

China State Construction Engineering (Hong Kong) Ltd.

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Monthly EM&A Report for June 2016

July 2016

	Name	Signature
Prepared & Checked:	David Tsang	David
Reviewed, Approved & Certified:	Yiu Wah Fung (ETL)	W.

Version: 0	Date:	12 July 2016
------------	-------	--------------

Disclaimer

This report is prepared for China State Construction Engineering (Hong Kong) Ltd. and is given for its sole benefit in relation to and pursuant to Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works and may not be disclosed to, quoted to or relied upon by any person other than China State Construction Engineering (Hong Kong) Ltd. without our prior written consent. No person (other than China State Construction Engineering (Hong Kong) Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong. Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: OAPANDSNEM00_0_1732L.16

12 July 2016

By Post and Fax: 2407 8382

Engineer's Representative Ove Arup & Partners Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon Hong Kong

Attention: Mr. Dennis Leung

Dear Sir,

Re: Contract No. CV/2007/03 (Environmental Permit No. EP -140/2002)
Development at Anderson Road
Site Formation and Associated Infrastructure Works
Monthly EM&A Report for June 2016

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report for June 2016 received by e-mail on 12 July 2016 for our review and comment.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.3 of the Environmental Permit No. EP-140/2002.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully,

David Yeung

Independent Environmental Checker

c.c.

AECOM CSCEC Attn.: Mr. Y. W. Fung

Attn.: Mr. Holmes Wong

By Fax: 3922 9797

By Email

Q:\Projects\OAPANDSNEM00\Corr\OAPANDSNEM00_0_1732L.16.docx

Table of Content

		· · · · · · · · · · · · · · · · · · ·	Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	3
	1.1	Background	3
	1.2	Scope of Report	
	1.3	Project Organization	
	1.4	Summary of Construction Works	
	1.5	Summary of EM&A Programme Requirements	
2	AIR C	QUALITY MONITORING	6
	2.1	Monitoring Requirements	6
	2.2	Monitoring Equipment	
	2.3	Monitoring Locations	
	2.4	Monitoring Parameters, Frequency and Duration	
	2.5	Monitoring Methodology	
	2.6	Monitoring Schedule for the Reporting Month	
	2.7	Monitoring Results	
3	NOIS	E MONITORING	11
	3.1	Monitoring Requirements	11
	3.2	Monitoring Equipment	
	3.3	Monitoring Locations	11
	3.4	Monitoring Parameters, Frequency and Duration	
	3.5	Monitoring Methodology	
	3.6	Monitoring Schedule for the Reporting Month	13
	3.7	Monitoring Results	
4	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	14
	4.1	Site Inspection	14
	4.2	Advice on the Solid and Liquid Waste Management Status	
	4.3	Environmental Licenses and Permits	
	4.4	Implementation Status of Environmental Mitigation Measures	
	4.5	Summary of Exceedances of the Environmental Quality Performance Limit	
	4.6	Summary of Complaints, Notification of Summons and Successful Prosecutions	
5	FUTU	IRE KEY ISSUES	18
	5.1	Construction Programme for the Coming Two Months	18
	5.2	Key Issues for the Coming Two Months	
	5.3	Monitoring Schedule for the Coming Month	
6	CON	CLUSIONS AND RECOMMENDATIONS	20
	6.1	Conclusions	20
	6.2	Recommendations	21

List of Tables	
Table 1.1	Contact Information of Key Personnel
Table 2.1	Air Quality Monitoring Equipment
Table 2.2	Locations of Air Quality Monitoring Stations
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period
Table 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Table 3.1	Noise Monitoring Equipment
Table 3.2	Locations of Impact Noise Monitoring Stations
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Summary of Impact Noise Monitoring Results in the Reporting Period
Table 4.1	Summary of Environmental Licensing and Permit Status

List of Figures

Figure 1.1	General Layout Plan
Figure 2.1	Monitoring Locations

List of Appendices

A	Project Constitution Of the Constitution
Appendix A	Project Organization Structure
Appendix B	Implementation Schedule of Environmental Mitigation Measures
Appendix C	Summary of Action and Limit Levels
Appendix D	Calibration Certificates of Equipments
Appendix E	EM&A Monitoring Schedules
Appendix F	Air Quality Monitoring Results and their Graphical Presentations
Appendix G	Noise Monitoring Results and their Graphical Presentations
Appendix H	Meteorological Data for the Reporting Month
Appendix I	Event Action Plan
Appendix J	Cumulative Statistics on Exceedances, Complaints, Notification of Summons and
	Successful Prosecutions

EXECUTIVE SUMMARY

The Project "Development at Anderson Road – Site Formation and Associated Infrastructure Works" (hereafter called "the Project") is proposed to form platforms for housing development and associated uses in area of about 20 hectares, and to carry out necessary infrastructural upgrading or improvement works to cater for the proposed development.

China State Construction Engineering (Hong Kong) Limited (CSCE) was commissioned as the Contractor of the Project. AECOM Asia Co. Ltd. (AECOM) was employed by CSCE as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project.

The impact EM&A for the Project includes air quality and noise monitoring. The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.

The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road (Schedule 2 DP) project.

The construction for the Widening of Po Lam Road (Schedule 2 DP) project was commenced on 21 September 2011.

This report documents the findings of EM&A works for ID 1A, ID 2, ID 3, ID 4 and ID 5 conducted in the period between 1 and 30 June 2016. As informed by the Contractor, construction activities in the reporting period were:

- Slope stabilization and upgrading works at Portion C and E
- Earthwork and C&D stockpile at Portion A and C
- Temporary traffic arrangement and road work at J/O Po Lam Road, J/O Sau Mau Ping Road and J/O Lee On Road
- Toe / Berm planter and platform drainage construction on slope
- Trench excavation and drainage works at public road
- Installation of permanent railings at main site and slope berm
- Brick laying at footpath at L2 road
- Stormwater tank and main site drainage clearing and remedial works
- Installation of watermain downpipe at Po Lam Road CP2, Lee On Road Sewer A and Sau Mau Ping Road Sewer B
- Demolition of site hoarding
- E & M works at footbridges
- Lift installation works at footbridges
- Cement decoration works at footbridges and road L1 subway
- Installation glazing works at footbridge A
- Installation of metal canopy of bus stop
- Erection of Planter Plot at Footbridges

Breaches of Action and Limit Levels for Air Quality

All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.

Breaches of Action and Limit Levels for Noise

According to the information provided by the Contractor, no Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

- Properly store and label oil drums and chemical containers placed on site:
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved areas with proper drainage system
 to handle run-off from maintenance works;
- Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of drainage systems and desilting facilities;
- Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
- Proper mitigation measures should be provided to avoid relocation of treated contaminated soil;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic:
- Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project site is located in the East Kowloon District. It is bounded by Anderson Road to the north, the realigned Sau Mau Ping Road to the south, Po Lam Road to the east, and Lee On Road and Shun On Road to the west.
- 1.1.2 The objective of the Project "Development at Anderson Road Site Formation and Associated Infrastructure Works" under Contract CV/2007/03 (hereafter called "the Project") is to provide land for constructing public housing and government and public facilities. The development will provide 16,100 public housing units for 48,000 people in phases between 2015 and 2016.
- 1.1.3 The scope of works of this Project includes construction of site formation, roads, drains and upgrading of existing infrastructure to provide usable land of about 20 hectares for housing and associated government, institution or community uses at the site between existing Anderson Road Quarry and Sau Mau Ping Road in Kwun Tong District.
- 1.1.4 The Project is anticipated to complete in the fourth quarter of 2015.
- 1.1.5 Part of the Project involving widening of existing Po Lam Road is a designated project and is governed by an Environmental Permit (EP) EP-140/2002, while the rest of the Project is non-designated. Baseline monitoring covering the entire Project site was undertaken and baseline monitoring report was prepared prior to commencement of construction of the Project in accordance with Conditions 3.2 and 3.4 of the EP (EP-140/2002) and the Environmental Monitoring and Audit (EM&A) Manual. The construction for the Widening of Po Lam Road was commenced on 21 September 2011.
- 1.1.6 According to the EP and the EM&A Manual of the Project, there is a need of an EM&A programme including air quality and noise monitoring.
- 1.1.7 The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.
- 1.1.8 The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road. (Schedule 2 DP) project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was employed by the Contractor, China State Construction Engineering (Hong Kong) Limited (CSCE), as the Environmental Team (ET) to undertake the EM&A works for the Project. In accordance with the EM&A Manual of the Project, environmental monitoring of air quality, noise and environmental site inspections would be required for this Project.

1.2 Scope of Report

1.2.1 This is the ninety-eighth monthly EM&A Report under the Contract CV/2007/03 - Development at Anderson Road – Site Formation and Associated Infrastructure Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in June 2016 for ID 1A, ID 2, ID 3, ID 4 and ID 5.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Monthly EM&A Report for June 2016

Party	Position	Name	Telephone	Fax
	Chief Resident Engineer	Dennis Leung	3656 3000	3656 3100
ER (Ove Arup)	Senior Resident Engineer	Michael Wright	3656 3000	3656 3100
Lit (Ove Alup)	Assistant Resident Engineer (Civil)	Heidi Fung	2407 0300	3656 3100
IEC (Ramboll Environ)	Independent Environmental Checker	David Yeung	3465 2888	3465 2899
Contractor	Site Agent	Holmes Wong	2704 2095	2702 6553
(CSCE)	Environmental Officer	Thomas Cheung	2704 2095	2702 6553
ET (AECOM)	ET Leader	Yiu Wah Fung	3922 9366	2317 7609

1.4 Summary of Construction Works

- 1.4.1 As informed by the Contractor, the Contactor has carried out the following major activities in the reporting month:-
 - Slope stabilization and upgrading works at Portion C and E
 - Earthwork and C&D stockpile at Portion A and C
 - Temporary traffic arrangement and road work at J/O Po Lam Road, J/O Sau Mau Ping Road and J/O Lee On Road
 - Toe / Berm planter and platform drainage construction on slope
 - Trench excavation and drainage works at public road
 - Installation of permanent railings at main site and slope berm
 - Brick laying at footpath at L2 road
 - Stormwater tank and main site drainage clearing and remedial works
 - Installation of watermain downpipe at Po Lam Road CP2, Lee On Road Sewer A and Sau Mau Ping Road Sewer B
 - Demolition of site hoarding
 - E & M works at footbridges
 - Lift installation works at footbridges
 - Cement decoration works at footbridges and road L1 subway
 - Installation glazing works at footbridge A
 - Installation of metal canopy of bus stop
 - Erection of Planter Plot at Footbridges
- 1.4.2 The general layout plan of the Project site showing the contract area is shown in Figure 1.1.
- 1.4.3 The environmental mitigation measures implementation schedule are presented in Appendix B.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise and environmental site inspections for air quality, noise, water quality, chemical and waste management. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming months;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA study final report;
 and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, 1-hour and 24-hour TSP levels at 5 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix C.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE- 5170 & GMW-2310)

2.3 Monitoring Locations

2.3.1 Monitoring stations, ID 2, ID 3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Air Quality Monitoring Stations

ID	Location	Monitoring Station	
1A	Kwun Tong Government Secondary School	Roof top of the premises facing Anderson Road	
2	On Yat House	Roof top of the premises facing Lee On Road	
3	Sau Nga House	Roof top of the premises facing Sau Mau Ping Road	
4	Sau Ming Primary School	Roof top of the premises	
5	Sau Mau Ping Catholic Primary School	Roof top of the premises	

Monthly EM&A Report for June 2016

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

	Monitoring Station	Parameter	Frequency and Duration
	ID 1A, ID 2, ID 3, ID 4 &	1-hour TSP	At least 3 times every 6 days
	ID5	24-hour TSP	At least once every 6 days

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (v) No furnace or incinerator flues nearby.
 - (vi) Airflow around the sampler was unrestricted.
 - (vii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (viii) A secured supply of electricity was obtained to operate the samplers.
 - (ix) The sampler was located more than 20 meters from any dripline.
 - Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xi) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in Appendix D.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix D.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for environmental monitoring in June 2016 is provided in Appendix E.

