

China State Construction Engineering (Hong Kong) Ltd.

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Monthly EM&A Report for November 2017

December 2017

,	Name	Signature
Prepared & Checked:	Candy Chung	Con
Reviewed, Approved & Certified:	Yiu Wah Fung (ETL)	7

Version: 0	Date:	12 December 2017
VEISIOH. U	Date.	12 December 2017

Disclaimer

This report is prepared for China State Construction Engineering (Hong Kong) Ltd. and is given for its sole benefit in relation to and pursuant to Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works and may not be disclosed to, quoted to or relied upon by any person other than China State Construction Engineering (Hong Kong) Ltd. without our prior written consent. No person (other than China State Construction Engineering (Hong Kong) Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong. Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: OAPANDSNEM00_0_2006L.17

12 December 2017

By Post and Fax: 2407 8382

Engineer's Representative Ove Arup & Partners Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon Hong Kong

Attention: Mr. Dennis Leung

Dear Sir,

Re: Contract No. CV/2007/03 (Environmental Permit No. EP -140/2002)
Development at Anderson Road
Site Formation and Associated Infrastructure Works
Monthly EM&A Report for November 2017

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report for November 2017 received by e-mail on 12 December 2017 for our review and comment.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.3 of the Environmental Permit No. EP-140/2002.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully,

David Yeung

Independent Environmental Checker

c.c.

AECOM

Attn.: Mr. Y. W. Fung

By Fax: 3922 9797

CSCEC

Attn.: Mr. Holmes Wong

By Email

Q:\Projects\OAPANDSNEM00\Corr\OAPANDSNEM00_0_2006L.17.docx

Table of Content

			Page
EXEC	JTIVE :	SUMMARY	1
1	INTR	ODUCTION	3
	1.1	Background	3
	1.2	Scope of Report	
	1.3	Project Organization	
	1.4	Summary of Construction Works	
	1.5	Summary of EM&A Programme Requirements	
2	AIR C	QUALITY MONITORING	6
	2.1	Monitoring Requirements	6
	2.2	Monitoring Equipment	6
	2.3	Monitoring Locations	6
	2.4	Monitoring Parameters, Frequency and Duration	7
	2.5	Monitoring Methodology	7
	2.6	Monitoring Schedule for the Reporting Month	10
	2.7	Monitoring Results	10
3	NOIS	E MONITORING	11
	3.1	Monitoring Requirements	11
	3.2	Monitoring Equipment	
	3.3	Monitoring Locations	11
	3.4	Monitoring Parameters, Frequency and Duration	
	3.5	Monitoring Methodology	
	3.6	Monitoring Schedule for the Reporting Month	13
	3.7	Monitoring Results	13
4	ENVII	RONMENTAL SITE INSPECTION AND AUDIT	14
	4.1	Site Inspection	14
	4.2	Advice on the Solid and Liquid Waste Management Status	
	4.3	Environmental Licenses and Permits	
	4.4	Implementation Status of Environmental Mitigation Measures	16
	4.5	Summary of Exceedances of the Environmental Quality Performance Limit	16
	4.6	Summary of Complaints, Notification of Summons and Successful Prosecutions.	16
5	FUTU	IRE KEY ISSUES	18
	5.1	Construction Programme for the Coming Two Months	18
	5.2	Key Issues for the Coming Two Months	
	5.3	Monitoring Schedule for the Coming Month	
6	CON	CLUSIONS AND RECOMMENDATIONS	20
	6.1	Conclusions	20
	6.2	Recommendations	

Monthly EM&A Report for November 2017

List of Tables	
Γable 1.1	Contact Information of Key Personnel
Γable 2.1	Air Quality Monitoring Equipment
Γable 2.2	Locations of Air Quality Monitoring Stations
Γable 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Γable 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period
Γable 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Γable 3.1	Noise Monitoring Equipment
Γable 3.2	Locations of Impact Noise Monitoring Stations
Γable 3.3	Noise Monitoring Parameters, Frequency and Duration
Γable 3.4	Summary of Impact Noise Monitoring Results in the Reporting Period
Γable 4.1	Summary of Environmental Licensing and Permit Status

