
2	7.2	2.67	1.34	5.0	2.22
3	6.0	2.43	1.22	3.4	1.83
4	4.2	2.04	1.03	2.3	1.51
5	2.8	1.66	0.84	1.3	1.13
	ession of Y on X				
Slope, mw =	2.1421	•	Intercept, bw =		-0.6954
Correlation C	oefficient* =	0.9952			

Set Point Ca	alculation
--------------	------------

From the TSP Field Calibration Curve, take $Qstd = 1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to

m x Qstd + b = $[W x (Pa/760) x (298/Ta)]^{1/2}$

Therefore, Set Point W = $(m x Qstd + b)^2 x (760 / Pa) x (Ta / 298) =$

3.64

*If Correlation Coefficient < 0.990, check and recalibrate again.

QC Reviewer: 11 leung

Signature:

Date: 14- 14-14

Omenation

TSP - Total Suspended Particulates Sampler **Field Calibration Report**

Station Kwun Tong Government Secondary School (ID1A)

Station Kwun Tong Government Secondary School (ID1A)	Operator:	Leung Yiu Ting
Date: 12-Dec-14	Next Due Date:	12-Feb-15
Pump No.: 763	Verified Against:	O.T.S 988
Equipment No.: <u>A-001-64T</u>	Expiration Date:	28-May-2015

	Ambient Condition								
Temperature, Ta	290	Kelvin	Pressure, Pa	766.9	mmHg				
		the second se			mining				

	Orifice Transfer Standard Information										
Equipment No.:	988	Slope, mc	1.97518	Intercept, bc	-0.01001						
Last Calibration Date:	28-May-14										
Next Calibration Date:	28-May-15	mc x Qstd + bc = $[H x (Pa/760) x (298/Ta)]^{1/2}$									

		Calibration of	TSP Sampler		
Calibration H Point in. of water [H		[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	W in. of oil	$\frac{\left[\Delta W \times (Pa/760) \times (298/Ta)\right]^{1/2}}{Y-axis}$
1	8.4	2.95	1.50	6.0	2.49
2	7.0	2.69	1.37	5.0	2.28
3	6.0	2.49	1.27	3.5	1.91
4	4.1	2.06	1.05	2.2	1.51
5	2.9	1.73	0.88	1.1	1.07
y Linear Regro	ession of Y on X				
Slope , mw =	2.3000	I	ntercept, bw =		-0.9402
Correlation Coefficient* =		0.9956			

	Set	Point	Calculation	
 	and the second second	2	meaning and an an and	-

From the TSP Field Calibration Curve, take $Qstd = 1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to

m x Qstd + b = $[W x (Pa/760) x (298/Ta)]^{1/2}$


Therefore, Set Point W =
$$(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) =$$

3.28

*If Correlation Coefficient < 0.990, check and recalibrate again.

Remarks:

QC Reviewer: WS CHAN

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

StationOn Yat House (ID2)Operator:Leung Yiu TingDate:14-Oct-14Next Due Date:13-Dec-14Pump No.:1654Verified Against:O.T.S -- 0843Equipment No.:A-001-61TExpiration Date:9-Dec-2014

		Ambient Co	ndition		
Temperature, Ta	303.1	Kelvin	Pressure, Pa	762.9	mmHg

	Orifice Transfer Standard Information										
Equipment No .:	843	Slope, mc	1.99102	Intercept, bc	-0.00616						
Last Calibration Date:	9-Dec-13	mc x Qstd + bc = $[H x (Pa/760) x (298/Ta)]^{1/2}$									
Next Calibration Date:	9-Dec-14										

	and Hadiso	Calibration of	TSP Sampler		
Calibration H Point in. of water		[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis		[ΔW x (Pa/760) x (298/Ta)] ^{1/} Y-axis
1	8.7	2.93	1.47	5.8	2.39
2	6.5	2.53	1.27	4.4	2.08
3	5.2	2.27	1.14	3.0	1.72
4	4.3	2.06	1.04	2.2	1.47
5	2.9	1.69	0.85	1.3	1.13
By Linear Regr Slope , mw = Correlation C			Intercept, bw =	i.	-0.6739

Set	P	oint	Cal	cul	ation	

From the TSP Field Calibration Curve, take Qstd = $1.21 \text{ m}^3/\text{min}$ (43 CFM)

From the Regression Equation, the "Y" value according to

m x Qstd + b = $[W x (Pa/760) x (298/Ta)]^{1/2}$

Therefore, Set Point W = $(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) =$

3.57

*If Correlation Coefficient < 0.990, check and recalibrate again.

Remarks:		
QC Reviewer: T lely	Signature:	Date: 14-14-164

TSP - Total Suspended Particulates Sampler Field Calibration Report

Date	n <u>On Yat House</u> :: <u>12-Dec-14</u> : <u>1654</u> : <u>A-001-61T</u>	<u>(I</u> D2)			Operator Next Due Date Verified Against Expiration Date	:: 12-Fe :: 0.T.S -	b-15 988
			Ambient (Condition			
Tempera	ature, Ta	290	Kelvin	Press	ure, Pa	766.9	mmHg
Equipm		988	ifice Transfer Sta Slope, mc		tion 7518	Intercept, bc	-0.01001
Last Calibr Next Calibr		28-May-14 28-May-15	I	mc x Qstd + bc	= [H x (Pa/760)	x (298/Ta)] ^{1/2}	
		•	Calibration of	TSP Sampler			
Calibration Point	H in. of water	[H x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	W in. of oil	[ΔW x (Pa/760) : Y-ax	(A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
1	8.5		2.97	1.51	5.8	2.45	;
2	6.5		2.60	1.32	4.2	2.09	
3	5.1		2.30	1.17	3.0	1.76	

1.09

0.87

Intercept, bw =

2.1

1.2

1.48

1.12

-0.7691

From the TSP Field Calibration Curve, take $Qstd = 1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to

4.4

2.8

By Linear Regression of Y on X Slope, mw = 2.1385

Correlation Coefficient* =

m x Qstd + b = $[W x (Pa/760) x (298/Ta)]^{1/2}$

Set Point Calculation

Therefore, Set Point W = $(m x Qstd + b)^2 x (760 / Pa) x (Ta / 298) =$

2.14

1.70

0.9955

3.19

*If Correlation Coefficient < 0.990, check and recalibrate again.

Remarks:

4

5

QC Reviewer: WS CHAN

Signature: Pl Date: 15/12/14

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

StationSau Nga House (ID3)Operator:Leung Yiu TingDate:14-Oct-14Next Due Date:13-Dec-14Pump No.:1272Verified Against:O.T.S -- 0843Equipment No.:A-001-31TExpiration Date:9-Dec-2014

Ambient Condition								
Temperature, Ta	303.1	Kelvin	Pressure, Pa	762.9	mmH			

	Orifice Transfer Standard Information									
Equipment No .:	843	Slope, mc	1.99102	Intercept, bc	-0.00616					
Last Calibration Date:	9-Dec-13	11 N		= (a) (a) (m) (1/2						
Next Calibration Date:	9-Dec-14	mc x Qstd + bc = [H x (Pa/760) x (298/Ta)] ^{1/2}								

		Calibration of	TSP Sampler		
Calibration Point	H in. of water	[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	W in. of oil	$\frac{\left[\Delta W \ge (Pa/760) \ge (298/Ta)\right]^{1/2}}{Y-axis}$
1	8.2	2.84	1.43	5.7	2.37
2	6.6	2.55	1.28	4.5	2.11
3	5.4	2.31	1.16	3.5	1.86
4	4.3	2.06	1.04	2.4	1.54
5	3.0	1.72	0.87	1.6	1.26
By Linear Regr Slope , mw = Correlation C	ession of Y on X 2.0432 oefficient* =		Intercept, bw =	6	-0.5339

	Set	Point	Calcul	ation
--	-----	-------	--------	-------

From the TSP Field Calibration Curve, take Qstd = $1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to

m x Qstd + b = $[W x (Pa/760) x (298/Ta)]^{1/2}$

Therefore, Set Point W = $(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) =$

3.81

*If Correlation Coefficient < 0.990, check and recalibrate again.