2.7 Monitoring Results

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.4 and 2.5 respectively. Detailed air quality monitoring results are presented in Appendix F.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	72.5	65.7 - 77.4	201.5	500
ID 2	73.3	67.4 - 77.1	197.0	500
ID 3	73.2	68.1 - 76.6	203.7	500
ID 4	74.1	69.5 - 78.1	264.6	500
ID 5	73.1	65.0 - 78.8	267.4	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	19.8	13.1 - 23.7	170.2	260
ID 2	30.1	19.1 - 36.7	200.0	260
ID 3	18.4	9.3 – 38.0	200.0	260
ID 4	20.8	15.0 - 35.2	181.3	260
ID 5	21.0	16.8 - 34.3	180.8	260

- 2.7.2 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month
- 2.7.3 The event action plan is annexed in Appendix I.
- 2.7.4 Major dust sources during the dust monitoring included construction dust from the Project site, construction dust from other construction sites nearby and nearby traffic emission.
- 2.7.5 Weather information including wind speed and wind direction is annexed in Appendix H. The information was obtained from Hong Kong Observatory Tseung Kwan O Automatic Weather Station and Anemometer Station.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, impact noise levels should be obtained at 5 noise monitoring stations. Impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix C.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model	
Integrated Sound Level Meter	B&K (Model No. 2238 & 2270)	
Acoustic Calibrator	Rion (Model No. NC-73)	

3.3 Monitoring Locations

3.3.1 Monitoring stations, ID 2, ID3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	1m from the exterior of the roof top façade of the premises facing Anderson Road
2	On Yat House	1m from the exterior of the roof top façade of the premises facing Lee On Road
3	Sau Nga House	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
5	Sau Mau Ping Catholic Primary School	1m from the exterior of the roof top façade of the premises facing Po Lam Road

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter and Duration	Frequency
ID 1A, ID 2, ID 3, ID 4 & ID5	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Façade measurements were made at all monitoring locations.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays; $L_{eq(5-minutes)}$ during restricted hours i.e. 19:00-23:00 and 23:00-07:00 of normal weekdays, whole day of Sundays and Public Holidays
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix D.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for environmental monitoring in June 2016 is provided in Appendix E.

3.7 Monitoring Results

3.7.1 The monitoring results for noise are summarized in Table 3.4 and the monitoring data is provided in Appendix G.

Table 3.4 Summary of Impact Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq} (30 mins)	L _{eq (30 mins)}	L _{eq (30 mins)}
ID 1A	59.7	50.2 - 61.4	*65/70
ID 2	58.3	57.4 - 59.1	75
ID 3	62.9	60.9 - 64.3	75
ID 4	60.5	56.6 - 64.8	*65/70
ID 5	62.6	56.4 - 64.7	*65/70

Note: *Daytime noise Limit Level of 70dB(A) applies to education institutions while 65dB(A) applies during school examination period.

- 3.7.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 3.7.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 3.7.4 The event action plan is annexed in Appendix I.
- 3.7.5 Major noise sources during the noise monitoring included construction noise from the Project site, construction noise from other construction sites nearby, nearby traffic noise and noise from school activities and community noise.
- 3.7.6 The in-house examination and Territory-wide System Assessment (TSA) were held on 7 June 2016 to 24 June 2016 at Kwun Tong Government School (ID1); they were held on 6 June 2016 to 10 June 2016 and 14 June 2016 to 15 June 2016 at Sau Ming Primary School (ID4); and they were held on 2 June 2016 to 7 June 2016 and 14 June 2016 to 15 June 2016 at Sau Mau Ping Catholic Primary Scholl (ID5). Thus the daytime noise limit level at the three monitoring points in their respective period was 65 dB(A).

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

4.1 Site Inspection

- 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 5 site inspections were carried out on 2, 10, 13, 23 and 30 June 2016. Particular observations and status of non-compliance issued by IEC are described below.
- 4.1.2 The Contractor has rectified most of the observations as identified during the environmental site inspections in the reporting month within an agreed time frame. Rectification of the remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

4.1.3 Air Quality Impact

- Sand was found exposed on the access road and near the manhole at Branch M. The Contractor should replace any broken sand bags and provide sufficient measures to prevent sand scattering on roads and in manholes.
- Dusty material was found on the Road L2, underneath Footbridge B and Footbridge C. The Contractor should clean the road for dust suppression.
- Open stockpile was observed near Lee On Road. The Contractor should cover the stockpile with tarpaulin or similar sheeting to suppress dust generation.
- Mud trail and broken sand bags were observed in the entrance to the Road L1. The Contractor should keep the vehicle entrance clear of dusty material.
- Open stockpile was found near Footbridge A. The Contractor should cover the stockpile with tarpaulin or similar sheeting for dust suppression.

4.1.4 Construction Noise Impact

Nil

4.1.5 Water Quality Impact

- A gully on a public road underneath Footbridge A was found to be surrounded by dirt and rubbish. The Contractor should clean the public road and remove the rubbish to prevent water from contamination before entering drainage system.
- Sand was observed on the public road and inside the U-channel near Road L1. The Contractor should remove the sand and provide enough barriers, to maintain clear channel and to avoid muddy water being flushed into drainage system during rainy days.
- Exposed area was observed near the Anderson Road. The Contractor should place sandbags along the perimeter of exposed area to prevent surface runoff during rainy days.
- Construction waste and slit were observed inside the U-channel near Road L1. The Contractor should remove them regularly to prevent drainage blockage.

4.1.6 Chemical and Waste Management

- Chemical containers were observed without placing inside drip trays. The Contractor should provide the chemical containers with drip trays to avoid chemical leakage.
- Chemical containers were found without placing inside drip trays at R16. The Contractor should provide the chemical containers with drip trays to prevent chemical leakage.

Monthly EM&A Report for June 2016

- Construction waste and refuse were observed underneath Footbridge A. The Contractor should remove them to maintain proper housekeeping.
- 4.1.7 Landscape and Visual Impact
 - Nil

4.1.8 Miscellaneous

- Stagnant water was found accumulated at Footbridge A. The Contractor should remove the stagnant water to prevent mosquito breeding.
- Stagnant water was found accumulated in the holes of catchpit cover at Footbridge A. The Contractor should remove it to prevent mosquito breeding.

4.2 Advice on the Solid and Liquid Waste Management Status

- 4.2.1 The Contractor is registered as a chemical waste producer for this Project. C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 4.2.2 As advised by the Contractor, a total of 7151.25 m³ C&D material was generated on site in the reporting month. 749.75 m³ of hard rock and large broken concrete was generated and transferred to Anderson Road Quarry for further process.
 - For C&D waste, 0 kg of metals was generated and collected by registered recycling collector. 10 kg of paper cardboard packing and 10 kg of plastic were generated on site and collected by registered recycling collector. No chemical waste was collected by licensed chemical waste collectors. 188.87 tonnes of other types of wastes (e.g. general refuse and tree debris) were generated on site and disposed of at North East New Territories (NENT) Landfill.
- 4.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 4.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

4.3 Environmental Licenses and Permits

4.3.1 The environmental licenses and permits for this Project and valid in the reporting month is summarized in Table 4.1.

Table 4.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	Description	Permit No.	Valid Period		Remarks
Reference	Bescription	i cililic ivo.	From	То	Kemarko
EIAO	Environmental Permit	EP-140/2002			- Widening of a section of Po Lam Road
APCO	NA notification		16/04/09		- Whole Construction Site
WPCO	Discharge License	WT00023593-2016	20/01/16	19/01/21	- Discharge of Construction Runoff
WDO	Chemical Waste Producer Registration	5213-292-C3249-32	19/03/08		- Whole Construction Site
	Waste Charges Account	7006839	12/03/08		- Whole Construction Site
NCO	Construction Noise Permit	GW-RE0094-16	09/02/16	08/08/16	- Whole Construction Site

4.4 Implementation Status of Environmental Mitigation Measures

- 4.4.1 In response to the site audit findings, the Contractor carried out corrective actions promptly for particular items recorded. Outstanding items were closely monitored to ensure mitigation measures are implemented properly.
- 4.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix B. Many necessary mitigation measures were implemented properly.

4.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 4.5.1 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.
- 4.5.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 4.5.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 4.5.4 Cumulative statistics on exceedances is provided in Appendix J.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 4.6.1 Complaints shall be referred to the ET Leader for action. The ET Leader shall undertake the following procedures upon receipt of any complaint:-
 - Log complaint and date of receipt onto the complaint database and inform the IC(E) immediately;
 - Investigate the complaint to determine its validity, and assess whether the source of the problem is due to works activities;

Monthly EM&A Report for June 2016

- Identify mitigation measures in consultation with the IC(E) if a complaint is valid and due to works:
- Advise the Contractor if additional mitigation measures are required:
- Review the Contractor's response to identified mitigation measures, and the updated situation;
- If the complaint is transferred from EPD, submit interim report to EPD on status of the complaint investigation and follow-up action within the time frame assigned by EPD;
- Undertake additional monitoring and audit to verify the situation if necessary, and review that circumstances leading to the complaint to not recur:
- Report investigation results and subsequent actions to complainant (if the source of complaint is EPD, the results should be reported within the time frame assigned by EPD); and
- Record the complaint, investigation, the subsequent actions and the results in the monthly EM&A reports.
- 4.6.2 During any complaint investigation work, the Contractor and the ER shall cooperate with the ET Leader in providing all necessary information and assistance for completion of the investigation. If mitigation measures are identified in the investigation, the Contractor shall promptly carry out the mitigation. The ER shall ensure that all necessary measures have been carried out by the Contractor.
- 4.6.3 Referring to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.
- 4.6.4 Cumulative statistics on complaints, notification of summons and successful prosecutions is provided in Appendix J.

5 FUTURE KEY ISSUES

5.1 Construction Programme for the Coming Two Months

- 5.1.1 The major construction works in July and August 2016 will be:-
- Slope stabilization and upgrading works at Portion C and E
- Earthwork and C&D stockpile at Portion A and C
- Temporary traffic arrangement and road work at J/O Po Lam Road, J/O Sau Mau Ping Road and J/O Lee On Road
- Toe / Berm planter and platform drainage construction on slope
- Retaining wall backfilling works at R16
- Trench excavation and drainage works at public road
- Watermain works at public road
- Installation of permanent railings at main site, slope berm and footbridge A
- Asphalt laying and road marking works at L2 road
- Brick laying at footpath at L2 road
- Landscaping works at footpath, slope and public area
- Stormwater tank and main site drainage clearing and remedial works
- Installation of watermain downpipe at Po Lam Road CP2, Lee On Road Sewer A and Sau Mau Ping Road Sewer B
- Lift installation works at footbridge A
- E & M works at footbridge A and Stormwater tank
- Erection/Dismantle of bamboo scaffoldings works at footbridge A, B and C
- Cement decoration works at footbridge A and subway
- Installation glazing works at footbridge A
- Installation of metal canopy of bus stop station and subway
- Demolition of site hoarding
- Erection of PVC pipes at Footbridge and RE wall
- Erection of Planter at Footbridge B and C

5.2 Key Issues for the Coming Two Months

- 5.2.1 Key issues to be considered in the coming months included:-
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
 - Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of drainage systems and desilting facilities;
 - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil:
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
 - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
 - Quieter powered mechanical equipment should be used:
 - Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.

5.3 Monitoring Schedule for the Coming Month

5.3.1 The tentative schedule for environmental monitoring in July 2016 is provided in Appendix E.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- 6.1.1 The construction phase of the project commenced in May 2008.
- 6.1.2 1-hour TSP, 24-hour TSP and noise monitoring were carried out in the reporting month.
- 6.1.3 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.
- 6.1.4 According to the Contractor's information, no noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 6.1.5 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 6.1.6 Environmental site inspections were carried out 5 times in June 2016. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 6.1.7 According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

6.2 Recommendations

6.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

- Sand bags on the access road and near the manhole at Branch M should be replaced with the new ones, and sufficient measures should be provided to prevent sand scattering on roads and in manholes.
- Dusty material on the Road L2, underneath Footbridge B and Footbridge C should be cleaned for dust suppression.
- The vehicle entrance should be kept clear of dusty material induced from mud trail and broken sand bags in the entrance of Portion G to the Road L1.
- Open stockpile near Lee On Road and near Footbridge A should be covered with tarpaulin or similar sheeting to suppress dust generation.

Construction Noise Impact

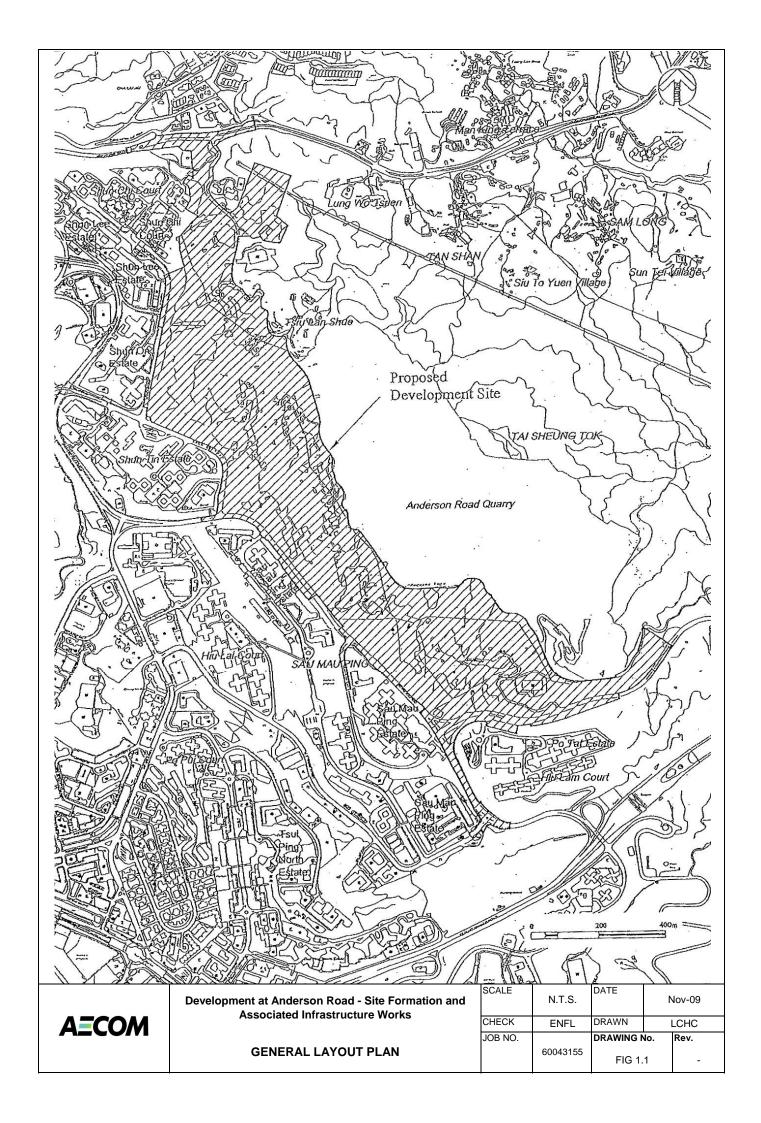
No specific observation was identified in the reporting month.