List of Figures

Figure 1.1	General Layout Plan
Figure 2.1	Monitoring Locations

List of Appendices

Appendix A	Project Organization Structure
Appendix B	Implementation Schedule of Environmental Mitigation Measures
Appendix C	Summary of Action and Limit Levels
Appendix D	Calibration Certificates of Equipment
Appendix E	EM&A Monitoring Schedules
Appendix F	Air Quality Monitoring Results and their Graphical Presentations
Appendix G	Noise Monitoring Results and their Graphical Presentations
Appendix H	Meteorological Data for the Reporting Month
Appendix I	Event Action Plan
Appendix J	Cumulative Statistics on Exceedances, Complaints, Notification of Summons and
	Successful Prosecutions

EXECUTIVE SUMMARY

The Project "Development at Anderson Road – Site Formation and Associated Infrastructure Works" (hereafter called "the Project") is proposed to form platforms for housing development and associated uses in area of about 20 hectares, and to carry out necessary infrastructural upgrading or improvement works to cater for the proposed development.

China State Construction Engineering (Hong Kong) Limited (CSCE) was commissioned as the Contractor of the Project. AECOM Asia Co. Ltd. (AECOM) was employed by CSCE as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project.

The impact EM&A for the Project includes air quality and noise monitoring. The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.

The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road (Schedule 2 DP) project.

The construction for the Widening of Po Lam Road (Schedule 2 DP) project was commenced on 21 September 2011.

This report documents the findings of EM&A works for ID 1A, ID 2, ID 3, ID 4 and ID 5 conducted in the period between 1 and 30 November 2017. According to the Contractor, construction activities in the reporting period were:

- Site clearance works
- Trial pit at footpath
- Permanent railings installation
- Reinstatement works for footpath at Anderson Road
- Defect works for RE wall panel at R15

Breaches of Action and Limit Levels for Air Quality

All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.

Breaches of Action and Limit Levels for Noise

According to the information provided by the Contractor, no Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

- Properly store and label oil drums and chemical containers placed on site:
- Proper chemicals, chemical wastes and wastes management;

China State Construction Engineering (Hong Kong) Ltd.

to handle run-off from maintenance works:

- Monthly EM&A Report for November 2017 - Maintenance works should be carried out within roofed, paved areas with proper drainage system
- Collection and segregation of construction waste and general refuse should be carried out properly and regularly:
- Site runoff should be properly collected and treated prior to discharge:
- Regular review and maintenance of drainage systems and desilting facilities:
- Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm:
- Proper mitigation measures should be provided to avoid relocation of treated contaminated soil;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic:
- Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
- Quieter powered mechanical equipment should be used:
- Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project site is located in the East Kowloon District. It is bounded by Anderson Road to the north, the realigned Sau Mau Ping Road to the south, Po Lam Road to the east, and Lee On Road and Shun On Road to the west.
- 1.1.2 The objective of the Project "Development at Anderson Road Site Formation and Associated Infrastructure Works" under Contract CV/2007/03 (hereafter called "the Project") is to provide land for constructing public housing and government and public facilities. The development will provide 16,100 public housing units for 48,000 people in phases between 2015 and 2016.
- 1.1.3 The scope of works of this Project includes construction of site formation, roads, drains and upgrading of existing infrastructure to provide usable land of about 20 hectares for housing and associated government, institution or community uses at the site between existing Anderson Road Quarry and Sau Mau Ping Road in Kwun Tong District.
- 1.1.4 The Project is anticipated to be completed in the fourth guarter of 2016.
- 1.1.5 Part of the Project involving widening of existing Po Lam Road is a designated project and is governed by an Environmental Permit (EP) EP-140/2002, while the rest of the Project is non-designated. Baseline monitoring covering the entire Project site was undertaken and baseline monitoring report was prepared prior to commencement of construction of the Project in accordance with Conditions 3.2 and 3.4 of the EP (EP-140/2002) and the Environmental Monitoring and Audit (EM&A) Manual. The construction for the Widening of Po Lam Road was commenced on 21 September 2011.
- 1.1.6 According to the EP and the EM&A Manual of the Project, there is a need of an EM&A programme including air quality and noise monitoring.
- 1.1.7 The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.
- 1.1.8 The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road. (Schedule 2 DP) project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was employed by the Contractor, China State Construction Engineering (Hong Kong) Limited (CSCE), as the Environmental Team (ET) to undertake the EM&A works for the Project. In accordance with the EM&A Manual of the Project, environmental monitoring of air quality, noise and environmental site inspections would be required for this Project.