QC Reviewer: 1 Ling

Signature: Z

Date: 19-0ct-14

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

	n <u>Sau Nga Hous</u>				Operator	: Leung Yiu Ting
	:: 12-Dec-14					:12-Feb-15
	.:1272	-		Y		. O.T.S 988
Equipment No.	: <u>A-001-31T</u>				Expiration Date	
			Ambient	Condition		
Tempera	ature, Ta	290	Kelvin			
		290	Kelvili	l Press	ure, Pa	766.9 mmHg
		01	ifice Transfer Sta	indard Informa	tion	
Equipmo	ent No.:	988	Slope, mc	1.97	7518	Intercept, bc -0.01001
Last Calibra	ation Date:	28-May-14				
Next Calibr	ration Date:	28-May-15	1	mc x Qstd + bc	= [H x (Pa/760)	$x (298/Ta)]^{1/2}$
	1		Calibration of	TSP Sampler		
Calibration Point	H in. of water	[H x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m ³ /min) X - axis	W in. of oil	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^1$ Y-axis
1	8.3		2.93	1.49	5.6	2.41
2	6.5		2.60	1.32	4.5	2.16
3	5.5		2.39	1.22	3.6	1.93
4	4.3		2.11	1.07	2.6	1.64
5	3.1		1.79	0.91	1.6	1.29
By Linear Regr		K				
Slope, mw =		-		Intercept, bw =	_	-0.4626
Correlation Co	oefficient* =	0.	9972			
			Set Point Ca	Jan Ja di an		
From the TSP Fie	eld Calibration C	urve, take Ost	$d = 1.21 \text{ m}^3/\text{min} (4$			
From the Regress	sion Equation, th	e "Y" value ac	cording to	5 CI WI)		
		m x Q	estd + b = [W x (P)]	a/760) x (298/Ta	$a)]^{1/2}$	
Therefore, Se	et Point W = (m	$a \ge Qstd + b)^2$	x (760 / Pa) x (Ta	a / 298) =	3.4	49
If Correlation Co	oefficient < 0.99	0, check and re	ecalibrate again.			
			6			
emarks:						
_						
QC Reviewer:	WS CHARL		Signature:	RI	Date:	ir la liu

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station Sau Ming Primary School (ID4) Operator: Shum Kam Yuen Date: 14-Oct-14 Next Due Date: 13-Dec-14 Pump No.: 1275 Verified Against: 0.T.S -- 0843 Equipment No.: A-001-28T Expiration Date: 9-Dec-2014

		Ambient Co	ndition		
Temperature, Ta	303.1	Kelvin	Pressure, Pa	762.9	mmHg

	Orifice Transfer Standard Information					
Equipment No .:	843	Slope, mc	1.99102	Intercept, bc	-0.00616	
Last Calibration Date:	9-Dec-13					
Next Calibration Date:	9-Dec-14	mc x Qstd + bc = [H x (Pa/760) x (298/Ta)] ^{1/2}				

		Calibration of	TSP Sampler		
Calibration Point	H in. of water	[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	W in. of oil	$[\Delta W \ge (Pa/760) \ge (298/Ta)]^{1/2}$ Y-axis
1	8.2	2.84	1.43	5.8	2.39
2	6.3	2.49	1.25	4.5	2.11
3	5.5	2.33	1.17	3.5	1.86
4	4.1	2.01	1.01	2.3	1.51
5	3.2	1.78	0.90	1.8	1.33
By Linear Regr Slope , mw = Correlation C	ession of Y on X <u>2.0781</u> oefficient* =		Intercept, bw =		-0.5539

Set Point	Calculation

From the TSP Field Calibration Curve, take $Qstd = 1.21 \text{ m}^3/\text{min}$ (43 CFM)

From the Regression Equation, the "Y" value according to

m x Qstd + b = $[W x (Pa/760) x (298/Ta)]^{1/2}$

Therefore, Set Point W = $(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) =$

3.89

*If Correlation Coefficient < 0.990, check and recalibrate again.

QC Reviewer: YT lang

Signature: 19-04-14

Operator:

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station Sau Ming Primary School (ID4)

Station -	Sau Ming Primary School (ID4)	Operator:	Shum Kam Yuen
Date:	12-Dec-14	Next Due Date:	12-Feb-15
Pump No.:	1275	Verified Against:	O.T.S 988
Equipment No.:	A-001-28T	Expiration Date:	28-May-2015

		Ambient Co	ndition		
Temperature, Ta	290	Kelvin	Pressure, Pa	766.9	mmHg

	Ori	fice Transfer Stand:	ard Information		
Equipment No .:	988	Slope, mc	1.97518	Intercept, bc	-0.01001
Last Calibration Date:	28-May-14				
Next Calibration Date:	28-May-15	me	x Qstd + bc = [H x (Pa/2)]	760) x (298/Ta)] ^{1/2}	

		Calibration of	FSP Sampler		
Calibration Point	H in. of water	[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	W in. of oil	$\frac{\left[\Delta W \ge (Pa/760) \ge (298/Ta)\right]^{1/2}}{Y-axis}$
1	8.1	2.90	1.47	5.7	2.43
2	6.2	2.54	1.29	4.3	2.11
3	5.2	2.32	1.18	3.5	1.91
4	4.1	2.06	1.05	2.5	1.61
5	3.1	1.79	0.91	1.9	1.40
	ession of Y on X				
Slope , mw = <u>1.8790</u> Correlation Coefficient* =		0.9984	Intercept, bw = 0.9984		-0.3253

Set Point	Calculation
-----------	-------------

From the TSP Field Calibration Curve, take $Qstd = 1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to

$m \ge Qstd + b = [W \ge (Pa/760) \ge (298/Ta)]^{1/2}$

Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) =

3.66

*If Correlation Coefficient < 0.990, check and recalibrate again.

Remarks:

QC Reviewer: WS CHAN

Signature: _____ Date: ______

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	Sau Mau Ping Cath	olic Primary School (ID5)	Operator:	Shum Kam Yuen
Date:	14-Oct-14		Next Due Date:	13-Dec-14
Pump No.:	10088		Verified Against:	O.T.S 0843
Equipment No.:	A-001-13T		Expiration Date:	9-Dec-2014

Ambient Condition							
Temperature, Ta	303.1	Kelvin	Pressure, Pa	762.9	mmHg		

Orifice Transfer Standard Information								
Equipment No .:	843	Slope, mc	1.99102	Intercept, bc	-0.00616			
Last Calibration Date:	9-Dec-13	mc x Qstd + bc = $[H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	9-Dec-14							

		Calibration of	TSP Sampler			
Calibration H Point in. of water		[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis W in. of oil		[ΔW x (Pa/760) x (298/Ta)] Y-axis	
1	8.2	2.84	1.43	6.0	2.43	
2	7.0	2.63	1.32	4.6	2.13	
3	5.3	2.29	1.15	3.4	1.83	
4	4.3	2.06	1.04	2.4	1.54	
5	3.0	1.72	0.87	1.3	1.13	
By Linear Regr	ession of Y on X					
Slope, mw =	2.2731	. I I I I I I I I I I I I I I I I I I I	Intercept, bw =		-0.8293	
Correlation C	oefficient* =	0.9980				

Set	Point	Cal	cul	ation
			_	

From the TSP Field Calibration Curve, take Qstd = $1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to

m x Qstd + b = $[W x (Pa/760) x (298/Ta)]^{1/2}$

Therefore, Set Point W = $(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) =$

3.74

*If Correlation Coefficient < 0.990, check and recalibrate again.

QC Reviewer: <u>YT lung</u>

Signature: _____ Date: /4- Dct - 14

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station Sau Mau Ping Catholic Primary School (ID5)

.