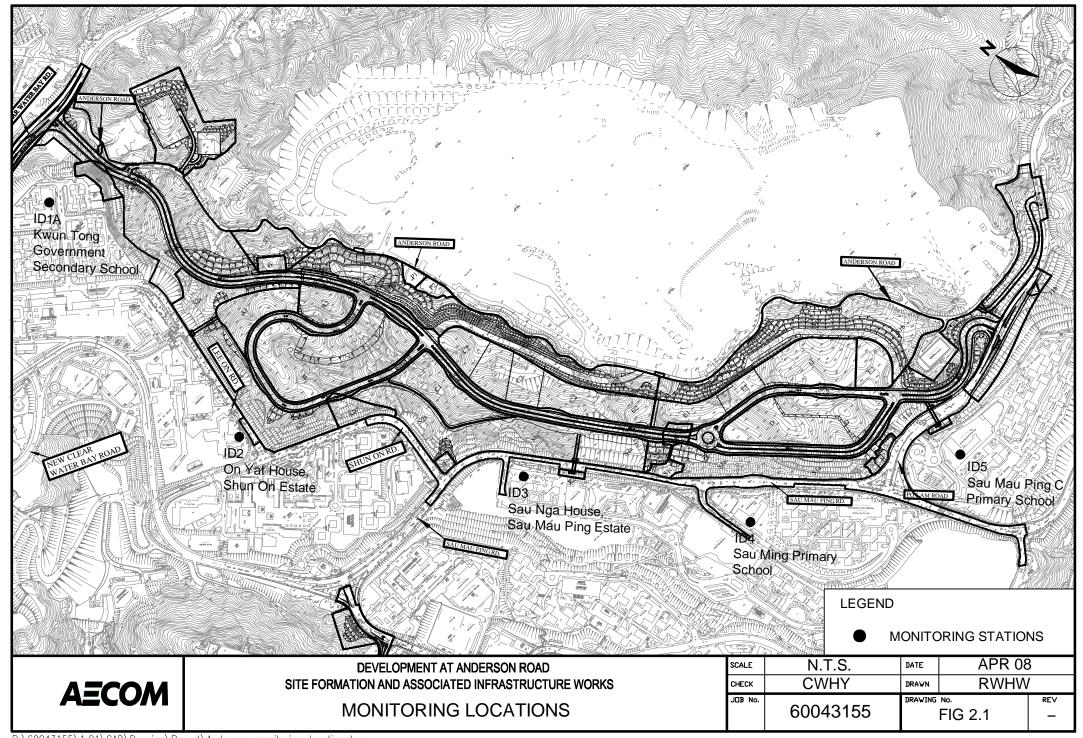
Water Quality Impact

- The public road underneath Footbridge A should be cleaned and the rubbish on the gully should be removed to prevent water from contamination before entering drainage system.
- Sandbags should be placed along the perimeter of exposed area near the Anderson Road to prevent surface runoff during rainy days.
- Sand on the public road and inside the U-channel near Road L1 should be removed and sufficient barriers should be provided to maintain clear channel and to avoid muddy water being flushed into drainage system during rainy days.
- Construction waste and slit inside the U-channel near Road L1 should be removed regularly to prevent drainage blockage.

Chemical and Waste Management

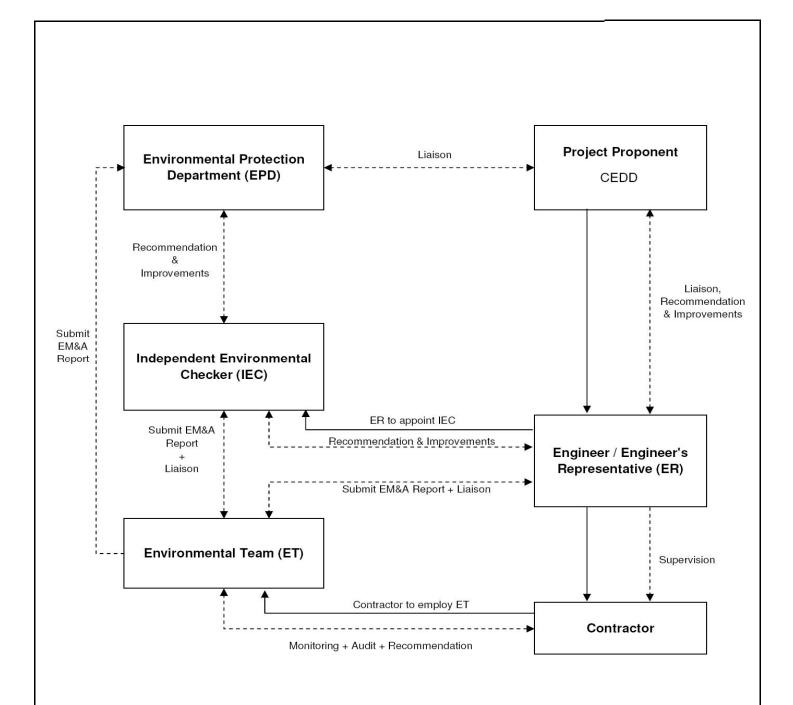
- Chemical containers at Footbridge B and R16 should be provided with drip trays to avoid chemical leakage.
- Construction waste and refuse underneath Footbridge A should be removed to maintain proper housekeeping.


Landscape and Visual Impact


No specific observation was identified in the reporting month.

Miscellaneous

 Stagnant water accumulated at Footbridge A and in the holes of catchpit cover at Footbridge A should be removed to prevent mosquito breeding.



APPENDIX A

Project Organization Structure

Employment Relationship
Working Relationship

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Des		0	n:-at:an	Ctructure
PIO	lect	Orga	ınızatıon	Structure

SCALE	N.T.S.	DATE		2009	
CHECK	ENFL	DRAWN		LCHC	;
JOB NO.		APPEND	IX		Rev
	60043155		Α		_

APPENDIX B

Implementation Schedule of Environmental Mitigation Measures **Appendix B - Implementation Schedule of Environmental Mitigation Measures**

Environmental Mitigation Measures		Location	Implementation Status
Construction N	oise Impact		
Site Formation	Silenced powered mechanical equipment (PME) for most equipment	All construction sites	V
	(including drill rig, backhoe, dump truck, breaker and crane) and the		
	decrease of percentage on time usage of drill rig among the Central Area		
	from 50% to 40% is proposed.		
	Temporary movable noise barrier shall be used to shield the noise	All construction sites	V
	emanating from the drilling rig in order to provide adequate shielding for the		V
	affected NSRs.		
Construction A	ir Quality Impact		
General Site	Mean vehicle speed of haulage trucks at 10km/hr.	All construction sites	V
Practice	Twice daily watering of all open site areas.	All construction sites	V
	Regular watering (once every 1 hour) of all site roads and access roads with	All construction sites	@
	frequent truck movement.	All construction sites	
	During road transportation of excavated spoil, vehicles should be covered to	All construction sites	V
	avoid dust impact. Wheel washing facilities should be installed at all site		
	exits together with regular watering of the site access roads.		
	Tarpaulin covering of all dusty vehicle loads transported to, from and	All construction sites	V
	between site locations.	All construction sites	
	Establishment and use of vehicle wheel and body washing facilities at the	Site exits	V
	exit points of the site, combined with cleaning of public roads were		

	necessary.		
General Site	Suitable side and tailboards on haulage vehicles.	All construction sites	V
Practice	Watering of temporary stockpiles.	All construction sites	@
Blasting	Use of select aggregate and fines to stem the charge with drill holes and watering of blast face.	All construction sites	N/A
	Use of vacuum extraction drilling methods.	All construction sites	N/A
	Carefully sequenced blasting.	All construction sites	N/A
Crushing	Fabric filters installed for the crushing plant.	All construction sites	V
	Water sprays on the crusher.	All construction sites	V
Loading and Unloading	Water sprays at all fixed loading and unloading points (at the crusher and conveyor belts).	All construction sites	V
Points, and conveyor Belt	The loading point at the crusher is enclosed with dust collection system installed.	All construction sites	V
System	When transferring materials from conveyor belt or crusher to the dump trucks, chutes or dust curtains are used for controlling dust.	All construction sites	V
	Cover the conveyor belts with steel roof and canvas sides.	All construction sites	V
Construction Wa	ater Quality Impact		
Construction	All active working areas should be bounded to retain storm water with	Site drainage system	V
Phase	sufficient retention time to ensure that suspended solids are not discharged		
	from the site in concentrations above those specified in the TM for the		
	Victoria Harbour (Phase I) WCZ. All fuel storage areas should be bounded		

	with drainage directed to an oil interceptor.		
	Separate treatment facilities may be required for effluent from site offices, toilets (unless chemical toilets are used) and canteens.	Site drainage system	V
	Discharged wastewater from the construction sites to surface water and/or public drainage systems should be controlled through licensing. Discharge should follow fully the terms and conditions in the licenses.	All works area	V
	Relevant practice for dealing with various type of construction discharges provided in EPD's ProPECC Note PN 1/94 should be adopted.	All works area	@
Waste Managem	nent		
Waste Disposal	Difference types of wastes should be segregated, stored, transported and disposed of separately in accordance with the relevant legislative requirements and guidelines as proper practice of waste management.	All construction sites	@
	Sorting of wastes should be done on-site. Different types of wastes should be segregated and stored in different stockpiles, containers or skips to enhance recycling of materials and proper disposal of spoil.	All construction sites	V
	Excavated spoil should be used as much as possible to minimize off-side fill material requirements and disposal of spoil.	All construction sites	V
	Chemical waste should be recycled on-site or removed by licenced companies. It should be handled according to the Code of Practice on the	All construction sites	V

	Packaging, Labelling and Storage of Chemical wastes. When off-site		
	disposal is required, it should be collected and delivered by licenced		
	contractors to Tsing Yi Chemical Waste Treatment Facility and disposed of		
	in accordance with the Chemical Waste (General) Regulation.		
	Necessary mitigation measures should be adopted to prevent the	All construction sites	@
	uncontrolled disposal of chemical and hazardous waste into air, soil, surface		
	waters and ground waters.		
Waste Storage	Chemical material storage areas should be bounded, constructed of	All construction sites	@
	impervious materials and have the capacity to contain 120 percent of the		
	total volume of the containers. Indoor storage areas must have sufficient		
	ventilation to prevent the build-up of fumes, and must be capable of		
	evacuating the space in the event of an accidental release. Outdoor storage		
	areas must be covered with a canopy or contain provisions for the safe		
	removal of rainwater. In both cases, storage areas must not be connected to		
	the foul or stormwater sewer system.		
	Dangerous materials as defined under the DGO, including fuel, oil and	All construction sites	V
	lubricants, should be stored and properly labelled on site in accordance with		
	the requirements in the DGO. If transportation of hazardous materials is		
	necessary, hazardous materials, chemical wastes and fuel should be		
	packed or stored in containers or vessels of suitable design and construction		
	to prevent leakage, spillage or escape.		
	Human waste should be discharged into septic tanks provided by the	All construction sites	V
	contractors and removed regularly by a hygiene services company. Refuse		

	containers such as open skips should be provided at every work site for use		
	by the workforce. On-site refuse collection points must also be provided.		
Landscape ar	nd Visual		
Additional	Planting and vegetation restoration (including transplanted trees) on soil	Whole development	N/A
Measures	slopes including restoration of grassland, scrub and woodland on slopes		
	around the development platforms and access road. Restoration would be		
	undertaken using predominantly native species.		
Additional	Screen planting along the access roads, to limit impacts of elevated	Whole development	N/A
Measures	structures and rock slopes.		
	Colouring of shotcrete slopes.	Whole development	N/A
	Limited planting on shotcrete slopes.	Whole development	V
	Landscape buffers and planting in and around the development itself to	Whole development	N/A
	screen partially close views of the site.		
	Screen planting in front of retaining walls / granite cladding to those walls to	Whole development	N/A
	reduce glare and visual impacts.		
	Careful design of road elevated structure and abutments, to limit visual	Whole development	V
	impacts.		
	Roadside landscape features / hardworks to limit visual impacts.	Whole development	V
	Conservation of CDG or CDV recovered from the site for re-use in the	Whole development	N/A
	landscape restoration.		
	Preservation (by transplanting if necessary) of any trees identified as being	Whole development	V

	of particular landscape value.		
Ecology	<u>'</u>	,	
	Woodland planting on soft cut slopes available (about 13.4ha) within the	Soft cut slopes	N/A
	development site. Native species, preferably with documented ecological		
	utility, should be used.		
	Seeds of the native species when possible should be added into the	Soft cut slopes	N/A
	hydroseeding mix. Seedings should be pit planted with placement of slow		
	release fertilizer.		
	Maintenance and service, including weeding, fertilizing, replacement of	Soft cut slopes	N/A
	dead plants, etc. should be performed during the first 1 years of planting to		
	enhance the survival rate of the plants.		
Contamin	ated Land		
	In accordance with the approved Contamination Assessment Report (CAR)	Locations specified in CAR	N/A
	and Remediation Action Plan (RAP) in Nov 2006, it is recommended that		(Works In Progress)
	cement solidification / stabilization prior to on-site backfill for heavy metal		
	contaminated soil and excavation followed by disposal at designated landfill		
	for organic contaminated soil. Upon the completion of the proposed		
	remediation exercise as outlined in CAR & RAP, a Remediation Report will		
	be complied for submission to EPD to demonstrate that the proposed soil		
	remediation has been carried out properly and satisfactorily. Results from		
	the confirmation tests will also be included in the Remediation Report.		
	Photos showing the area of excavation, the solidification process, and		
	remediated soil and site shall also be included in the report for reference.		