1.2 Scope of Report

1.2.1 This is the one hundred and twenty-third monthly EM&A Report under the Contract CV/2007/03 - Development at Anderson Road – Site Formation and Associated Infrastructure Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in January 2017 for ID 1A, ID 2, ID 3, ID 4 and ID 5.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax	
	Chief Resident Engineer	Dennis Leung	2407 0300	3656 3100	
ER (Ove Arup)	Senior Resident Engineer	Cliff Ko	2407 0300	3656 3100	
	Assistant Resident Engineer (Civil) Brian Wan		2407 0300	3656 3100	
IEC (Ramboll Environ)	Independent Environmental Checker	David Yeung	3465 2888	3465 2899	
Contractor	Site Agent	Holmes Wong	2704 2095	2702 6553	
(CSCE)	Environmental Officer	Thomas Cheung	2704 2095	2702 6553	
ET (AECOM) ET Leader		Yiu Wah Fung	3922 9366	2317 7609	

1.4 Summary of Construction Works

- 1.4.1 According to the Contractor, the Contactor has carried out the following major activities in the reporting month:
 - Site clearance works
 - Trial pit at footpath
 - Permanent railings installation
 - Reinstatement works for footpath at Anderson Road
 - Defect works for RE wall panel at R15
- 1.4.2 The general layout plan of the Project site showing the contract area is shown in Figure 1.1.
- 1.4.3 The environmental mitigation measures implementation schedule are presented in Appendix B.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise and environmental site inspections for air quality, noise, water quality, chemical and waste management. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming months;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, 1-hour and 24-hour TSP levels at 5 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix C.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model		
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)		
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE- 5170) & Graseby High Volume TSP Sampler (Model No. GMW 2310)		
Calibration Kit for High Volume Sampler	Orifice (Model No. TE-5025A)		

2.3 Monitoring Locations

2.3.1 Monitoring stations, ID 2, ID 3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Air Quality Monitoring Stations

ID	Location	Monitoring Station	
1A	Kwun Tong Government Secondary School	Roof top of the premises facing Anderson Road	
2	On Yat House	Roof top of the premises facing Lee On Road	
3	Sau Nga House	Roof top of the premises facing Sau Mau Ping Road	
4	Sau Ming Primary School	Roof top of the premises	
5	Sau Mau Ping Catholic Primary School	Roof top of the premises	

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
ID 1A, ID 2, ID 3, ID 4 &	1-hour TSP	At least 3 times every 6 days
ÍD5	24-hour TSP	At least once every 6 days

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (v) No furnace or incinerator flues nearby.
 - (vi) Airflow around the sampler was unrestricted.
 - (vii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (viii) A secured supply of electricity was obtained to operate the samplers.
 - (ix) The sampler was located more than 20 meters from any dripline.
 - Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xi) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half-length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in Appendix D.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix D.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for environmental monitoring in November 2017 is provided in Appendix E.

2.7 Monitoring Results

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.4 and 2.5 respectively. Detailed air quality monitoring results are presented in Appendix F.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	72.6	62.3 – 81.2	201.5	500
ID 2	72.0	62.8 – 80.1	197.0	500
ID 3	73.1	62.4 – 81.6	203.7	500
ID 4	72.9	62.8 - 80.4	264.6	500
ID 5	72.2	62.2 – 79.2	267.4	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	23.5	12.4 – 39.2	170.2	260
ID 2	44.1	25.4 - 80.3	200.0	260
ID 3	37.9	14.5 – 64.0	200.0	260
ID 4	37.0	16.7 – 61.7	181.3	260
ID 5	44.4	37.0 – 59.7	180.8	260

- 2.7.2 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month
- 2.7.3 The event action plan is annexed in Appendix I.
- 2.7.4 Major dust sources during the dust monitoring included construction dust from the Project site, construction dust from other construction sites nearby and nearby traffic emission.
- 2.7.5 Weather information including wind speed and wind direction is annexed in Appendix H. The information was obtained from Hong Kong Observatory Tseung Kwan O Automatic Weather Station and Anemometer Station.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, impact noise levels should be obtained at 5 noise monitoring stations. Impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix C.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238, 2250-L and 2270)
Acoustic Calibrator	B&K (Model No. 4231) and Rion (Model No. NC-73)