		2
Date:	12-Dec-14	
Pump No.:	10088	
A		

Equipment No.: A-001-13T

Operator: Shum Kam Yuen Next Due Date: 12-Feb-15 Verified Against:O.T.S -- 988Expiration Date:28-May-2015

Ambient Condition						
Temperature, Ta	290	Kelvin	Pressure, Pa	766.9	mmHg	
		iterviii	Tiessure, Fa	/66.9		

Orifice Transfer Standard Information								
Equipment No .:	988	Slope, mc	1.97518	Intercept, bc	-0.01001			
Last Calibration Date:	28-May-14							
Next Calibration Date:	28-May-15	mc x Qstd + bc = [H x (Pa/760) x (298/Ta)] ^{1/2}						

		Calibration of	TSP Sampler			
Calibration H Point in. of water		[H x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis W in. of oil		[ΔW x (Pa/760) x (298/Ta)] Y-axis	
1	8.0	2.88	1.46	6.1	2.51	
2	6.8	2.66	1.35	4.6	2.18	
3	5.3	2.34	1.19	3.5	1.91	
4	4.2	2.09	1.06	2.5	1.61	
5	3.0	1.76	0.90	1.4	1.20	
	ession of Y on X 2.2578		ntercept, bw =		-	
Correlation C		0.9970			-0.8093	

Set Point	Calculation
-----------	-------------

From the TSP Field Calibration Curve, take $Qstd = 1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to

$m \ge Qstd + b = [W \ge (Pa/760) \ge (298/Ta)]^{1/2}$

Therefore, Set Point W = $(m x Qstd + b)^2 x (760 / Pa) x (Ta / 298) =$

_____ 3.56

*If Correlation Coefficient < 0.990, check and recalibrate again.

Remarks:

QC Reviewer: WS CHAN

Signature: Date: 15/12/14

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3790 0.9720 0.8690 0.8260 0.6830	METER DIFF Hg (mm) 3.2 6.4 7.9 8.8 12.8	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.9875 0.9854 0.9843 0.9790	0.7191 1.0159 1.1339 1.1916 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	$\begin{array}{c} 0.8874 \\ 1.2549 \\ 1.4030 \\ 1.4715 \\ 1.7747 \end{array}$
Qstd slog intercep coefficie	t (b) = ent (r) =	1.97518 -0.01001 0.99998 Pa/760) (298/'	Qa slop intercep coeffici	t (b) =	1.23683 -0.00630 0.99998

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.07a
Sensitivity Adjustment Scale Setting:	557 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM®			
Venue:	Cyberport (Pui Ying Secondary School)				
Model No.:	Series 1400AB				
Serial No:	Control:	140AB219899803			_
	Sensor:	1200C143659803	K _o :	12500	_
Last Calibration Date*:	10 May 20	14	_		_

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 557 CPM 557 CPM

Hour	Date (dd-mm-yy)		Time	9		bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	11-05-14	09:30	-	10:30	26.7	75	0.04434	1775	29.58
2	11-05-14	10:30	-	11:30	26.7	75	0.04716	1880	31.33
3	11-05-14	11:30	-	12:30	26.8	76	0.04927	1964	32.73
4	11-05-14	12:30	-	13:30	26.8	75	0.05035	2015	33.58

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

 By Linear Regression of Y or X

 Slope (K-factor):
 0.0015

 Correlation coefficient:
 0.9982

 Validity of Calibration Record:
 11 May 2015

QC Reviewer: YW Fung	Signature:	4/	Date:	12 May 2014

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.08a
Sensitivity Adjustment Scale Setting:	702 CPM
, , , ,	

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]				
Venue:	Cyberport (Pui Ying Secondary School)				
Model No.:	Series 1400AB				
Serial No:	Control:	140AB219899803			
	Sensor:	1200C143659803	K _o :	12500	
Last Calibration Date*:	10 May 20	14	-		

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

702	CPM
702	CPM

Hour	Date	0	Tim	е	Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)				Conc	lition	(mg/m³)	Count ²	Minute ³
					Temp	R.H.	Y-axis		X-axis
					(°C)	(%)			
1	11-05-14	09:45	-	10:45	26.7	75	0.04568	1713	28.50
2	11-05-14	10:45	-	11:45	26.7	75	0.04857	1819	30.32
3	11-05-14	11:45	-	12:45	26.8	76	0.05063	1903	31.72
4	11-05-14	12:45	-	13:45	26.8	75	0.05116	1922	32.03

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

Slope (K-factor):	0.0016	
Correlation coefficient:	0.9984	

Validity of Calibration Record: <u>11 May 2015</u>

Re	m	ar	KS:	:
		-		-

QC Reviewer:	YW Fung	Signature:	4	Date:	12 May 2014

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.09a
Sensitivity Adjustment Scale Setting:	797 CPM

Mike Shek (MSKM)

Standard Equipment

Operator:

Equipment:	Rupprecht & Patashnick TEOM [®]						
Venue:	Cyberport (Pui Ying Secondary School)						
Model No.:	Series 1400AB						
Serial No:	Control:	140AB219899803					
	Sensor:	1200C143659803	K _o :	12500			
Last Calibration Date*:	10 May 20	14					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 797 CPM 797 CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	11-05-14	13:30	-	14:30	26.8	75	0.05034	2017	33.62
2	11-05-14	14:30	-	15:30	26.9	76	0.05211	2084	34.73
3	11-05-14	15:30	-	16:30	26.9	76	0.05163	2066	34.43
4	11-05-14	16:30	-	17:30	26.9	76	0.05272	2113	35.22

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X					
Slope (K-factor):	0.0015				
Correlation coefficient:	0.9965				
Validity of Calibration Record:	11 May 2015				

Remarks:					
			1		
QC Reviewer:	YW Fung	Signature:		Date:	12 May 2014

Laser Dust Monitor
SIBATA
LD-3
A.005.10a
753 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 140	OAB					
Serial No:	Control:	140AB219899803					
	Sensor:	1200C143659803	K _o :	12500			
Last Calibration Date*:	10 May 20	14					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 753 CPM 753 CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp	R.H.	Y-axis		X-axis
					(°C)	(%)			
1	11-05-14	13:45	-	14:45	26.8	75	0.04984	1996	33.27
2	11-05-14	14:45	-	15:45	26.9	76	0.05196	2077	34.62
3	11-05-14	15:45	-	16:45	26.9	76	0.05141	2055	34.25
4	11-05-14	16:45	-	17:45	26.9	76	0.05263	2109	35.15

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0015	
Correlation coefficient:	0.9969	
Validity of Calibration Record:	11 May 2015	

QC Reviewer: YW Fung	Signature:	4/	Date:	12 May 2014

Laser Dust Monitor
SIBATA
LD-3
A.005.11a
799 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]						
Venue:	Cyberport (Pui Ying Secondary School)						
Model No.:	Series 1400AB						
Serial No:	Control:	140AB219899803					
	Sensor:	1200C143659803	K _o :	12500			
Last Calibration Date*:	14						

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 799 CPM 799 CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	18-05-14	09:00	-	10:00	28.3	77	0.04527	1815	30.25
2	18-05-14	10:00	-	11:00	28.3	77	0.04811	1923	32.05
3	18-05-14	11:00	-	12:00	28.3	77	0.05103	2041	34.02
4	18-05-14	12:00	-	13:00	28.4	77	0.05366	2157	35.95

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor):	0.0015	
Correlation coefficient:	0.9987	
Validity of Calibration Record:	18 May 2015	
Validity of Calibration Record:	18 May 2015	

QC Reviewer:	YW Fung	Signature:	4/	Date:	19 May 2014

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.13a
Sensitivity Adjustment Scale Setting:	643 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 140	OAB				
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	10 May 2014					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