Landfill Gas Hazard							
	Further site investigation should be carried out during the detailed design	The whole development site	N/A				
	stage in order to measure landfill gas around the perimeter of the site, to						
	re-confirm that there is no preferential pathway for landfill gas migration and						
	to assess the potential for landfill gas hazards on the future development. If						
	a landfill gas hazard is identified, mitigation measures should be proposed						
	and implemented to address the hazard.						

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX C

Summary of Action and Limit Levels

Appendix C - Summary of Action and Limit Levels

Table 1 – Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
ID 1A	201.5	500
ID 2	197.0	500
ID 3	203.7	500
ID 4	264.6	500
ID 5	267.4	500

Table 2 – Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
ID 1A	170.2	260
ID 2	200.0	260
ID 3	200.0	260
ID 4	181.3	260
ID 5	180.8	260

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
ID 1A	When one documented	*65 / 70 dB(A)
ID 2	complaint is received	75 dB(A)
ID 3	•	75 dB(A)
ID 4	from any one of the sensitive	*65 / 70 dB(A)
ID 5	receivers	*65 / 70 dB(A)

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period

APPENDIX D

Calibration Certificates of Equipments

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	Kwun Tong Go	vernment Sec	ondary School (ID)	lA)	Operator:	Leung Yi	u Ting
Date:	12-May-16	_			Next Due Date:	12-Jul-	-16
Pump No.:	846			V	erified Against:	O.T.S	988
Equipment No.:		Expiration Date: 29-May-2016					2016
		100-10					
		-	Ambient (Condition			
Tempera	ture, Ta	300	Kelvin	Pressu	ıre, Pa	756.1	mmHg
4		***					
		Oı	ifice Transfer Sta	ndard Informat	tion		
Equipme	ent No.:	988	Slope, mc	1.97	831	Intercept, bc	0.01264
Last Calibra	ntion Date:	29-May-15		nc x Qstd + bc =	- [H v (Pa/760)	v (208/Ta)1 ^{1/2}	
Next Calibra	ation Date:	29-May-16		ne x Qstu + be -	- [H X (F a/ 700)	X (296/1a)j	
	11.0	•					1
		Account of	Calibration of	TSP Sampler			-
Calibration Point	H in. of water	The results of the following forms of the results			[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis		
1	8.3		2.86	1.44	5.9	2.41	
2	7.2		2.67	1.34	4.7	2.16)
3	6.1		2.46	1.24	3.8	1.94	
4	4.2		2.04	1.02	2.5	1.57	
5	3.0		1.72	0.86	1.4	1.18	
By Linear Regr	ession of Y on	X					
Slope, mw =2.0454 Intercept, bw =0.5615							15
Correlation C	oefficient* =	0	.9976				
			Set Point C	alculation			
From the TSP Fi	eld Calibration	Curve, take Qs	$td = 1.21 \text{ m}^3/\text{min}$ (43 CFM)			
From the Regress	sion Equation, t	he "Y" value a	ccording to				
					10		
		m x	Qstd + b = [W x (]	Pa/760) x (298/T	$[a)]^{1/2}$		
TT C 6	D	0 (1 (1)	2 (5(0) (5) (5)	F (200)			
Inerefore, S	Set Point $W = ($	m x Qsta + b)	² x (760 / Pa) x (7	1a/298) =	3	.70	
*If Correlation C	Coefficient < 0.0	On check and	recalibrate again.				
ii conciation c	ocimeient (0.)	o, eneck and	recamorate again.				
Remarks:							
Remarks.		1					
						1	
QC Reviewer:	X V Shum		Signature:	V	Date	12/5/16	
QC Keviewer:	1 Jrun		Signature:	NC	Date:		

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	On Yat House	(ID2)			Operator:	Leung Yı	u Ting
Date:	27-May-16	_	Next Due Date:			27-Jul-16	
Pump No.:	10373	Verified Against: O.T.S 988				988	
Equipment No.:	A-001-12T	Expiration Date: 29-May-2016					
3001 300							
			Ambient (Condition			
Tempera	ture, Ta	302	Kelvin	Pressu	ıre, Pa	753.6	mmHg
		Or	ifice Transfer Sta	ndard Informa	tion		
Equipment No.: 988 Slope, mc 1.97831 Intercept, bc							0.01264
Last Calibra	ation Date:	29-May-15		mc x Qstd + bc =	- III v (Do/760)	w (209/Ta)1/2	
Next Calibra	ation Date:	29-May-16		ne x Qstu + be -	- [H X (Fa//00)	x (298/1a)]	
			Calibration of	TSP Sampler			
Calibration	Н		1/2	Qstd	W	[ΔW x (Pa/760) x	x (298/Ta)1 ^{1/2}
Point	in. of water	[H x (Pa/76	0) x $(298/Ta)$] ^{1/2} (m ³ /min)		in. of oil	Y-axis	
	7.7		2.74	X - axis		2.20	
1	7.7		2.74	1.38	5.4	2.30	
2	6.2	-	2.46	1.24	3.8	1.93	
3	5.1		2.23	1.12	2.9	1.68	
4	4.3	+	2.05		2.3	1.50	
5 3.0 1.71 By Linear Regression of Y on X			1.71	0.86	1.2	1.08	
		X					
Slope , mw = 2.3036 Intercept, bw = -0.8958 Correlation Coefficient* = 0.9989						98	
Correlation C	oefficient" =	U.	.9989				
	(s)10-2-0-0-1						
	1183		S.(P.:. C	- X - X X - X X -			
Engage 4h a TCD E	ald Calibration	C tales Os	Set Point C				
			td = 1.21 m ³ /min (4	43 CFM)			
From the Regress	sion Equation, t	ne "Y" value a	ccording to				
		m x ($Qstd + b = [W \times (I + b)]$	Pa/760) x (298/T	$[a]^{1/2}$		
Therefore, S	Set Point $W = ($	$m \times Qstd + b$)	² x (760 / Pa) x (7	$\Gamma a / 298) =$	3.	.66	
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.				
D 1							
Remarks:							
OCD.	VV D		6.	K	-	27/ 16</td <td></td>	
QC Reviewer:	A 1 Mim		Signature:		Date:	-1121	

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

Station	Sau Nga House	<u>e (</u> ID3)			Operator:	: Leung Yi	iu Ting	
Date: 27-May-16					Next Due Date:	: 27-Jul	27-Jul-16	
Pump No.:	3261	7		V	Verified Against: O.T.S 988			
Equipment No.:	ripment No.: A-001-77T Expiration Da					:29-May-	-2016	
		1118		***				
			Ambient C	Condition				
Tempera	ture, Ta	302	Kelvin	Pressu	ıre, Pa	753.6	mmHg	
		1977		*-				
		Or	ifice Transfer Sta	ndard Informa	tion	·		
Equipme	ent No.:	988	Slope, mc	1.97	831	Intercept, bc	0.01264	
Last Calibra	ation Date:	29-May-15		nc x Qstd + bc =	= [H v (Pa/760)	v (208/Ta)1 ^{1/2}		
Next Calibra	ation Date:	29-May-16		ne x Qstu + be -	- [II x (I a//00)	X (296/14)]		
		(*)	Supplemental Supplemental Property Supplemental Supplemen					
	Γ		Calibration of		(
Calibration	Н	[H v (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (m³/min)	W	[ΔW x (Pa/760) :	x (298/Ta)] ^{1/2}	
Point	Point in. of water		[11 x (1 w 700) x (250/1 u)]		in. of oil	Y-axis		
1	7.7		2.74	1.38	5.3	2.28	3	
2	6.5		2.52	1.27	4.2	2.03	3	
3	5.3		2.28	1.15	3.1	1.74	1	
4	4.4		2.07	1.04	2.3	1.50)	
5	3.2		1.77	0.89	1.3	1.13		
By Linear Regr	ession of Y on	X			***************************************		*	
Slope, mw =	2.3409			Intercept, bw =		-0.94	66	
Correlation Coefficient* =		0.	.9998					
			Control of the Contro					
			Set Point Ca			*****		
		,	$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)				
From the Regress	sion Equation, t	he "Y" value a	ccording to					
		m x (Qstd + b = [W x (I	Pa/760) x (298/T	(a) $1^{1/2}$			
				(/1			
Therefore, S	Set Point $W = ($	$m \times Qstd + b)^2$	² x (760 / Pa) x (T	(a/298) =	3	.63		
+r.c.c. 1 c	207 1 0 0							
*If Correlation C	coefficient < 0.9	90, check and	recalibrate again.					
Remarks:								
Kelliai KS.					· · · · · · · · · · · · · · · · · · ·			
•	1 = =1			1/		1 . 17		
QC Reviewer:	KY Shim		Signature:	K	Date	27/5/16		
Z MONIONOI.	10.00		Signature.		Date.			

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

Station Sau Ming Primary School (ID4)				Operator: Shum Kam Yuen			n Yuen
Date:	27-May-16	_			Next Due Date: 27-Jul-16		
Pump No.: 1275					Verified Against: O.T.S 988		988
Equipment No.:	A-001-28T			29-May-	2016		
			Ambient (Condition		18-20-2005	12 - 12.50
Tempera	ture, Ta	302	Kelvin	Pressu	ıre, Pa	753.6	mmHg
		Or	ifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	988	Slope, mc	1.97	831	Intercept, bc	0.01264
Last Calibra	ation Date:	29-May-15		mc x Qstd + bc =	- III = (Do/760)	- (209/Te)1/2	201.9
Next Calibra	ation Date:	29-May-16		ne x Qsta + be =	= [H X (Pa//60)	x (298/1a)]	
			Calibration of	TSP Sampler			
Calibration	Н	Market Attack States	1/2	Qstd	W	[ΔW x (Pa/760) x	v (208/Ta)] ^{1/2}
Point	in. of water	[H x (Pa/76	60) x (298/Ta)] ^{1/2}	(m³/min)	in. of oil	Y-axis	
				X - axis	00 400	1100 NYWOODS	
1	7.7		2.74	1.38	5.6	2.34	
2	6.4		2.50	1.26	4.4	2.07	
3	5.2		2.26	1.14	3.3	1.80	
4	4.1		2.00	1.00	2.2	1.47	!
5	3.0		1.71	0.86	1.3	1.13	
By Linear Regr		X					
Slope, $mw = \frac{1}{2}$				Intercept, bw =		-0.860)2
Correlation C	oefficient* =	0	.9998				
			4 W 1				
			Set Point C				
			$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
From the Regress	sion Equation, t	he "Y" value a	ccording to				
		m v ($Qstd + b = [W \times (I + b)]$	Pa/760) v (298/T	$(a)1^{1/2}$		
			Quea · D [(A (a	(2)0/1	/]		
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3.	.90	
		\$2500 \$2000	1981 AM 050K				
*If Correlation C	coefficient < 0.9	90, check and	recalibrate again.				
Remarks:							
			es in series de la				
	120			1,5		27/4/1/	
QC Reviewer:	W>		Signature:	65	Date:	2/13/10	