3.3 Monitoring Locations

3.3.1 Monitoring stations, ID 2, ID3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	1m from the exterior of the roof top façade of the premises facing Anderson Road
2	On Yat House	1m from the exterior of the roof top façade of the premises facing Lee On Road
3	Sau Nga House	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
5	Sau Mau Ping Catholic Primary School	1m from the exterior of the roof top façade of the premises facing Po Lam Road

AECOM Asia Co. Ltd. 11 December 2017

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter and Duration	Frequency
ID 1A, ID 2, ID 3, ID 4 & ID5	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Façade measurements were made at all monitoring locations.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays; $L_{eq(5-minutes)}$ during restricted hours i.e. 19:00-23:00 and 23:00-07:00 of normal weekdays, whole day of Sundays and Public Holidays
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB (A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix D.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for environmental monitoring in January 2017 is provided in Appendix E.

3.7 Monitoring Results

3.7.1 The monitoring results for noise are summarized in Table 3.4 and the monitoring data is provided in Appendix G.

Table 3.4 Summary of Impact Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}
ID 1A	59.9	56.0 – 62.3	*65/70
ID 2	60.5	51.8 – 64.9	75
ID 3	61.3	55.0 – 64.7	75
ID 4	62.6	56.6 – 65.4	*65/70
ID 5	62.9	56.4 – 65.6	*65/70

Note: *Daytime noise Limit Level of 70dB (A) applies to education institutions while 65dB (A) applies during school examination period.

- 3.7.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 3.7.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 3.7.4 The event action plan is annexed in Appendix I.
- 3.7.5 Major noise sources during the noise monitoring included construction noise from the Project site, construction noise from other construction sites nearby, nearby traffic noise and noise from school activities and community noise.

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

4.1 Site Inspection

- 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 5 site inspections were carried out on 2, 9, 17, 23 and 30 November 2017. Particular observations and status of non-compliance issued by IEC are described below.
- 4.1.2 The Contractor rectified most of the observations as identified during the environmental site inspections in the reporting month within the agreed time frame. Rectification of the remaining identified items are being carried out by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

4.1.3 Air Quality Impact

Deposition of dusty materials on pedestrian road on On Sau Road was observed. The
Contractor was advised to provide vehicle washing facilities including a high pressure water
jet at every discernible or designated vehicle exit point and to wash every vehicle
immediately before leaving the construction site to remove dusty materials from its body
and wheels.

4.1.4 Construction Noise Impact

Nil

4.1.5 Water Quality Impact

Nil

4.1.6 Chemical and Waste Management

- General refuse and construction waste was found in the drainage and catchpit on Anderson Road. The Contractor was advised to remove the materials to prevent damage and interference with the watercourses.
- General refuse and construction waste was found on vegetation on Anderson Road. The Contractor was advised to remove the materials to prevent damage and interference with the vegetation.
- General refuse and construction waste was found on soil on Anderson Road. The Contractor was advised to remove the materials to keep the site clean and tidy.

4.1.7 Landscape and Visual Impact

Nil

4.1.8 Miscellaneous

Nil

4.2 Advice on the Solid and Liquid Waste Management Status

- 4.2.1 The Contractor is registered as a chemical waste producer for this Project. C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 4.2.2 As advised by the Contractor, 235.65 tonnes of C&D materials were generated on site in the reporting month, which were all disposed of at TKO 137.

Monthly EM&A Report for November 2017

China State Construction Engineering (Hong Kong) Ltd.

For C&D waste, 0 kg of metals was generated and collected by registered recycling collector. 10 kg of paper cardboard packaging and 10 kg of plastics were generated on site and collected by registered recycling collector. No chemical waste was collected by licensed chemical waste collectors. 56.55 tonnes of other types of wastes (e.g. general refuse and tree debris) were generated on site and disposed of at North East New Territories (NENT) Landfill.

- 4.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 4.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

4.3 Environmental Licenses and Permits

4.3.1 The environmental licenses and permits for this Project and valid in the reporting month is summarized in Table 4.1.