643	CPM
643	CPM

Hour	Date (dd-mm-yy)	Time		Amb Conc		Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
	(Temp (°C)	R.H. (%)	Y-axis		X-axis
1	18-05-14	09:30	-	10:30	28.3	77	0.04614	1846	30.77
2	18-05-14	10:30	-	11:30	28.3	77	0.04823	1934	32.23
3	18-05-14	11:30	-	12:30	28.3	77	0.05152	2053	34.22
4	18-05-14	12:30	-	13:30	28.4	77	0.05391	2162	36.03

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X					
Slope (K-factor):	0.0015				
Correlation coefficient:	0.9981				
Validity of Calibration Record:	18 May 2015				

Remarks:					
		eren Marco de la div	/		-
QC Reviewer:	YW Fung	Signature:		Date:	19 May 2014

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.14a
Sensitivity Adjustment Scale Setting:	786 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 140	DOAB				
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	10 May 2014					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 786 CPM 786 CPM

Hour	Date (dd-mm-yy)	Time		1911 LOW ADDRESS	dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	18-05-14	12:45	-	13:45	28.4	77	0.05027	2158	35.97
2	18-05-14	13:45	-	14:45	28.5	76	0.05161	2211	36.85
3	18-05-14	14:45	-	15:45	28.5	76	0.05235	2247	37.45
4	18-05-14	15:45	-	16:45	28.4	77	0.05203	2233	37.22

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor):	0.0014	
Correlation coefficient:	0.9969	
Validity of Calibration Record:	18 May 2015	

Remarks:	1				
QC Reviewer:	YW Fung	Signature:	4	_ Date:	19 May 2014

1000

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	14CA0305 06-01			Page	1	of
Item tested						
Description:	Sound Level Meter	r (Type 1)		Microphone		
Manufacturer:	B & K	()))	,	B&K		
Type/Model No.:		A . ()	,	4188		
Serial/Equipment No.:	2285692	,009,04	,	2250420		
Adaptors used:	-		,	-		
tem submitted by						
Customer Name:	AECOM ASIA CO.	LTD				
Address of Customer:	0 1775 - 50464 - 57560 - 57574 1					
Request No.:	-					
Date of receipt:	05-Mar-2014					
Date of test:	07-Mar-2014					
Reference equipment	used in the calibr	ation				
Description:	Model:	Serial No.		Expiry Date:		Traceable
Multi function sound calibrator	B&K 4226	2288444		22-Jun-2014		CIGISMEC
Signal generator	DS 360	33873		15-Apr-2014		CEPREI
Signal generator	DS 360	61227		15-Apr-2014		CEPREI
Ambient conditions						
	22 ± 1 °C					
emperature:						
Femperature: Relative humidity:	60 ± 10 %					

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

12-Mar-2014 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

CERTIFICATE OF CALIBRATION

Certificate No.:	14CA0702 01-01			Page	1	of	2
Item tested							
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter B & K 2238 2800927 / N.009.0	,	, , ,	Microphone B & K 4188 2791211 -			
Item submitted by							
Customer Name: Address of Customer: Request No.: Date of receipt:	AECOM ASIA CO. - - 02-Jul-2014	, LTD.					
Date of test:	03-Jul-2014						
Reference equipment	used in the calibr	ation					
Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873 61227		Expiry Date: 20-Jun-2015 09-Apr-2015 09-Apr-2015		Traceabl CIGISME CEPREI CEPREI	
Ambient conditions							
Temperature: Relative humidity: Air pressure:	21 ± 1 °C 60 ± 10 % 1000 ± 10 hPa						
Test specifications							

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian in/Fena Jun Qi

04-Jul-2014 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Website: www.cigismec.com

E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	14CA1106 04-02	2	Page:	1 of 2
Item tested				
Description:	Acoustical Calibr	rator (Class 1)		
Manufacturer:	Rion Co., Ltd.			
Type/Model No.:	NC-73			
Serial/Equipment No.:	10307223 / N.00	4.08		
Adaptors used:	-			
Item submitted by				
Curstomer:	AECOM ASIA C	0., LTD.		
Address of Customer:	-	n-oerst-seer allenvenijdeldinge		
Request No.:	-			
Date of receipt:	06-Nov-2014			
Date of test:	07-Nov-2014			
Reference equipment	used in the cali	bration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	13-May-2015	SCL
Preamplifier	B&K 2673	2239857	10-Apr-2015	CEPREI
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI
Signal generator	DS 360	61227	09-Apr-2015	CEPREI
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI

Ambient conditions

Temperature:	22 ± 1 °C
Relative humidity:	65 ± 10 %
Air pressure:	1010 ± 10 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

08-Nov-2014 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Approved Signatory:

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

APPENDIX E

EM&A Monitoring Schedules

CV/2007/03 - Development at Anderson Road Impact Air Quality and Noise Monitoring Schedule for December 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
					24-hour TSP	
					1-hour TSP	
					Noise	
					(ID1-5)	
7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		
14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec
			24-hour TSP			
			1-hour TSP			
			Noise			
			(ID1-5)			
21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec
		24-hour TSP				
		1-hour TSP				
		Noise				
		(ID1-5)				
28-Dec		30-Dec	31-Dec			
	24-hour TSP					
	1-hour TSP					
	Noise					
	(ID1-5)					

CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for January 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jan	2-Jan	3-Jan
						24-hour TSP
						1-hour TSP
						(ID1-5)
4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan
l oan	o ouri	o dan	, our	24-hour TSP	o dan	10 Uan
				1-hour TSP		
				Noise		
				(ID1-5)		
11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan
		24-hour TSP				
		1-hour TSP				
		Noise				
		(ID1-5)				
18-Jan		20-Jan	21-Jan	22-Jan	23-Jan	24-Jan
	24-hour TSP					24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					(ID1-5)
	(ID1-5)					
25-Jan	26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan
					24-hour TSP	
					1-hour TSP	
					Noise	
					(ID1-5)	

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX F

Air Quality Monitoring Results and their Graphical Presentations

Appendix F Air Quality Monitoring Results

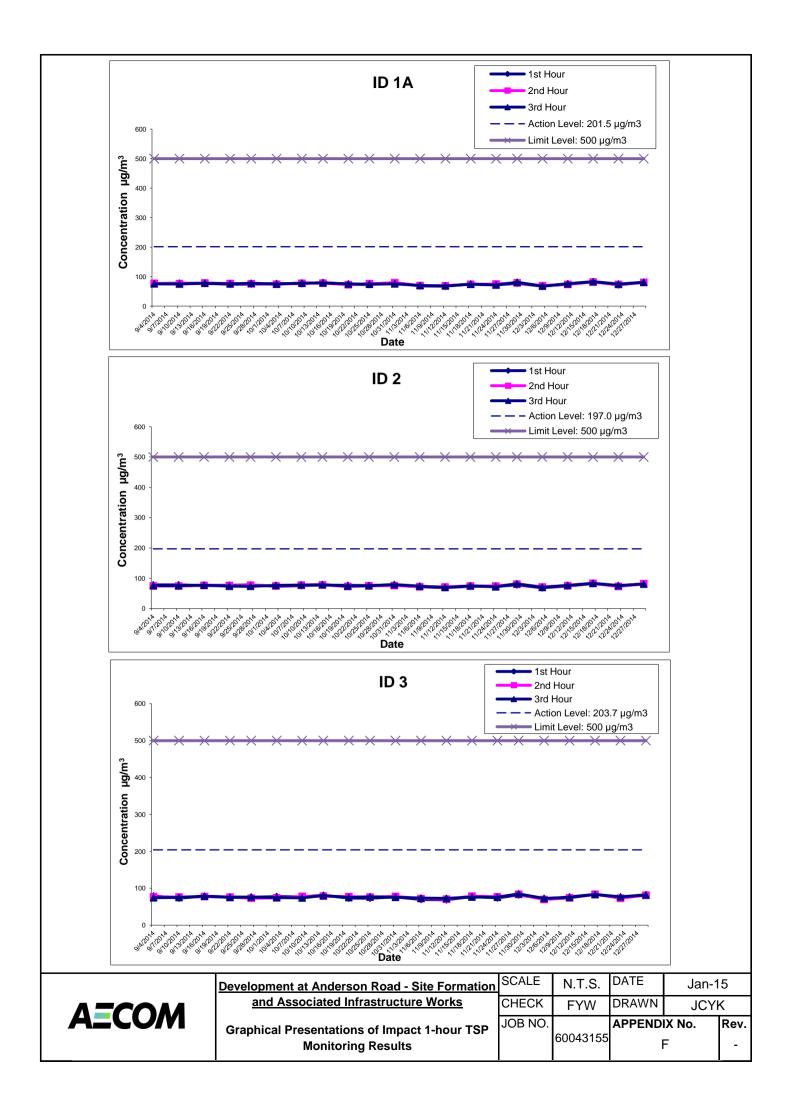
1-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