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	Sau Mau Ping	Catholic Prima	ry School (ID5)		Operator:	Shum Kan	n Yuen
Date: 27-May-16 Next					Next Due Date:	Due Date: 27-Jul-16	
Pump No.:	10088		Verified Against:				988
Equipment No.:	A-001-13T			I	Expiration Date:	29-May-	2016
			Ambient (Condition	- 1		
Tempera	ture, Ta	302	Kelvin		ıre, Pa	753.6	mmHg
		Or	ifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	988	Slope, mc	1.97	831	Intercept, bc	0.01264
Last Calibra	ation Date:	29-May-15	r	nc x Qstd + bc =	= [H x (Pa/760)	v (298/Ta)] ^{1/2}	
Next Calibra	ation Date:	29-May-16		ne a Qsta · be	[11 1 (1 11/100)	x (250/14)]	
			Calibration of	TSP Sampler			
	20	T	Canor ation of	Qstd			1/2
Calibration Point	H in. of water	[H x (Pa/76	60) x (298/Ta)] ^{1/2}	(m^3/min) X - axis	W in. of oil	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Y-axis	
1	7.7		2.74	1.38	5.5	2.32	
2	6.3		2.48	1.25	4.2	2.03	
3	5.4		2.30	1.16	3.1	1.74	•
4	4.2		2.03	1.02	2.4	1.53	i.
5	3.0		1.71	0.86	1.3	1.13	,
By Linear Regr		X					
Slope, mw =		_		Intercept, bw =		-0.810)4
Correlation C	oefficient* =	0.	9960				
			Set Point C				
		The second secon	$d = 1.21 \text{ m}^3/\text{min}$ (4	43 CFM)			
From the Regres	sion Equation, the	he "Y" value a	ccording to				
		m x (Qstd + b = [W x (I	Pa/760) x (298/T	$[a]^{1/2}$		
m		0.1.1.1	(=co(=)		~		
Therefore, S	Set Point W = (1	m x Qstd + b)	x (760 / Pa) x (7	(a / 298) =	3	.77	
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.				
		anne ann ann an ann an ann an an an an an an	0				
Remarks:							
oon :	625		C.	1. 6	·	27/4/1/	
QC Reviewer:	~/		Signature:	W-	Date:	2113110	

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator	ay 31, 2016 Tisch	Rootsmeter Orifice I.I	-/	438320 0988	Ta (K) - Pa (mm) -	298 - 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.3670 0.9750 0.8700 0.8260 0.6830	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

0.9957 0.9915 0.9894 0.9884 0.9831	0.7284 1.0170 1.1373 1.1967 1.4394	0.8888 1.2570 1.4054 1.4740 1.7777
intercept coefficie	(b) = ent (r) =	1.24829 -0.01727 0.99988
	0.9915 0.9894 0.9884 0.9831 Qa slope intercept coefficie	0.9915 1.0170 0.9894 1.1373 0.9884 1.1967 0.9831 1.4394 Qa slope (m) = intercept (b) =

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:				(Laser Du	ust Moni	tor		
	facturer/Brand:			_	SIBATA		//		
Model	1150707000				LD-3				
	ment No.: tivity Adjustment	Scala Sa	ttina:	_	A.005.07 557 CPI				
Selisii	livity Adjustinent	Scale Se	ung.	-	337 CPI	VI	***		
Opera	tor:			-	Mike She	k (MSKN	1)		
Standa	rd Equipment							,,	
		_							
Equip					tashnick		- t N		
Venue Model				rt (Pul) 400AB	ing Seco	ondary So	cnooi)		
Serial			ntrol:		DAB21989	20002			
Serial	NO.		nsor:		00C1436		K _o : 1250	20	
Last C	Calibration Date*:		1301. 1ay 20	****	70014300	9003	N ₀	<i>5</i> 0	
							**		
*Remar	ks: Recommend	ed interva	al for I	nardwar	e calibra	tion is 1 y	/ear		
Calibra	tion Result								
				7	W 1804 F				
	ivity Adjustment		_ ,			,		CPM	
Sensit	ivity Adjustment	Scale Se	tting (After Ca	alibration):	557	CPM	
Harri	Dete		Ti		A 1		0	T-4-1	10-11
Hour	Date (dd mm vy)		Γime		N. 100 CONTRACTOR	pient	Concentration ¹	200 - 100 -	Count/ Minute ³
	(dd-mm-yy)					dition	(mg/m³) Y-axis	Count ²	X-axis
					Temp (°C)	R.H. (%)	r-axis		A-axis
1	07-05-16	12:15	-	13:15	28.1	77	0.04530	1812	30.20
2	07-05-16	13:15	-	14:15	28.2	76	0.04659	1863	31.05
3	07-05-16	14:15		15:15	28.4	78	0.04560	1824	30.40
4	07-05-16	15:15		16:15	28.5	77	0.04434	1774	29.57
Note:							shnick TEOM®		
	2. Total Count								
	3. Count/minut	e was ca	icuiate	ea by (1	otal Cou	(יטטעות			
By Linea	ar Regression of	Y or X							
	(K-factor):		0.0	0015					
	ation coefficient:			9969					
Validit	y of Calibration F	Record:	_//	May 20 ⁻	17				
Remark	s:								
QC Re	eviewer: YW F	una		Signat	ure.	1 1	/ Da	ate: 09 Ma	v 2016
		5		0.91101		11//1/		OO 1710	,

Model N Equipm	cturer/Brand: No.: ent No.: ity Adjustment	Scale Settii	- - - ng: _	Laser D SIBATA LD-3 A.005.00 702 CP	8a	nitor			
Operato	or:		-	Mike Sh	ek (MSF	(M)			
Standard	l Equipment						1		
Equipment: Rupprecht & Patashnick TEOM® Venue: Cyberport (Pui Ying Secondary School) Model No.: Series 1400AB Serial No: Control: 140AB219899803 Sensor: 1200C143659803 Ko: 12500 Last Calibration Date*: 7 May 2016 *Remarks: Recommended interval for hardware calibration is 1 year									
Calibration Result									
Sensitivity Adjustment Scale Setting (Before Calibration): 702 CPM Sensitivity Adjustment Scale Setting (After Calibration): 702 CPM									
Hour	Date (dd-mm-yy)	Tin	Time Ambient Condition Concentration¹ (mg/m³) Total Count/ Count² Count² Temp R.H. (°C) (%) Y-axis X-axis						
1	07-05-16	12:30 -	13:30	28.2	77	0.04611	1727	28.78	
2	07-05-16	13:30 -	14:30	28.2	77	0.04678	1758	29.30	
3	07-05-16 07-05-16	14:30 - 15:30 -	15:30 16:30	28.4 28.5	78 77	0.04574 0.04353	1717 1634	28.62 27.23	
Slope (F	1. Monitoring of 2. Total Count 3. Count/minut Regression of (-factor): ion coefficient:	was logged e was calcu	by Laser	Dust Mor	nitor	tashnick TEOM®			
Validity of Calibration Record: 7 May 2017									
Remarks			71-10-				,		
QC Rev	iewer: YW F	ung	Signa	ture:	C	1/	Date: _09	May 2016	

Type:	facturer/Brand:		_	Laser Di	ust Moni	tor		
Model			_	SIBATA LD-3				
	ment No.:		_	A.005.09) 2			
	ivity Adjustment	Scale Sett	_	797 CPI			Ñ.	
Seriali	ivity Adjustinent	Scale Sell	g	191 CFI	WI .		(.40)	
Opera	tor:		_	Mike She	ek (MSKN	<i>(</i>)		
Standa	rd Equipment							
		1700	02 20 5000 1000	52 5000 5000 50				
Equip			precht & Pa					
Venue			erport (Pui \	ring Seco	ondary So	chool)		
Model			es 1400AB					
Serial	No:	Conf	_	DAB2198				
		Sens		00C1436	59803	K₀: _12500		
Last C	Calibration Date*:	_7 Ma	ay 2016			h 400		
*Remar	ks: Recommend	ed interval	for hardwar	re calibra	tion is 1 y	year		
Calibra	tion Result						100	
1000 Day			20	the proof to				
	ivity Adjustment					_797 CP		
Sensit	ivity Adjustment	Scale Sett	ing (After Ca	alibration):	CP	M	
Hour	Date	Ti	me	1	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)				dition	(mg/m ³)	Count ²	Minute ³
				Temp (°C)	R.H.	Y-axis		X-axis
1	07-05-16	11:45	- 12:45	28.2	(%) 77	0.04623	1847	30.78
2	07-05-16	40.45	- 13:45	28.2	78	0.04708	1885	31.42
3	07-05-16	13:45	- 14:45	28.3	76	0.04591	1836	30.60
4	07-05-16	14:45	- 15:45	28.4	77	0.04333	1726	28.77
Note:						shnick TEOM®	1720	20.77
14010.	2. Total Count					ISTITION TEOW		
	3. Count/minut							
				0.0				
By Linea	ar Regression of	Y or X						
Slope	(K-factor):		0.0015					
Correl	ation coefficient:		0.9964					
			(a)	2002				
Validit	y of Calibration F	Record:	7 May 20	17				
Remark	e.							
Temark	.5.							
10								
						/		
OC D	aviewer: VM/F	- -una	Signat		4/	D-4-	. 00 May	

Model Equip	facturer/Brand: No.: ment No.: ivity Adjustment	Scale Setti	=	Laser Du SIBATA LD-3 A.005.10 753 CPI	а	tor		
Opera	tor:		_	Mike She	k (MSKN	1)		
Standa	rd Equipment							
	e: No.:	Cybe Serie Cont Sens 7 Ma	sor: 120 by 2016	/ing Seco 0AB21989 00C14369	99803 99803	K _o : <u>12500</u>		
Nemai	ks. Necommend	eu intervar	101 Haruwai	e calibra	uonis i y	/eai		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment					753 CF		
Hour	Date (dd-mm-yy)	Ti	me		dition R.H. (%)	Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	08-05-16	10:00	- 11:00	28.3	76	0.04945	1975	32.92
2	08-05-16	11:00	- 12:00	28.3	77	0.05116	2049	34.15
3	08-05-16	12:00	- 13:00	28.4	76	0.04767	1912	31.87
4	08-05-16	13:00	- 14:00	28.3	76	0.04593	1833	30.55
Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged te was calc Y or X	d by Laser I ulated by (T 0.0015 0.9975	Oust Mon otal Cou	itor	shnick TEOM®		
Validit Remark	y of Calibration F	Record:	_8 May 20 ⁻	17				
OC P/	aviewer: VM/	-una	Signat	turo:	4/	Date	a: 00 Ma	v 2016

Type: Manut Model	facturer/Brand:		_	Laser Do SIBATA LD-3	ust Moni	tor		
	ment No.:			A.005.11				
Sensit	tivity Adjustment	Scale Settir	ng: _	799 CPI	И			
Opera	ator:		_	Mike She	ek (MSKN	M)		
Standa	rd Equipment							
Equipo Venue Model Serial	ment: e: l No.:	Cyber Series Contr Senso			ondary So 99803	chool) K _o : _12500)	
*Remar	ks: Recommend	ed interval f	or hardwai	re calibra	tion is 1 y	year		
Calibra	tion Result							
Sensit	tivity Adjustment tivity Adjustment	Scale Settir	g (After Ca	alibration): [′]		PM PM	
Hour	Date (dd-mm-yy)	Tin	ne	W. 2005.55	dition R.H. (%)	Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	08-05-16	09:30 -		28.3	77	0.04959	1893	33.05
2	08-05-16	10:30 -	11:30	28.4	77	0.05173	2071	34.52
3 4	08-05-16 08-05-16	11:30 - 12:30 -	12:30	28.3	76	0.04817	1922	32.03
Note:			70.00	28.3	77	0.04562 ashnick TEOM®	1828	30.47
By Linea Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged e was calcu Y or X	by Laser [llated by (T 0.0015 0.9987	Oust Mon otal Cou	itor	STITICK TEOWY		
Validit	y of Calibration F	Record: _	8 May 20	17				
Remark	KS:							
QC Re	eviewer: YW F	ung	Signat	ture:	4	Date	e: <u>09 Ma</u>	y 2016

Type:	facturer/Brand:		_	Laser Do	ıst Moni	tor		
Model				LD-3B				
	ment No.:			A.005.13	a			
	tivity Adjustment	Scale Setti		643 CPI				
Opera	ator:		_	Mike She	k (MSKN	1)		
Standa	rd Equipment							-
			100		The state of the s	30		
Equip		Rupp	recht & Pa	tashnick	TEOM®			
Venue			rport (Pui \	ing Seco	ondary So	chool)		
Model			s 1400AB					
Serial	No:	Contr		DAB2198				San Cores
		Sens	or: <u>120</u>	00C1436	59803	K _o : 12500)	
Last C	Calibration Date*:	_7 Maj	y 2016					
*Remar	ks: Recommend	ed interval	for hardwar	e calibra	tion is 1 y	/ear		
Calibra	tion Result					2011 ks 12		
	tivity Adjustment tivity Adjustment						PM PM	
Hour	Date	Tir	ne	Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			S2000000000000000000000000000000000000	dition	(mg/m³)	Count ²	Minute ³
	, , , , , , , , , , , , , , , , , , , ,			Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	08-05-16	09:45 -	10:45	28.3	76	0.04923	1977	32.95
2	08-05-16	10:45 -	11:45	28.3	77	0.05086	2034	33.90
3	08-05-16	11:45 -	12:45	28.4	77	0.04834	1936	32.27
4	08-05-16	12:45 -	13:45	28.4	76	0.04617	1850	30.83
	Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor):	was logged te was calcu	by Laser [Dust Mon	itor	shnick TEOM®		
	lation coefficient:		0.9981					
	ty of Calibration F		8 May 20	17				
Remark	<s:< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s:<>							
						Z		
QC Re	eviewer: YW F	ung	Signat	ture:	4	Dat	e: _09 Ma	y 2016