Table 4.1 Summary of Environmental Licensing and Permit Status

Statutory Reference			Valid Period			Remarks
Reference	Boomption	i omit ito:	From			
EIAO	Environmental Permit	EP-140/2002			- Widening of a section of Po Lam Road	
APCO	NA notification		16/04/09		- Whole Construction Site	
WPCO	Discharge Licence	WT00023593-2016	20/01/16	19/01/21	- Discharge of Construction Runoff	
WDO	Chemical Waste Producer Registration	5213-292-C3249-32	19/03/08		- Whole Construction Site	
	Waste Charges Account	7006839	12/03/08		- Whole Construction Site	

4.4 Implementation Status of Environmental Mitigation Measures

- 4.4.1 In response to the site audit findings, the Contractor carried out corrective actions promptly for particular items recorded. Outstanding items were closely monitored to ensure mitigation measures are implemented properly.
- 4.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix B. Many necessary mitigation measures were implemented properly.

4.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 4.5.1 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.
- 4.5.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 4.5.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 4.5.4 Cumulative statistics on exceedances is provided in Appendix J.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 4.6.1 Complaints shall be referred to the ET Leader for action. The ET Leader shall undertake the following procedures upon receipt of any complaint:-
 - Log complaint and date of receipt onto the complaint database and inform the IC(E) immediately;
 - Investigate the complaint to determine its validity, and assess whether the source of the problem is due to works activities;
 - Identify mitigation measures in consultation with the IC(E) if a complaint is valid and due to works;

Monthly EM&A Report for November 2017

- Advise the Contractor if additional mitigation measures are required;
- Review the Contractor's response to identified mitigation measures, and the updated situation:
- If the complaint is transferred from EPD, submit interim report to EPD on status of the complaint investigation and follow-up action within the time frame assigned by EPD;
- Undertake additional monitoring and audit to verify the situation if necessary, and review that circumstances leading to the complaint to not recur;
- Report investigation results and subsequent actions to complainant (if the source of complaint is EPD, the results should be reported within the time frame assigned by EPD); and
- Record the complaint, investigation, the subsequent actions and the results in the monthly EM&A reports.
- 4.6.2 During any complaint investigation work, the Contractor and the ER shall cooperate with the ET Leader in providing all necessary information and assistance for completion of the investigation. If mitigation measures are identified in the investigation, the Contractor shall promptly carry out the mitigation. The ER shall ensure that all necessary measures have been carried out by the Contractor.
- 4.6.3 Referring to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.
- 4.6.4 Cumulative statistics on complaints, notification of summons and successful prosecutions is provided in Appendix J.

5 FUTURE KEY ISSUES

5.1 Construction Programme for the Coming Two Months

- 5.1.1 The major construction works in December 2017 and January 2018 will be:
 - Site clearance works
 - Trial pit at footpath
 - Reinstatement works of brick laying at footpath
 - Public road drain for clearance works and CCTV survey

5.2 Key Issues for the Coming Two Months

- 5.2.1 Key issues to be considered in the coming months included:-
 - Properly store and label oil drums and chemical containers placed on site:
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
 - Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of drainage systems and desilting facilities;
 - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil:
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
 - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.

5.3 Monitoring Schedule for the Coming Month

5.3.1 The tentative schedule for environmental monitoring in December 2017 is provided in Appendix E.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- 6.1.1 The construction phase of the project commenced in May 2008.
- 6.1.2 1-hour TSP, 24-hour TSP and noise monitoring were carried out in the reporting month.
- 6.1.3 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.
- 6.1.4 According to the Contractor's information, no noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 6.1.5 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 6.1.6 Environmental site inspections were carried out 5 times in November 2017. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 6.1.7 According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

6.2 Recommendations

6.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

The Contractor was advised to provide vehicle washing facilities including a high pressure
water jet at every discernible or designated vehicle exit point and to wash every vehicle
immediately before leaving the construction site to remove dusty materials from its body
and wheels.