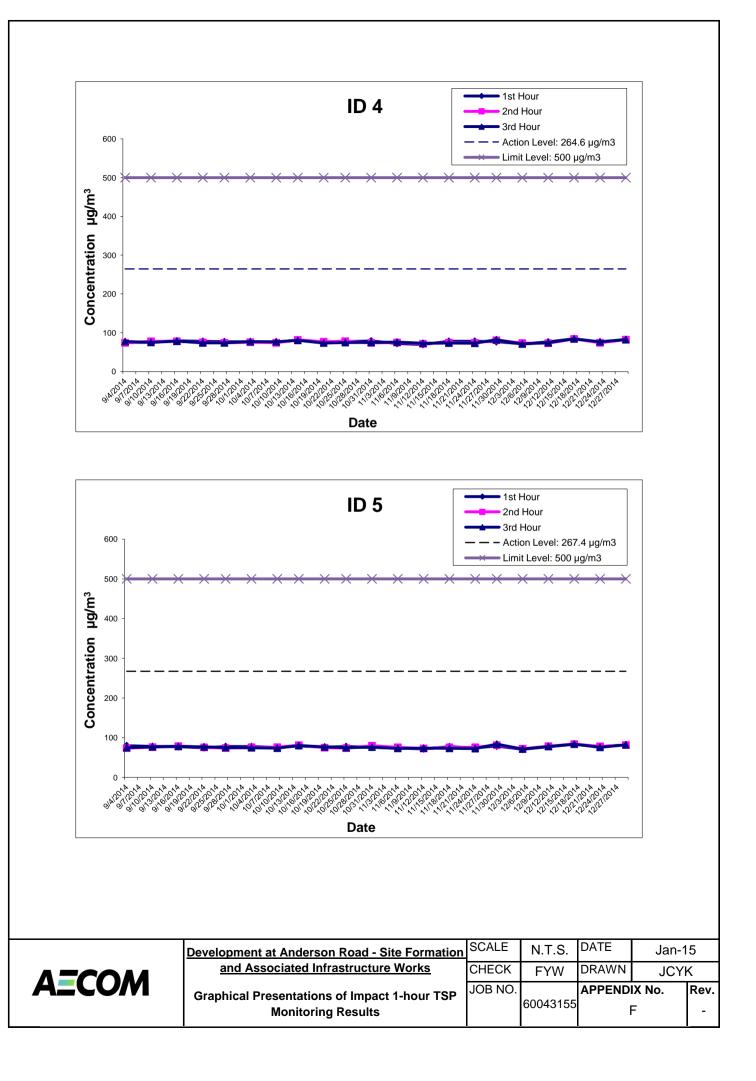
	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m ³)	(µg/m ³)
5-Dec-14	9:45	67.9	69.4	68.2
11-Dec-14	10:03	74.3	73.8	76.0
17-Dec-14	13:59	82.6	81.9	83.0
23-Dec-14	10:03	72.5	73.7	75.2
29-Dec-14	13:57	81.2	80.6	81.0
			Average	76.1
			Min	67.9
			Max	83.0

1-hour TSP Monitoring Results at Station ID 2 (On Yat House)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m ³)	(µg/m ³)
5-Dec-14	10:10	68.7	71.3	70.2
11-Dec-14	10:16	74.5	75.5	76.7
17-Dec-14	13:46	82.6	83.4	83.5
23-Dec-14	10:15	74.6	73.2	76.1
29-Dec-14	13:45	81.8	82.1	80.9
•			Average	77.0
			Min	68.7
			Max	83.5

1-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)


	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m ³)	(µg/m ³)	(µg/m ³)
5-Dec-14	11:00	70.6	69.5	72.3
11-Dec-14	10:44	76.3	73.9	75.0
17-Dec-14	13:15	83.1	83.5	82.9
23-Dec-14	10:46	75.5	72.8	76.6
29-Dec-14	13:20	82.3	80.9	81.6
			Average	77.1
			Min	69.5
			Max	83.5


1-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m ³)	(µg/m ³)
5-Dec-14	13:00	71.1	73.2	70.9
11-Dec-14	10:30	76.2	72.9	74.4
17-Dec-14	10:01	84.4	83.9	84.2
23-Dec-14	10:34	74.8	74.0	76.8
29-Dec-14	9:58	82.5	82.0	82.3
			Average	77.6
			Min	70.9
			Max	84.4

1-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m ³)	(µg/m ³)
5-Dec-14	13:50	71.0	72.4	71.6
11-Dec-14	11:28	77.6	78.8	78.0
17-Dec-14	9:39	83.6	84.1	84.0
23-Dec-14	11:20	77.6	78.4	75.9
29-Dec-14	9:39	82.0	81.7	82.4
			Average	78.6
			Min	71.0
			Max	84.1

Appendix F Air Quality Monitoring Results

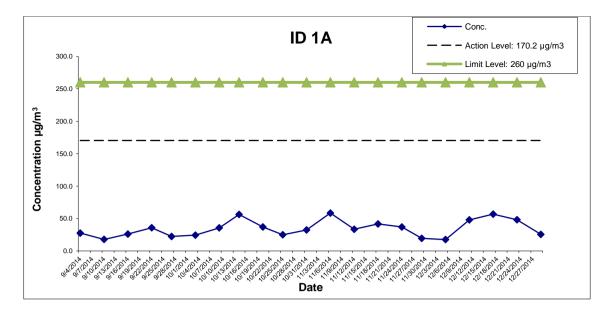
24-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

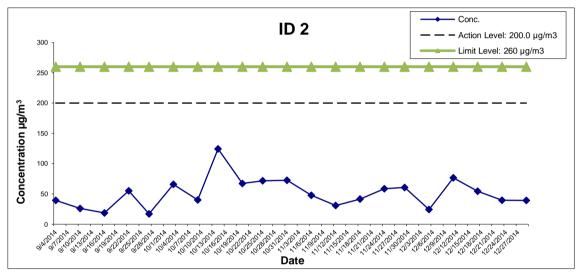
Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)				Filter Weight (g)		Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
5-Dec-14	Cloudy	15.1	1022.3	1.33	1.33	1.33	1913.4	2.7667	2.8003	0.0336	20399.79	20423.79	24.00	17.6
11-Dec-14	Fine	19.5	1019.6	1.32	1.32	1.32	1895.8	2.7047	2.7955	0.0908	20423.79	20447.79	24.00	47.9
17-Dec-14	Fine	13.3	1027.1	1.37	1.38	1.29	1853.0	2.7169	2.8291	0.1122	20447.79	20471.79	24.00	56.7
23-Dec-14	Fine	15.4	1021.7	1.33	1.33	1.33	1916.1	2.7031	2.7953	0.0922	20471.79	20495.79	24.00	48.1
29-Dec-14	Sunny	14.0	1020.6	1.33	1.33	1.33	1912.4	2.7269	2.7757	0.0488	20495.79	20519.79	24.00	25.5
r													Average	39.2
													Min	17.6
													Max	56.7