Model Equipr	acturer/Brand: No.: ment No.: ivity Adjustment	Scale Se	tting:		Laser Du SIBATA LD-3B A.005.14 786 CPN	а	tor		
Opera	tor:				Mike She	k (MSKN	1)		
Standa	rd Equipment								
	: No.:	Cyll Ser Cor Ser 7 M	berpo ries 1 ntrol: nsor: flay 20	ort (Pui Y 400AB 140 120 016	tashnick i fing Seco DAB21989 DOC14365	ndary Sc 99803 99803	K _o : <u>12500</u>)	
Calibra	tion Result						250	,	
Sensit	ivity Adjustment ivity Adjustment		-			,		PM PM	
Hour	Date (dd-mm-yy)	7	Γime		Amb Cond Temp (°C)		Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	08-05-16	13:45	-	14:45	28.4	77	0.04652	1994	33.23
2	08-05-16	14:45	1,-1	15:45	28.5	77	0.04837	2071	34.52
3	08-05-16	15:45	-	16:45	28.4	77	0.05162	2205	36.75
4	08-05-16	16:45	-	17:45	28.4	77	0.04983	2135	35.59
Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logg te was cal Y or X	ed by lculated 0.	Laser E ed by (T 0014 9987	Oust Moni otal Cour	tor	shnick TEOM®		
Validit	y of Calibration F	Record:	_8	May 201	17				
Remark	s:								
QC Re	eviewer: YW F	-ung		Signat	ure:	n	Dat	e: <u>09 Ma</u>	y 2016

Model					Laser Du SIBATA LD-3B		tor		
	ment No.: ivity Adjustment	Scale Sett	ina:	-	A.005.16 521 CPN	50,000			
Opera		Scale Sell	ing.		Mike Shek (MSKM)				
Орега					WIKE OHE	K (WORW		- AR	
Standa	rd Equipment				- III-				
Equipr Venue Model) :	Cyb	erpor		tashnick ′ing Seco		chool)		
Serial		Con			AB21989	99803			
Cornar		Sen			0C14365		K _o : 12500)	
Last C	Calibration Date*:	10 N	lay 2	014					
	ks: Recommend	ed interval	for h	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result								
	tivity Adjustment tivity Adjustment							PM PM	
Hour	Date	Т	ime		Amb		Concentration ¹	Total	Count/
	(dd-mm-yy)				Cond		(mg/m ³)	Count ²	Minute ³
					Temp (°C)	R.H. (%)	Y-axis	10	X-axis
1	18-07-15	09:30		10:30	29.8	75	0.05032	2014	33.57
2	18-07-15	10:45		11:45	30.1	76	0.05117	2047	34.12
3	18-07-15	12:15		13:15	30.4	77	0.05363	2141	35.68
4	18-07-15	13:40	- '	14:40	30.5	78	0.05465	2179	36.32
Note:	Total Count Count/minut	was logge te was cald	d by	Laser [Dust Mon	itor	shnick TEOM®		
	ar Regression of	Y or X							
	(K-factor):			015					
Correl	ation coefficient:		0.9	978					
Validit	y of Calibration F	Record:	18	July 20	016				
Remark	s:								
OC R	eviewer YW I	-una		Signat	hure.	W	Dat	e: 20 Jul	v 2015

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA1203 03

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd. NC-73 10307223

Serial/Equipment No.: Adaptors used:

100

(N 4 18)

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

-

Request No.:

-

Date of receipt:

03-Dec-2015

Date of test:

03-Dec-2015

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	15-Apr-2016	SCL
Preamplifier	B&K 2673	2239857	22-Apr-2016	CEPREI
Measuring amplifier	B&K 2610	2346941	22-Apr-2016	CEPREI
Signal generator	DS 360	61227	16-Apr-2016	CEPREI
Digital multi-meter	34401A	US36087050	17-Apr-2016	CEPREI
Audio analyzer	8903B	GB41300350	17-Apr-2016	CEPREI
Universal counter	53132A	MY40003662	16-Apr-2016	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

04-Dec-2015

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0408 02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B&K

Type/Model No.:

2238

4188

Serial/Equipment No.:

2285692

2791211

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

Date of receipt:

08-Apr-2016

Date of test:

11-Apr-2016

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444

19-Jun-2016 16-Apr-2016 CIGISMEC CEPRFI

Signal generator

DS 360

33873 61227

16-Apr-2016

CEPREI

Ambient conditions

Temperature:

Air pressure:

21 ± 1 °C

Relative humidity:

50 ± 10 % 1010 ± 5 hPa

Test specifications

1 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%

3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed

Details of the performed measurements are presented on page 2 of this certificate.

in/Feng Jun Qi

Actual Measurement data are documented on worksheets

Huang Jian M

Approved Signatory:

Date:

12-Apr-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Microphone **B&K** 4188

Type/Model No.: Serial/Equipment No.:

B & K 2238 2800927

2791214

Adaptors used:

Item submitted by

Customer Name:

N.009.06 AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description:

Model: B&K 4226 Serial No.

Expiry Date: 19-Jun-2016

Traceable to:

Multi function sound calibrator Signal generator Signal generator

DS 360 DS 360

2288444 33873 61227

16-Apr-2016 16-Apr-2016

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Mint/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

06-Jul-2015

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.sigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0401 01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

(N.012.01)

Microphone

B & K

Type/Model No.:

B & K 2270

4189

Serial/Equipment No.:

2644597

4189 2933110

Adaptors used:

264459

, 23

Item submitted by

Customer Name:

AECOM ASIA CO. LTD.

Address of Customer:

stomer:

_

Request No.: Date of receipt:

01-Apr-2016

Date of test:

06-Apr-2016

Reference equipment used in the calibration

Description: Model: Serial No. **Expiry Date:** Traceable to: Multi function sound calibrator B&K 4226 2288444 19-Jun-2016 CIGISMEC Signal generator DS 360 33873 16-Apr-2016 CEPREI Signal generator DS 360 61227 CEPREI 16-Apr-2016

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure: 55 ± 10 % 1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

n/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

07-Apr-2016

Company Chop:

We ENGINEER WAS E

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

APPENDIX E

EM&A Monitoring Schedules

CV/2007/03 - Development at Anderson Road Impact Air Quality and Noise Monitoring Schedule for June 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Jun		3-Jun	4-Jun
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		
5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun	11-Jun
			24-hour TSP			
			1-hour TSP			
			Noise			
			(ID1-5)			
12-Jun		14-Jun	15-Jun	16-Jun	17-Jun	18-Jun
	24-hour TSP					24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					
	(ID1-5)					(ID1-5)
19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun	25-Jun
					24-hour TSP	
					1-hour TSP	
					Noise	
					(ID1-5)	
26-Jun	27-Jun	28-Jun	29-Jun			
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for July 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jul	2-Jul
3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul	9-Jul
			24-hour TSP			
			1-hour TSP			
			Noise			
40.1.1		10.1.1	(ID1-5)		.=	10.1.1
10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul	16-Jul
		24-hour TSP				
		1-hour TSP				
		Noise				
47 1.1	40 1.1	(ID1-5)	00 1.1	04 1.1	00 11	00 1.1
17-Jul		19-Jul	20-Jul	21-Jul	22-Jul	
	24-hour TSP					24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					(ID4 E)
24 1.1	(ID1-5)	20. 11	27 1.1	20 11	20. 11	(ID1-5)
24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul 24-hour TSP	30-Jul
					1-hour TSP	
					Noise	
					(ID1-5)	

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX F

Air Quality Monitoring Results and their Graphical Presentations

Appendix F Air Quality Monitoring Results

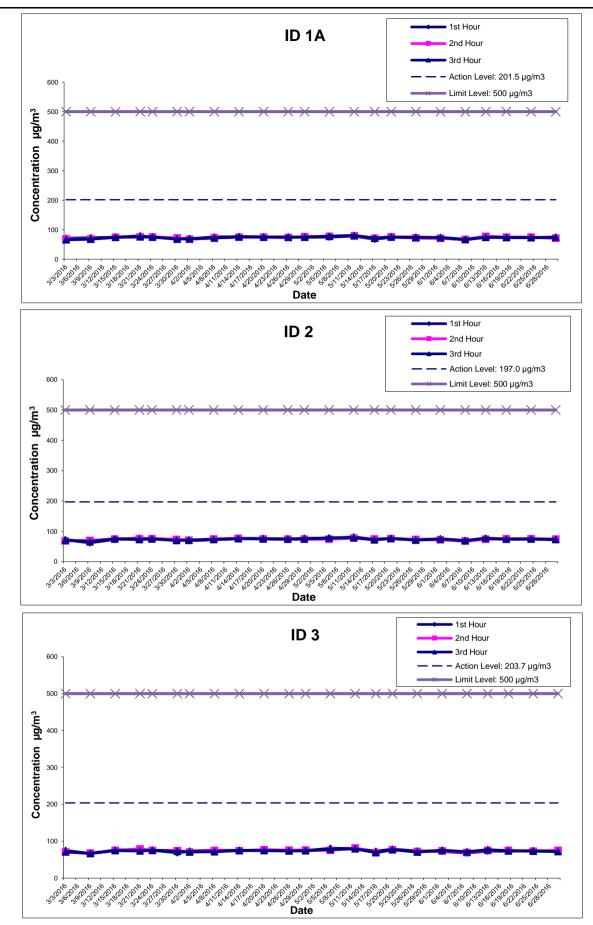
1-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Jun-16	10:48	72.6	70.8	73.3
8-Jun-16	9:45	65.7	67.2	66.8
13-Jun-16	11:07	76.2	77.4	73.8
18-Jun-16	10:02	73.8	74.6	73.3
24-Jun-16	9:58	73.3	74.5	72.9
30-Jun-16	13:45	72.2	71.4	74.3
			Average	72.5
			Min	65.7
			Max	77.4

1-hour TSP Monitoring Results at Station ID 2 (On Yat House)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Jun-16	10:35	74.0	71.8	75.1
8-Jun-16	9:55	67.4	68.4	69.2
13-Jun-16	10:55	75.5	74.0	77.1
18-Jun-16	10:20	74.5	75.0	73.9
24-Jun-16	10:21	74.6	75.0	74.4
30-Jun-16	13:32	72.6	74.0	72.8
			Average	73.3
			Min	67.4
			Max	77.1

1-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

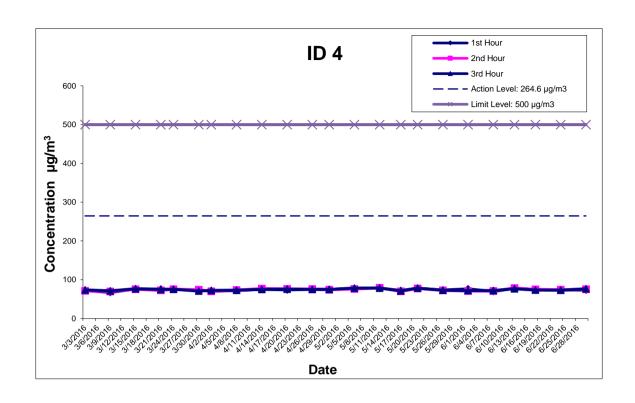

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Jun-16	10:23	72.4	73.8	75.5
8-Jun-16	10:05	68.1	69.5	71.3
13-Jun-16	10:46	73.5	75.1	76.6
18-Jun-16	10:46	73.4	75.1	73.8
24-Jun-16	10:47	74.2	72.7	73.1
30-Jun-16	10:30	73.5	75.0	71.8
			Average	73.2
			Min	68.1
			Max	76.6

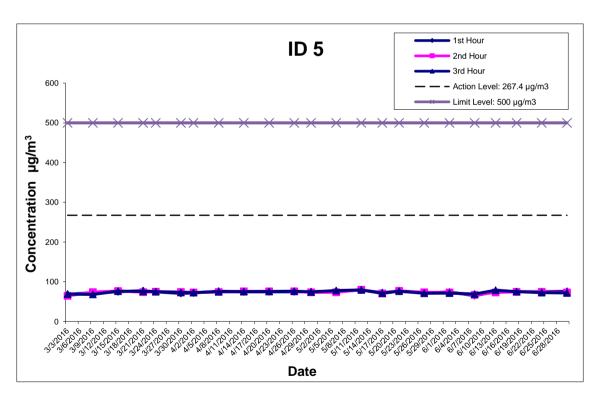
1-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(μg/m ³)	(µg/m³)	(µg/m³)
2-Jun-16	10:12	76.2	70.9	72.2
8-Jun-16	13:00	69.5	70.8	72.0
13-Jun-16	10:33	77.9	78.1	76.8
18-Jun-16	11:13	74.6	74.8	73.2
24-Jun-16	11:20	73.8	74.3	73.0
30-Jun-16	10:16	73.3	75.2	76.6
			Average	74.1
			Min	69.5
			Max	78.1

1-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Jun-16	10:03	74.5	73.1	71.6
8-Jun-16	13:10	65.0	67.1	68.9
13-Jun-16	10:20	75.3	73.3	78.8
18-Jun-16	12:01	75.3	74.9	75.0
24-Jun-16	11:44	75.2	74.6	72.9
30-Jun-16	10:05	75.8	73.1	72.0
			Average	73.1
			Min	65.0
			Max	78.8