Construction Noise Impact

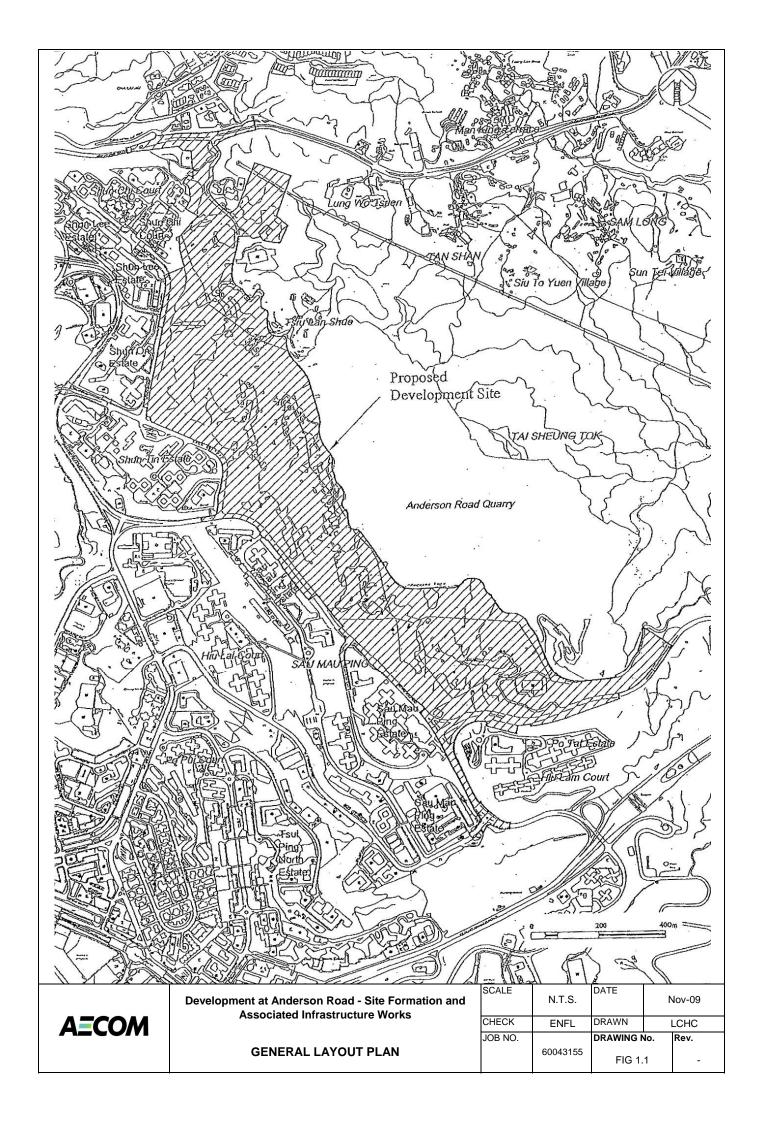
· No specific observation was identified in the reporting month.