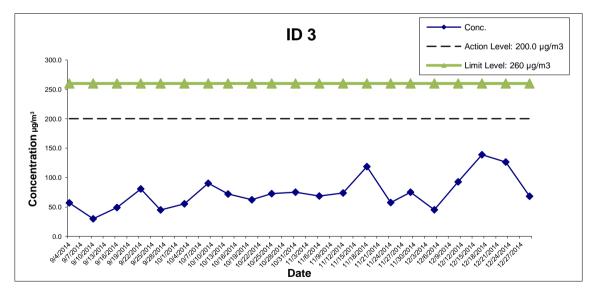
24-hour TSP Monitoring Results at Station ID 2 (On Yat House)

Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Av. flow Total vol. F		Filter Weight (g)		Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
5-Dec-14	Cloudy	15.1	1022.3	1.32	1.33	1.32	1906.0	2.7749	2.8212	0.0463	17759.12	17783.12	24.00	24.3
11-Dec-14	Fine	19.5	1019.6	1.31	1.31	1.31	1883.4	2.7012	2.8455	0.1443	17783.12	17807.12	24.00	76.6
17-Dec-14	Fine	13.3	1027.1	1.37	1.38	1.37	1974.4	2.7107	2.8182	0.1075	17807.12	17831.12	24.00	54.4
23-Dec-14	Fine	15.4	1021.7	1.32	1.32	1.32	1904.3	2.7253	2.8006	0.0753	17831.12	17855.12	24.00	39.5
29-Dec-14	Sunny	14.0	1020.6	1.32	1.32	1.32	1900.4	2.7147	2.7893	0.0746	17855.12	17879.12	24.00	39.3
													Average	46.8
													Min	24.3
													Max	76.6

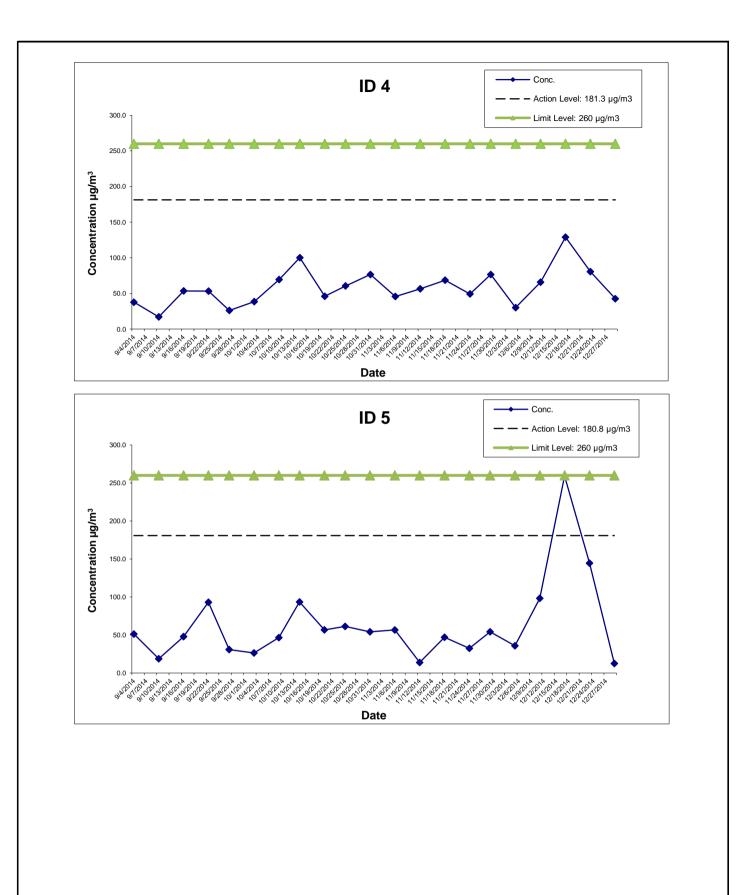
24-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)


Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Filter Weight (g)		Particulate	Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
5-Dec-14	Cloudy	15.1	1022.3	1.32	1.33	1.33	1910.2	2.7694	2.8559	0.0865	20003.01	20027.01	24.00	45.3
11-Dec-14	Fine	19.5	1019.6	1.32	1.32	1.32	1897.8	2.7049	2.8810	0.1761	20027.01	20051.01	24.00	92.8
17-Dec-14	Fine	13.3	1027.1	1.37	1.38	1.37	1978.8	2.6918	2.9666	0.2748	20051.01	20075.01	24.00	138.9
23-Dec-14	Fine	15.4	1021.7	1.33	1.33	1.33	1918.4	2.7337	2.9763	0.2426	20075.01	20099.01	24.00	126.5
29-Dec-14	Sunny	14.0	1020.6	1.31	1.31	1.31	1881.7	2.7337	2.8623	0.1286	20099.01	20123.01	24.00	68.3
													Average	94.3
													Min	45.3
													Max	138.9


24-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)


Date	Weather	Air	Atmospheric	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
5-Dec-14	Cloudy	15.1	1022.3	1.32	1.32	1.32	1901.1	2.7796	2.8369	0.0573	20684.07	20708.07	24.00	30.1
11-Dec-14	Fine	19.5	1019.6	1.32	1.32	1.32	1898.4	2.7145	2.8395	0.1250	20708.07	20732.07	24.00	65.8
17-Dec-14	Fine	13.3	1027.1	1.35	1.35	1.35	1942.1	2.7063	2.9568	0.2505	20732.07	20756.07	24.00	129.0
23-Dec-14	Fine	15.4	1021.7	1.33	1.33	1.33	1921.7	2.7041	2.8590	0.1549	20756.07	20780.07	24.00	80.6
29-Dec-14	Sunny	14.0	1020.6	1.31	1.31	1.31	1892.4	2.7051	2.7858	0.0807	20780.07	20804.07	24.00	42.6
													Average	69.6
													Min	30.1
													Max	129.0

24-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)


Date	Weather	Air	Atmospheric	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
5-Dec-14	Cloudy	15.1	1022.3	1.32	1.33	1.33	1909.0	2.7593	2.8277	0.0684	15514.37	15538.37	24.00	35.8
11-Dec-14	Fine	19.5	1019.6	1.33	1.33	1.33	1911.2	2.7144	2.9022	0.1878	15538.37	15562.37	24.00	98.3
17-Dec-14	Fine	13.3	1027.1	1.35	1.36	1.35	1949.4	2.7088	3.2138	0.5050	15562.37	15586.37	24.00	259.1
23-Dec-14	Fine	15.4	1021.7	1.33	1.33	1.33	1914.0	2.7071	2.9837	0.2766	15586.37	15610.37	24.00	144.5
29-Dec-14	Sunny	14.0	1020.6	1.30	1.30	1.30	1869.5	2.7061	2.7295	0.0234	15610.37	15634.37	24.00	12.5
													Average	110.0
													Min	12.5
													Max	259.1

AECOM	Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Jan-1	5
		CHECK		DRAWN	JCYł	K
	Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPENDIX No.		Rev.
	Monitoring Results		60043155	F	=	-

AECOM	Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Jan-1	5
		CHECK	FYW	DRAWN JC		Y
	Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPENDIX No.		Rev.
	Monitoring Results		60043155	F	=	-