AECOM

Development at Anderson Road - Site Formation and Associated Infrastructure Works

Graphical Presentations of Impact 1-hour TSP
Monitoring Results

SCALE CHECK	14.1.0.	DATE DRAWN	Jul-1	
JOB NO.		APPEND	Rev.	
	60043155	I	F	-

<u> Development at Anderson Road - Site Fo</u>	rmation
and Associated Infrastructure Work	<u>s</u>

Graphical Presentations of Impact 1-hour TSP
Monitoring Results

SCALE	N.T.S.	DATE	Jul-16			
CHECK	FYW	DRAWN	DTTV	٧		
JOB NO.		APPEND	IX No.	Rev.		
	60043155	F	-			

Appendix F Air Quality Monitoring Results

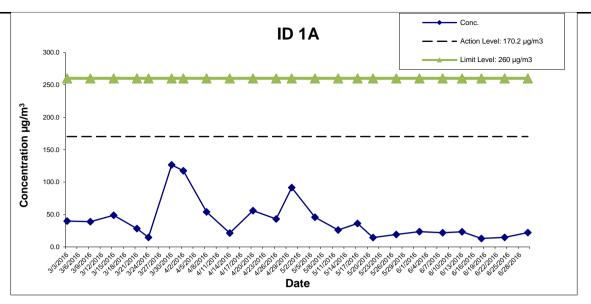
24-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

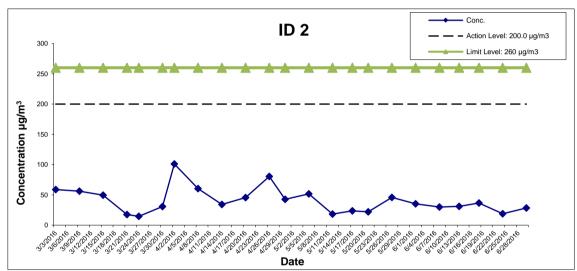
Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Av. flow Total vol.		Filter Weight (g)		Particulate Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Jun-16	Sunny	30.3	1006.0	1.30	1.29	1.29	1864.4	2.8086	2.8527	0.0441	22823.79	22847.79	24.00	23.7
8-Jun-16	Sunny	27.1	1006.3	1.29	1.29	1.29	1858.2	2.7851	2.8256	0.0405	22847.79	22871.79	24.00	21.8
13-Jun-16	Sunny	30.2	1004.2	1.29	1.29	1.29	1861.4	2.7941	2.8375	0.0434	22871.79	22895.79	24.00	23.3
18-Jun-16	Sunny	29.3	1010.5	1.29	1.29	1.29	1858.6	2.7933	2.8177	0.0244	22895.79	22919.79	24.00	13.1
24-Jun-16	Sunny	31.0	1008.1	1.29	1.29	1.29	1850.6	2.7488	2.7763	0.0275	22919.79	22943.79	24.00	14.9
30-Jun-16	Sunny	30.0	1010.3	1.29	1.29	1.29	1858.4	2.8291	2.8703	0.0412	22943.79	22967.79	24.00	22.2
													Average	19.8
													Min	13.1
													Max	23.7

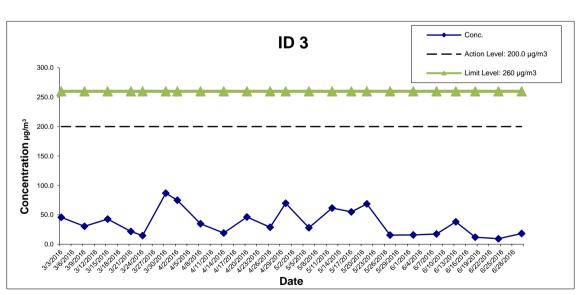
24-hour TSP Monitoring Results at Station ID 2 (On Yat House)

Date	Weather	Air	Atmospheric	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Jun-16	Sunny	30.3	1006.0	1.29	1.28	1.29	1851.0	2.7985	2.8638	0.0653	20089.12	20113.12	24.00	35.3
8-Jun-16	Sunny	27.1	1006.3	1.28	1.28	1.28	1844.6	2.7844	2.8399	0.0555	20113.12	20137.12	24.00	30.1
13-Jun-16	Sunny	30.2	1004.2	1.28	1.28	1.28	1847.9	2.7936	2.8510	0.0574	20137.12	20161.12	24.00	31.1
18-Jun-16	Sunny	29.3	1010.5	1.28	1.28	1.28	1845.0	2.7875	2.8553	0.0678	20161.12	20185.12	24.00	36.7
24-Jun-16	Sunny	31.0	1008.1	1.28	1.28	1.28	1836.6	2.7577	2.7927	0.0350	20185.12	20209.12	24.00	19.1
30-Jun-16	Sunny	30.0	1010.3	1.28	1.28	1.28	1844.7	2.8375	2.8902	0.0527	20209.12	20233.12	24.00	28.6
,													Average	30.1
													Min	19.1
													Max	36.7

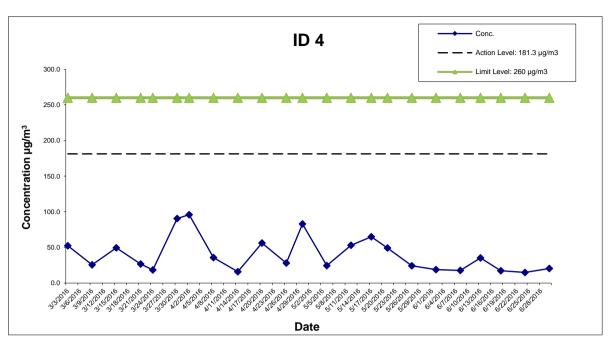
24-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

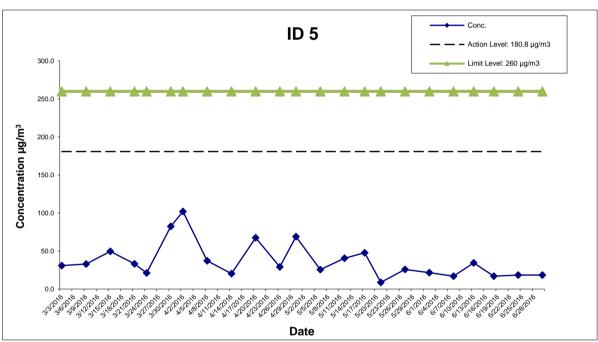

Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m3/min.)		Av. flow Total vol.		Filter Weight (g)		Particulate Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Jun-16	Sunny	30.3	1006.0	1.30	1.30	1.30	1865.6	2.8000	2.8291	0.0291	22427.01	22451.01	24.00	15.6
8-Jun-16	Sunny	27.1	1006.3	1.29	1.29	1.29	1859.3	2.7740	2.8063	0.0323	22451.01	22475.01	24.00	17.4
13-Jun-16	Sunny	30.2	1004.2	1.29	1.29	1.29	1862.6	2.8036	2.8744	0.0708	22475.01	22499.01	24.00	38.0
18-Jun-16	Sunny	29.3	1010.5	1.29	1.29	1.29	1859.7	2.8015	2.8235	0.0220	22499.01	22523.01	24.00	11.8
24-Jun-16	Sunny	31.0	1008.1	1.29	1.29	1.29	1851.3	2.7556	2.7728	0.0172	22523.01	22547.01	24.00	9.3
30-Jun-16	Sunny	30.0	1010.3	1.29	1.29	1.29	1859.4	2.8418	2.8757	0.0339	22547.01	22571.01	24.00	18.2
													Average	18.4
													Min	9.3
													Max	38.0


24-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)


Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Filter Weight (g)		Particulate Elapse Time		e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Jun-16	Sunny	30.3	1006.0	1.29	1.29	1.29	1862.1	2.8022	2.8376	0.0354	23103.07	23127.07	24.00	19.0
8-Jun-16	Sunny	27.1	1006.3	1.29	1.29	1.29	1855.1	2.7785	2.8117	0.0332	23127.07	23151.07	24.00	17.9
13-Jun-16	Sunny	30.2	1004.2	1.29	1.29	1.29	1858.8	2.8053	2.8708	0.0655	23151.07	23175.07	24.00	35.2
18-Jun-16	Sunny	29.3	1010.5	1.29	1.29	1.29	1855.5	2.8000	2.8323	0.0323	23175.07	23199.07	24.00	17.4
24-Jun-16	Sunny	31.0	1008.1	1.28	1.28	1.28	1846.1	2.7760	2.8037	0.0277	23199.07	23223.07	24.00	15.0
30-Jun-16	Sunny	30.0	1010.3	1.29	1.29	1.29	1855.2	2.8261	2.8642	0.0381	23223.07	23247.07	24.00	20.5
													Average	20.8
													Min	15.0
													Max	35.2

24-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)


Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m³/min.)		Total vol.	Filter W	eight (g)	Particulate	ticulate Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Jun-16	Sunny	30.3	1006.0	1.29	1.29	1.29	1856.4	2.7922	2.8321	0.0399	17919.37	17943.37	24.00	21.5
8-Jun-16	Sunny	27.1	1006.3	1.28	1.29	1.28	1849.6	2.7644	2.7955	0.0311	17943.37	17967.37	24.00	16.8
13-Jun-16	Sunny	30.2	1004.2	1.29	1.29	1.29	1853.1	2.7995	2.8631	0.0636	17967.37	17991.37	24.00	34.3
18-Jun-16	Sunny	29.3	1010.5	1.29	1.28	1.29	1851.4	2.7884	2.8196	0.0312	17991.37	18015.37	24.00	16.9
24-Jun-16	Sunny	31.0	1008.1	1.28	1.28	1.28	1840.9	2.7736	2.8073	0.0337	18015.37	18039.37	24.00	18.3
30-Jun-16	Sunny	30.0	1010.3	1.29	1.28	1.28	1849.8	2.8132	2.8470	0.0338	18039.37	18063.37	24.00	18.3
													Average	21.0
													Min	16.8
													May	34.3



	Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Jul-1	6
	and Associated Infrastructure Works	CHECK		DRAWN	DTT\	V
	Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPENDIX No.		Rev.
-	Monitoring Results		60043155	F		-

<u>Development at Anderson Road - Site Formation</u>
and Associated Infrastructure Works

Graphical Presentations of Impact 24-hour TSP
Monitoring Results

		60043155	i	-	
	JOB NO.		APPEND	IX No.	Rev.
	CHECK	FYW	DRAWN	DTT\	V
١	SCALE	N.T.S.	DATE	Jul-1	6

APPENDIX G

Noise Monitoring Results and their Graphical Presentations

Appendix G Noise Monitoring Results

Daytime Noise Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

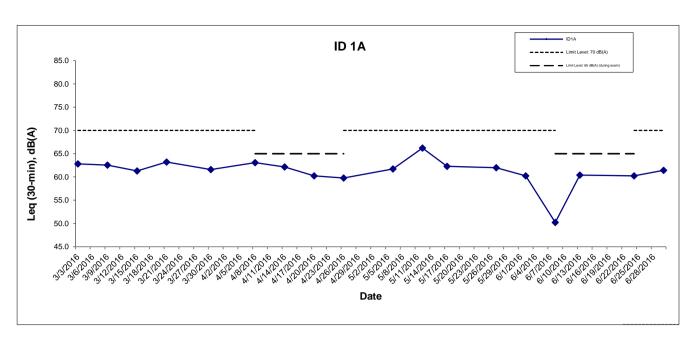
	Weather	Nois	e Level for	30-min, di	B(A) ⁺	Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
2-Jun-16	Sunny	10:50	60.0	63.0	62.2	60.2	57.8	70	N
8-Jun-16	Sunny	9:45	56.0	60.0	58.5	50.2	57.8	65	N
13-Jun-16	Sunny	11:10	60.5	63.5	62.3	60.4	57.8	65	N
24-Jun-16	Sunny	9:58	59.3	63.1	62.2	60.2	57.8	65	N
30-Jun-16	Sunny	13:48	61.0	65.0	63.0	61.4	57.8	70	N
		Min	56.0	60.0		50.2			
		Max	61.0	65.0		61.4			
		Average				59.7			

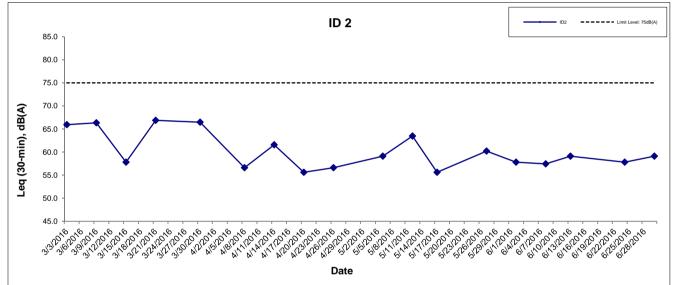
Daytime Noise Monitoring Results at Station ID 2 (On Yat House)