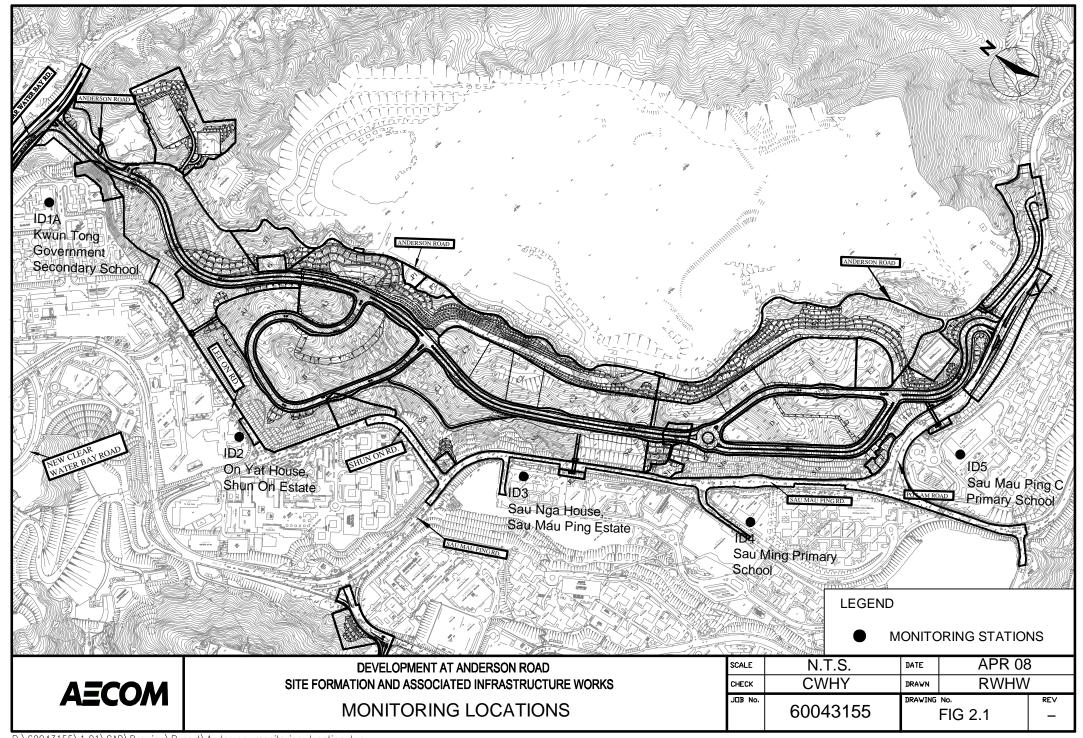
Water Quality Impact

No specific observation was identified in the reporting month.

Chemical and Waste Management

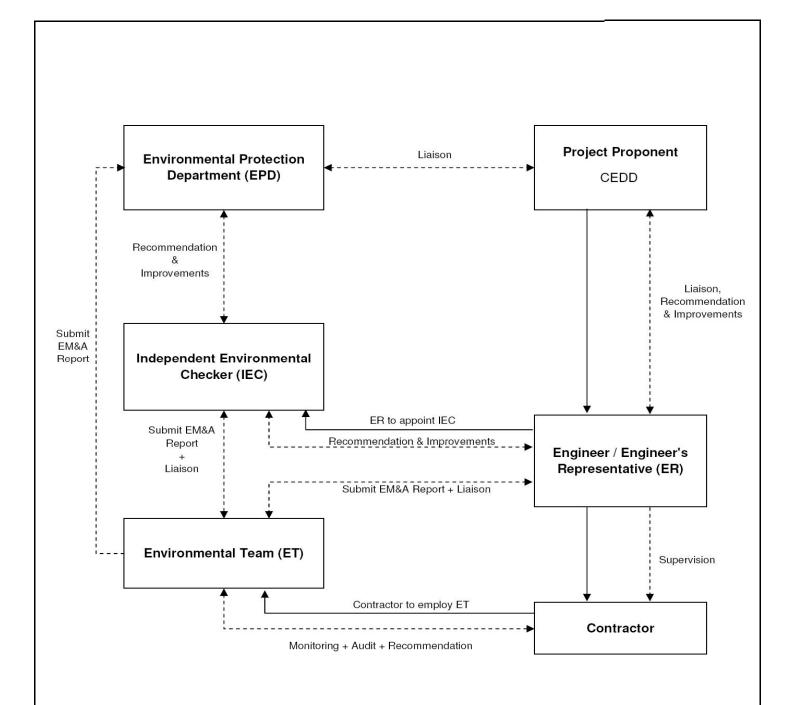
- The Contractor was advised to remove waste in the drainage and catchpit to prevent damage and interference with the watercourses.
- The Contractor was advised to remove waste near vegetation to prevent damage and interference with the vegetation.
- The Contractor was advised to remove waste on soil to keep the site clean and tidy.


Landscape and Visual Impact


• No specific observation was identified in the reporting month.

Miscellaneous

• No specific observation was identified in the reporting month.



APPENDIX A

Project Organization Structure

Employment Relationship
Working Relationship

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Des		O	n:-atian	Ctructure
PIO	lect	Orga	mization	Structure

SCALE	N.T.S.	DATE		2009	
CHECK	ENFL	DRAWN		LCHC	;
JOB NO.		APPEND	IX		Rev
	60043155		Α		_

APPENDIX B

Implementation Schedule of Environmental Mitigation Measures

Appendix B - Implementation Schedule of Environmental Mitigation Measures

Environmental M	itigation Measures	Location	Implementation Status
Construction No	pise Impact		
Site Formation	Formation Silenced powered mechanical equipment (PME) for most equipment All construction sites		V
	(including drill rig, backhoe, dump truck, breaker and crane) and the		
	decrease of percentage on time usage of drill rig among the Central Area		
	from 50% to 40% is proposed.		
	Temporary movable noise barrier shall be used to shield the noise	All construction sites	V
	emanating from the drilling rig in order to provide adequate shielding for the		V
	affected NSRs.		
Construction Ai	r Quality Impact		
General Site	Mean vehicle speed of haulage trucks at 10km/hr.	All construction sites	V
Practice	Twice daily watering of all open site areas.	All construction sites	V
	Regular watering (once every 1 hour) of all site roads and access roads with	All construction sites	V
	frequent truck movement.	All construction sites	
	During road transportation of excavated spoil, vehicles should be covered to	All construction sites	V
	avoid dust impact. Wheel washing facilities should be installed at all site		
	exits together with regular watering of the site access roads.		
	Tarpaulin covering of all dusty vehicle loads transported to, from and	All construction sites	V
	between site locations.	All construction sites	
	Establishment and use of vehicle wheel and body washing facilities at the	Site exits	@
	exit points of the site, combined with cleaning of public roads were		
	necessary.		