APPENDIX G

Noise Monitoring Results and their Graphical Presentations

Appendix G Noise Monitoring Results

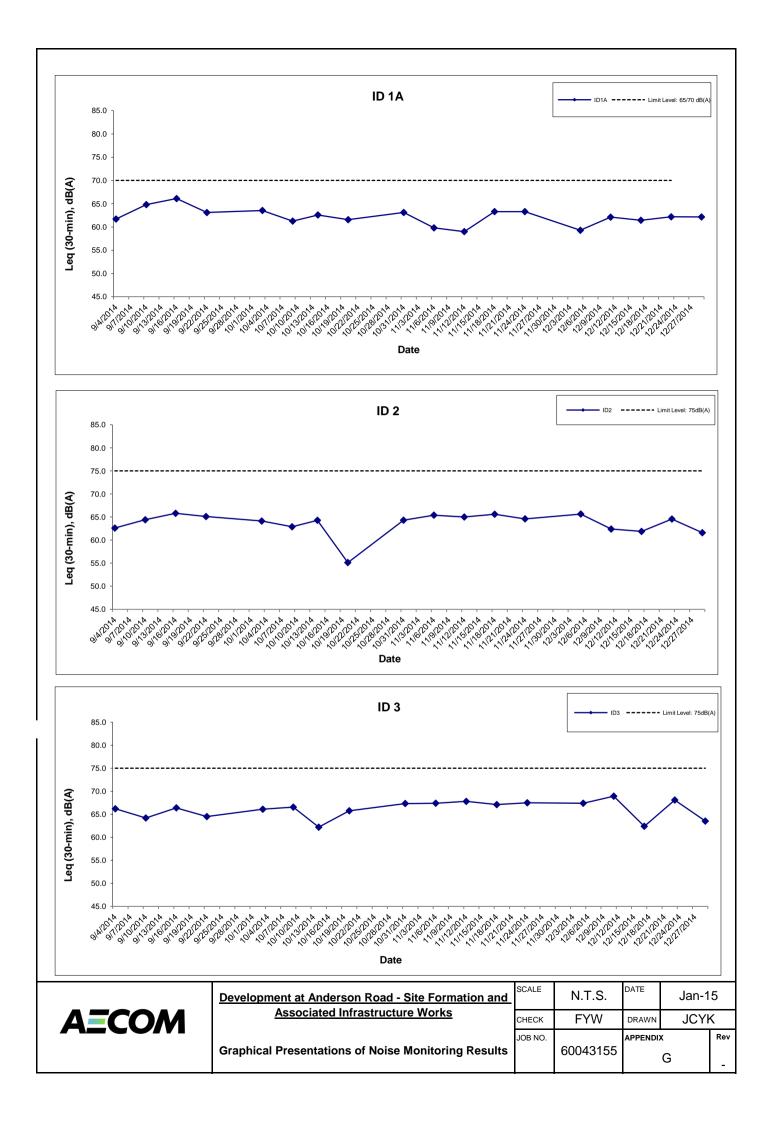
Daytime Noise Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

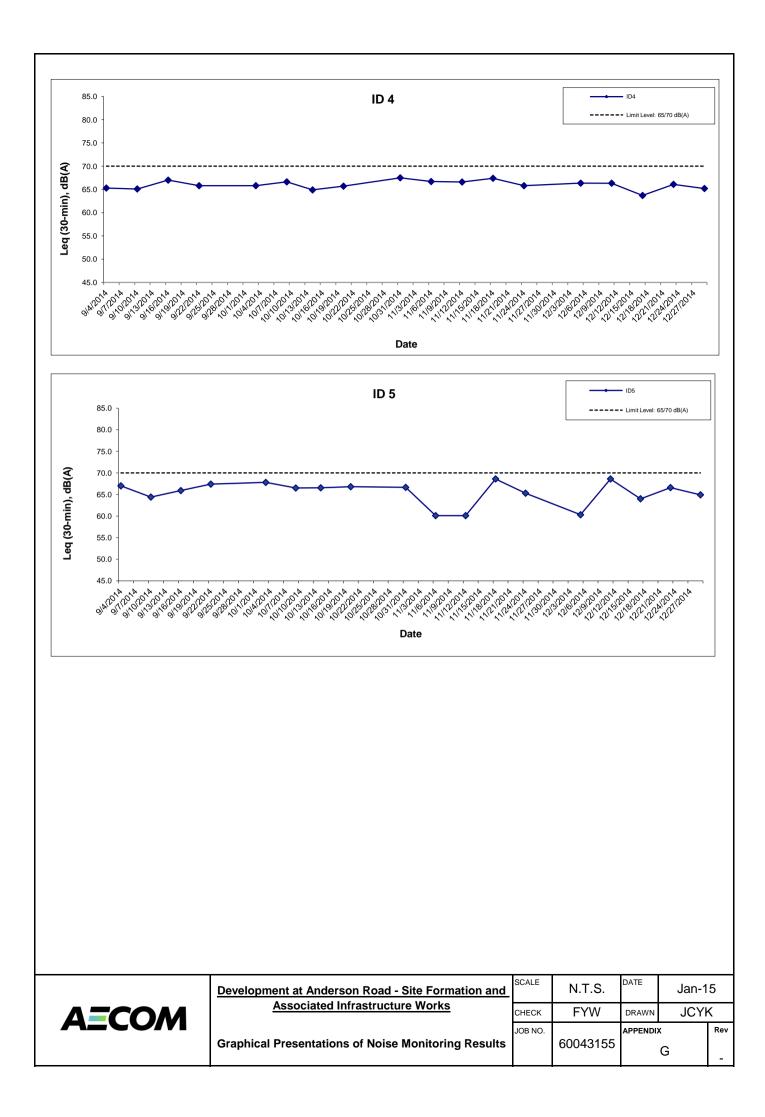
_	Weather		e Level for	30-min, d	B(A) ⁺	Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
5-Dec-14	Cloudy	9:50	57.0	61.3	60.1	59.3	57.8	70	N
11-Dec-14	Fine	15:39	59.2	63.9	62.3	62.1	57.8	70	N
17-Dec-14	Sunny	14:20	59.0	63.4	61.6	61.4	57.8	70	N
23-Dec-14	Sunny	15:41	62.0	65.1	63.2	62.2	57.8	70	N
29-Dec-14	Sunny	15:09	59.4	64.0	62.7	62.2	57.8	70	N
		Min	57.0	61.3		59.3			
		Max	62.0	65.1		62.2			
		Average				62.1			

Daytime Noise Monitoring Results at Station ID 2 (On Yat House)

	Weather	Noise	e Level for	30-min, d	B(A) ⁺	Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
5-Dec-14	Cloudy	10:10	60.5	66.8	65.5	65.6	62.0	75	N
11-Dec-14	Fine	14:47	61.1	64.8	63.5	62.4	62.0	75	N
17-Dec-14	Sunny	13:40	62.1	65.0	63.5	61.9	62.0	75	N
23-Dec-14	Sunny	14:48	63.1	66.9	65.5	64.6	62.0	75	N
29-Dec-14	Sunny	14:18	59.8	63.8	62.2	61.6	62.0	75	N
		Min	59.8	63.8		61.6			
		Max	63.1	66.9		65.6			
		Average				64.2			

Daytime Noise Monitoring Results at Station ID 3 (Sau Nga House)


	Weather		Noise Level for 30-min, dB(A) ⁺			Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
5-Dec-14	Cloudy	11:00	62.0	68.5	67.6	67.4	64.1	75	N
11-Dec-14	Fine	14:05	68.0	71.5	70.1	68.9	64.1	75	N
17-Dec-14	Sunny	10:50	60.3	63.9	62.4	62.4	64.1	75	N
23-Dec-14	Sunny	13:15	65.5	70.0	68.2	68.1	64.1	75	N
29-Dec-14	Sunny	13:00	61.4	65.6	64.3	63.5	64.1	75	N
		Min	60.3	63.9		62.4			
		Max	68.0	71.5		68.9			
		Average				67.3			


⁺ - Façade measurement
 ** - Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.
 Daytime Noise Monitoring Results at Station ID 4 (Sau Ming Primary School)

Date Weather		Noise Level for 30-min, dB(A) ⁺			Baseline Corrected	Baseline Noise	1	F	
Dale	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
5-Dec-14	Cloudy	13:05	63.0	68.0	66.8	66.3	65.7	70	N
11-Dec-14	Fine	13:09	63.9	68.3	66.8	66.3	65.7	70	N
17-Dec-14	Sunny	15:15	62.1	64.4	63.7	63.7	65.7	70	N
23-Dec-14	Sunny	13:59	64.3	68.3	66.8	66.1	65.7	70	N
29-Dec-14	Sunny	11:42	62.1	66.0	65.2	65.2	65.7	70	N
		Min	62.1	64.4		63.7			
		Max	64.3	68.3		66.3			
		Average				66.0			