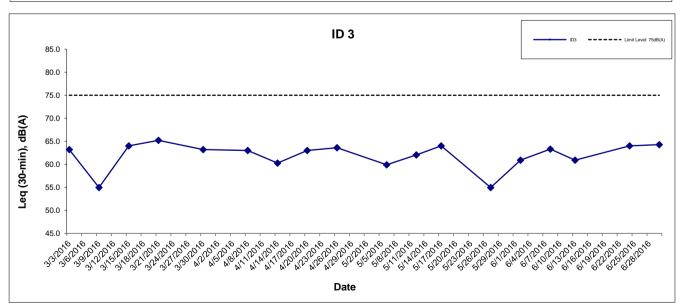
	Weather Condition	Noise	e Level for	30-min, di	3(A) ⁺	Baseline	Baseline Noise		
Date		Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
2-Jun-16	Sunny	11:28	61.0	65.0	63.4	57.8	62.0	75	N
8-Jun-16	Sunny	10:30	60.0	64.5	63.3	57.4	62.0	75	N
13-Jun-16	Sunny	13:12	61.0	65.0	63.8	59.1	62.0	75	N
24-Jun-16	Sunny	14:02	60.1	64.0	63.4	57.8	62.0	75	N
30-Jun-16	Sunny	13:35	61.5	65.0	63.8	59.1	62.0	75	N
		Min	60.0	64.0		57.4			
		Max	61.5	65.0		59.1			
		Average				58.3			

Daytime Noise Monitoring Results at Station ID 3 (Sau Nga House)

	Weather		e Level for	30-min, dE	3(A) ⁺	Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
2-Jun-16	Sunny	13:15	62.5	67.5	65.8	60.9	64.1	75	N
8-Jun-16	Sunny	11:15	60.0	64.5	63.3	63.3	64.1	75	N
13-Jun-16	Sunny	14:00	63.0	67.5	65.8	60.9	64.1	75	N
24-Jun-16	Sunny	14:48	61.1	65.5	64.0	64.0	64.1	75	N
30-Jun-16	Sunny	10:33	65.0	68.5	67.2	64.3	64.1	75	N
		Min	60.0	64.5		60.9			
		Max	65.0	68.5		64.3			
		Average				62.9			

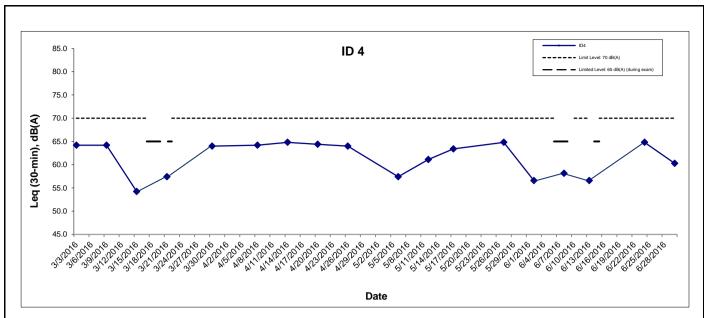

Daytime Noise Monitoring Results at Station ID 4 (Sau Ming Primary School)

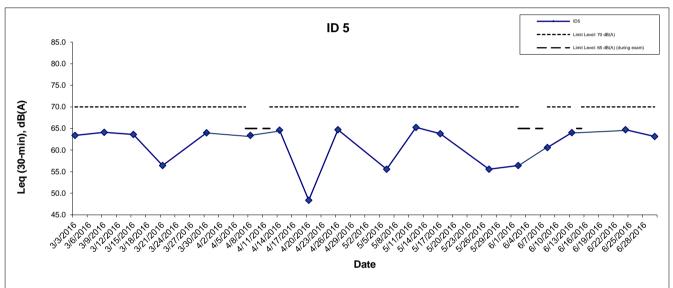

Date	Weather Condition	Noise	e Level for	30-min, di	B(A) ⁺	Baseline Corrected	II Raseline Noise		
Date		Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
2-Jun-16	Sunny	13:57	63.0	68.0	66.2	56.6	65.7	70	N
8-Jun-16	Sunny	13:00	64.0	69.5	66.4	58.1	65.7	65	N
13-Jun-16	Sunny	14:43	64.5	68.5	66.2	56.6	65.7	70	N
24-Jun-16	Sunny	11:20	62.6	65.7	64.8	64.8	65.7	70	N
30-Jun-16	Sunny	11:20	64.5	68.5	66.8	60.3	65.7	70	N
		Min	62.6	65.7		56.6			
		Max	64.5	69.5		64.8			
		Average				60.5			


Daytime Noise Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

Date	Date Weather		e Level for	30-min, dl	B(A) ⁺	Baseline Corrected	Baseline Noise	Limit Level**.	Exceedance
	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
2-Jun-16	Sunny	14:46	63.5	67.5	65.3	56.4	64.7	65	N
8-Jun-16	Sunny	15:00	57.5	61.5	60.6	60.6	64.7	70	N
13-Jun-16	Sunny	15:30	65.0	69.0	67.4	64.1	64.7	70	N
24-Jun-16	Sunny	15:38	62.3	66.0	64.7	64.7	64.7	70	N
30-Jun-16	Sunny	14:33	65.0	68.5	67.0	63.1	64.7	70	N
		Min	57.5	61.5		56.4			
		Max	65.0	69.0		64.7			
		Average				62.6			

⁺ - Façade measurement ** - Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.





Development at Anderson Road - Site Formation and						
Associated Infrastructure Works						

Graphical Presentations of	Noise Monitoring	Results

L	SCALE	N.T.S.	Jul-16		6
	CHECK	FYW	DRAWN DTTW		٧
	JOB NO.		APPENDI	x	Rev
,		60043155		G	-

Development at Anderson Road - Site Formation and
Associated Infrastructure Works

Graphical Presentations of Noise Monitoring Results

SCALE	N.T.S. DATE Jul-16			6	
CHECK	FYW	DRAWN	DTTW		
JOB NO.		APPENDI	X	Rev	
	60043155		G	_	

APPENDIX H

Meteorological Data for the Reporting Month

Home

About us

What's new

Back

Daily Extract of Meteorological Observations, June 2016

Year 2016 ▼ Month 6 ▼ Go

HKO Side Lights Year 2016 ▼ Month 6 ▼ Go												
Our Services	Hong Kong Observatory					King's Waglan Islan		land^				
Visitors Figures			Air T	empera	ature	Mean		Mean				
Press releases	Day	Mean	Absolute		Absolute	Dew	Mean Relative	Amount	Total	Total Bright	Prevailing Wind	Mean Wind
Today's Weather Warnings		Pressure (hPa)	Daily	Mean (deg.	Daily	Point (deg.	Humidity	of Cloud	Rainfall (mm)	Sunshine	Direction	Speed
Local Weather		(· · · · · · · · · · ·	Max (deg. C)	(c)	Min (deg. C)	C)	(%)	(%)	()	(hours)	(degrees)	(km/h)
Observations	01	1007.8	32.8	30.1	28.6	26.2	80	73	0.0	7.2	***	***
Weather Forecast	02	1006.0	33.0	30.3	28.7	26.3	79	58	0.0	10.0	***	***
Weather Monitoring	03	1006.5	32.4	30.3	29.0	26.5	80	77	Trace	5.2	***	***
Imagery	04	1007.9	33.8	28.7	24.7	25.4	83	75	12.4	5.5	***	***
Computer Forecast	05	1008.8	30.4	26.9	25.0	24.3	86	87	7.6	0.7	***	***
Products	06	1008.8	29.1	26.2	24.8	24.7	91	80	77.6	2.2	***	***
MyObservatory	07	1008.1	30.7	28.1	26.3	25.4	86	75	0.4	5.7	***	***
Met on Map	08	1006.3	30.0	27.1	24.1	25.1	89	85	46.5	3.1	***	***
Tropical Cyclones	09	1005.7	31.7	28.2	26.6	25.7	86	79	Trace	6.5	***	***
Aviation Weather Services	10	1005.7	31.1	27.9	26.6	25.8	89	80	9.1	4.5	***	***
Marine Meteorological	11	1005.9	27.8	26.6	25.4	25.4	93	85	85.5	0.0	***	***
Services	12	1005.7	29.2	27.1	25.4	25.8	93	96	28.2	0.0	***	***
Weather Information for	13	1005.0	31.5	29.7	28.5	26.7	84	90	0.1	1.3	***	***
Sports	14	1004.2	31.7	30.2	29.2	26.6	81	88	Trace	2.4	***	***
Weather Information for	15	1005.3	32.0	30.3	29.3	26.3	79	86	0.6	1.6	***	***
Communities	16	1006.7	31.4	29.4	28.2	25.9	82	88	2.8	1.6	***	***
China Weather	17	1008.2	32.1	29.4	26.7	25.9	82	85	2.5	7.2	***	***
World Weather	18	1010.5	30.8	29.3	27.7	26.0	83	81	13.1	2.3	***	***
Climatological Information	19	1010.3	34.2	30.1	27.8	26.1	80	41	0.0	12.0	***	***
Services	20	1008.5	34.4	30.8	28.6	26.3	78	59	Trace	9.1	***	***
> Climate Watch	21	1009.3	33.7	30.6	28.7	25.6	75	51	0.0	10.0	***	***
> Climate Statistics	22	1009.5	33.7	30.5	28.5	25.3	75	32	0.0	9.3	***	***
> Climate Prediction	23	1008.4	34.1	30.4	28.4	24.7	72	20	0.0	11.4	***	***
> Climate Knowledge	24	1008.1	35.2	31.0	28.8	25.0	72	38	0.0	11.2	***	***
> Need More	25	1008.9	35.5	31.4	28.9	26.1	74	39	0.0	10.6	***	***
Information?	26	1009.1	35.1	31.3	29.4	26.3	75	57	Trace	9.9	***	***
> Global Climate	27	1007.5	35.1	31.1	28.6	26.7	78	61	1.7	8.6	***	***
Services	28	1007.5	32.3	29.1	26.3	26.3	85	83	37.1	4.2	***	***
> Other Useful Links	29	1010.0	33.3	29.0	27.5	26.7	87	79	20.4	3.9	***	***
Climate Forecast	30	1010.3	33.1	30.0	27.8	26.0	80	83	1.8	6.3	***	***
Climate Change	Mean/Total	1007.7	32.4	29.4	27.5	25.8	82	70	347.4	173.5	***	***
El Nino and La Nina	Normal§	1006.1	30.2	27.9	26.2	24.6	82	77	456.1	146.1	220	22.9
Earthquakes and												

^{***} unavailable

Trace means rainfall less than 0.05 mm

Climatological Services

- > Climate W
- > Climate St
- > Climate Pr
- > Climate Kr
- > Need More
- Information⁶ > Global Clir
- Services
- > Other Use Climate Forec

Tsunamis

Astronomy, Space Weather and Geomagnetism

Time and Calendar

Radiation Monitoring, Assessment and

Protection

[^] Information of wind direction and wind speed for Waglan Island are based on automatic weather station data since January 1989

^{§ 1981-2010} Climatological Normal, unless otherwise specified

Educational Resources
Publications
Media and Information
Services
Audio/Video Webpage
Electronic services
World Meteorological Day
World Meteorological
Organization-Official City
Weather Forecasts
World Meteorological
Organization-Global
Severe Weather
Public forms
Contact & Support
Access to information
Tender notices
Links
Important notices
Personalized Website
Mobile Version
RSS Feeds

Text Only Version

Back

2003 © | Important notices | Privacy policy

Last revision date: <17 Jun 2016>

APPENDIX I

Event Action Plan

Appendix I – Event Action Plan

Event and Action Plan for Air Quality

Event	ACTION						
	ET	IC(E)	ER	Contractor			
ACTION LEVEL							
Exceedance for one sample	 Identify source Inform IC(E) and ER. Repeat measurement to confirm finding. Increase monitoring frequency to daily 	Check monitoring data submitted by ET. Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice. Amend working methods if appropriate.			
Exceedance for two or more consecutive samples	 Identify source. Inform IC(E) and ER. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with IC(E) and Contractor for remedial actions required. If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented.	 Submit proposal for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 			

Event and Action Plan for Air Quality

Event				
	ET	IC(E)	ER	Contractor
LIMIT LEVEL				
Exceedance for one sample	 Identify source. Inform ER and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Identify source. Inform ER and EPD. Repeat measurements to confirm finding. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation to by implemented. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise implementation of remedial measures.	Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with IC(E), agree with Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop the portion of work until the exceedance is abated.	Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.

Event and Action Plan for Noise

Event	Action				
	ET	IC(E)	ER	Contractor	
	 Notify IC(E) and Contractor. Carry out investigation. Report the results of investigation to IC(E) and Contractor. Discuss with Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented.	 Submit noise mitigation proposals to IC(E). Implement noise mitigation proposals. 	
	 Notify IC(E), ER, EPD and Contractor. Identify sources. Repeat measurements to confirm finding. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IC(E), ER and EPD the causes and actions taken for the exceedance. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by ER until the exceedance is abated. 	

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J - Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this	Total no. recorded since
		month	project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	15
	Limit	-	1
Noise	Action	•	32
	Limit	-	1

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. recorded in this month	Total no. recorded since project commencement
Environmental complaints	-	-	-	-	74
Notification of summons	-	-	-	-	6
Successful Prosecutions	-	-	-	-	2