Daytime Noise Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

Date	Weather	Noise	Noise Level for 30-min, $dB(A)^+$			Baseline Corrected	Baseline Noise	Limit Level**,	Exceedance
Date	Condition	Time	L90	L10	Leq	Level. dB(A)	Level, dB(A)	dB(A)	(Y/N)
5-Dec-14	Cloudy	13:50	58.5	62.0	60.3	60.3	64.7	70	N
11-Dec-14	Fine	11:30	66.0	70.5	69.0	68.6	64.7	70	N
17-Dec-14	Sunny	10:12	61.9	65.2	64.0	64.0	64.7	70	N
23-Dec-14	Sunny	11:24	64.8	68.8	67.1	66.6	64.7	70	N
29-Dec-14	Sunny	10:11	62.8	67.0	65.3	64.9	64.7	70	N
		Min	58.5	62.0		60.3			
		Max	66.0	70.5		68.6			
		Average				66.0			

APPENDIX H

Meteorological Data for the Reporting Month

Climatological Information Services > Extracts of Climatological Data > Extract of Automatic Weather Station > Station: Tseung Kwan O Automatic Weather Station, Year: 2014, Month: December

Extract of Meteorological Observations for Tseung Kwan O Automatic Weather Station, December 2014 (Table 1)

	Mean		Air Temperatur	2	Mean	R	elative Humid	ity
Date	Pressure at M.S.L. (hPa)	Max. (deg C)	Mean (deg C)	Min. (deg C)	Dew Point Temperature (deg C)	Max. (%)	Mean (%)	Min. (%)
Dec 1	*****	22.4	18.7	14.5	15.3	99	81	67
Dec 2	*****	16.3	15.1	13.5	13.2	97	89	81
Dec 3	*****	18.8	17.7	15.9	15.8	98	89	82
Dec 4	*****	18.2	13.9	12.7	10.4	98	80	66
Dec 5	*****	16.8	14.0	11.5	8.2	87	69	47
Dec 6	*****	20.2	17.1	14.1	11.6	81	71	52
Dec 7	*****	19.0	17.3	16.1	11.3	80	68	56
Dec 8	*****	22.1	17.8	14.9	12.3	87	71	50
Dec 9	*****	22.9	19.4	16.9	12.9	82	66	50
Dec 10	*****	22.2	19.2	17.8	15.5	90	79	66
Dec 11	*****	22.2	19.1	16.2	11.2	79	61	49
Dec 12	*****	16.5	15.0	13.2	4.7	67	51	33
Dec 13	*****	18.9	13.4	10.2	3.5	80	53	33
Dec 14	*****	20.3	15.0	11.1	7.7	84	63	37
Dec 15	*****	20.1	17.5	15.1	12.0	85	71	50
Dec 16	*****	20.4	16.4	12.9	3.2	85	44	25
Dec 17	*****	16.6	12.7	9.8	-6.3	46	27	15
Dec 18	*****	16.0	13.1	10.3	0.6	73	43	30
Dec 19	*****	13.9	12.1	9.8	9.9	96	86	68
Dec 20	*****	10.6	****#	9.1	****#	96	***#	69
Dec 21	*****	****	****	****	****	* * *	***	***
Dec 22	*****	17.0	13.9#	10.7	4.4#	77	55#	28
Dec 23	*****	15.9	14.6	13.6	8.4	83	67	43
Dec 24	*****	22.5	18.4	14.9	13.5	86	74	58
Dec 25	*****	18.4	16.1	14.4	12.6	98	81	55
Dec 26	*****	16.6	15.5	14.4	13.9	98	90	79
Dec 27	*****	17.3	15.9	14.6	13.1	96	84	73
Dec 28	*****	17.3	13.9	10.2	11.2	98	84	67
Dec 29	*****	19.9	12.6	8.7	5.6	95	67	26
Dec 30	*****	20.5	12.8	8.8	7.0	99	74	30
Dec 31	*****	22.4	14.3	9.4	9.1	99	76	30

http://www.weather.gov.hk/prtver/html/docs/cis/data/awsext/2014/ext_JKB201412_e.shtml

1/13/2015

Extract of Meteorological Observations for Tseung Kwan O Automatic Weather Station, December 2014

Mean	*****	18.7	15.6#	12.8	9.4#	87	70#	51
Maximum	*****	22.9	19.4#	17.8	15.8#	99	90#	82
Minimum	*****	10.6	12.1#	8.7	-6.3#	46	27#	15

Extract of Meteorological Observations for Tseung Kwan O Automatic Weather Station, December 2014 (Table 2)

Date	Total Rainfall (mm)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
Dec 1	5.0	050	8.4
Dec 2	5.5	030	6.5
Dec 3	1.5	020	7.8
Dec 4	6.0	050	10.0
Dec 5	0.5	050	5.2
Dec 6	0.0	040#	7.8#
Dec 7	0.0	040	8.3
Dec 8	0.0	050	6.8
Dec 9	0.0	050	7.1
Dec 10	0.5	020	5.4
Dec 11	0.0	060	6.8
Dec 12	0.0	060	8.6
Dec 13	0.0	060	5.0
Dec 14	0.0	060	4.1
Dec 15	0.0	010	4.9
Dec 16	0.0	030	12.1
Dec 17	0.0	010	10.3
Dec 18	0.0	340	6.6
Dec 19	12.0	340	6.2
Dec 20	0.5#	***#	* * * * * #
Dec 21	****	* * *	* * * * *
Dec 22	0.0#	010#	5.0#
Dec 23	0.0	050	6.0
Dec 24	0.0	010	5.0
Dec 25	7.0	010	7.0
Dec 26	2.5	030	7.2
Dec 27	1.0	060	6.9
Dec 28	2.5	330	6.2
Dec 29	0.0	060	5.9
Dec 30	0.0	340	3.5
Dec 31	0.0	340	4.0
Mean		050#	6.7#
Total	44.5#		
	ļ		

Maximum	12.0#	 12.1#
Minimum	0.0#	 3.5#

*** unavailable

missing (less than 24 hourly observations a day)

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected

APPENDIX I

Event Action Plan

Appendix I – Event Action Plan

Event and Action Plan for Air Quality

Event		ACTION		
	ET	IC(E)	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Identify source Inform IC(E) and ER. Repeat measurement to confirm finding. Increase monitoring frequency to daily 	 Check monitoring data submitted by ET. Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice. Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source. Inform IC(E) and ER. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with IC(E) and Contractor for remedial actions required. If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Submit proposal for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.

Event and Action Plan for Air Quality

Event		ACTION		
	ET	IC(E)	ER	Contractor
LIMIT LEVEL		·		
Exceedance for one sample	 Identify source. Inform ER and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Identify source. Inform ER and EPD. Repeat measurements to confirm finding. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation to by implemented. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with IC(E), agree with Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop the portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.

Event and Action Plan for Noise

Event		Action		
	ET	IC(E)	ER	Contractor
	 Notify IC(E) and Contractor. Carry out investigation. Report the results of investigation to IC(E) and Contractor. Discuss with Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E). Implement noise mitigation proposals.
	 Notify IC(E), ER, EPD and Contractor. Identify sources. Repeat measurements to confirm finding. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IC(E), ER and EPD the causes and actions taken for the exceedance. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by ER until the exceedance is abated.

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions Appendix J - Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions

		Total no. recorded in this month	Total no. recorded since project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	1	15
	Limit	-	1
Noise	Action	-	32
	Limit	-	1

Cumulative statistics on Exceedances

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. recorded in this month	Total no. recorded since project commencement
Environmental complaints	-	-	-	-	74
Notification of summons	-	-	-	-	6
Successful Prosecutions	-	-	-	-	2