Appendix B EMIS 1 December 2017

China State Construction Engineering (Hong Kong) Ltd.

General Site	Suitable side and tailboards on haulage vehicles.	All construction sites	V
Practice	Watering of temporary stockpiles.	All construction sites	V
Blasting	Use of select aggregate and fines to stem the charge with drill holes and watering of blast face. All construction		N/A
	Use of vacuum extraction drilling methods.	All construction sites	N/A
	Carefully sequenced blasting.	All construction sites	N/A
Crushing	Fabric filters installed for the crushing plant.	All construction sites	V
	Water sprays on the crusher.	All construction sites	V
Loading and Unloading	Water sprays at all fixed loading and unloading points (at the crusher and conveyor belts).	All construction sites	V
Points, and conveyor Belt	The loading point at the crusher is enclosed with dust collection system installed.	All construction sites	V
System	When transferring materials from conveyor belt or crusher to the dump trucks or chutes, dust curtains are used for controlling dust.	All construction sites	V
	Cover the conveyor belts with steel roof and canvas sides.	All construction sites	V
Construction W	/ater Quality Impact		
Construction	All active working areas should be bounded to retain storm water with	Site drainage system	V
Phase	sufficient retention time to ensure that suspended solids are not discharged		
	from the site in concentrations above those specified in the TM for the		
	Victoria Harbour (Phase I) WCZ. All fuel storage areas should be bounded		
	with drainage directed to an oil interceptor.		

Appendix B EMIS 2 December 2017

China State Construction	Engineering	(Hong Kong) Ltd.

Cilila Ctate Cert	truction Engineering (nong Kong) Etc.	Wiening E	Man Report for November 2017
	Separate treatment facilities may be required for effluent from site offices, toilets (unless chemical toilets are used) and canteens.	Site drainage system	V
	Discharged wastewater from the construction sites to surface water and/or public drainage systems should be controlled through licensing. Discharge should follow fully the terms and conditions in the licenses.	All works area	V
	Relevant practice for dealing with various type of construction discharges provided in EPD's ProPECC Note PN 1/94 should be adopted.	All works area	V
Waste Managen	nent		
Waste Disposal	Different types of wastes should be segregated, stored, transported and disposed of separately in accordance with the relevant legislative requirements and guidelines as proper practice of waste management.	All construction sites	V
	Sorting of wastes should be done on-site. Different types of wastes should be segregated and stored in different stockpiles, containers or skips to enhance recycling of materials and proper disposal of spoil.	All construction sites	V
	Excavated spoil should be used as much as possible to minimize off-side fill material requirements and disposal of spoil.	All construction sites	V
	Chemical waste should be recycled on-site or removed by licenced companies. It should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical wastes. When off-site	All construction sites	V

Appendix B EMIS 3 December 2017

China State Construction Engineering (Hong Kong) Ltd.

All construction sites	V
e	
All construction sites	V
All construction sites	V
n	
n	
All construction sites	V
e e	e All construction sites e O All construction sites h

Appendix B EMIS 4 December 2017

China State Construction Engineering (Hong Kong) Ltd.

	by the workforce. On-site refuse collection points must also be provided.		
Landscape ar	nd Visual		
Additional	Planting and vegetation restoration (including transplanted trees) on soil	Whole development	N/A
Measures	slopes including restoration of grassland, scrub and woodland on slopes		
	around the development platforms and access road. Restoration would be		
	undertaken using predominantly native species.		
Additional	Screen planting along the access roads, to limit impacts of elevated	Whole development	N/A
Measures	structures and rock slopes.		
	Colouring of shotcrete slopes.	Whole development	N/A
	Limited planting on shotcrete slopes.	Whole development	V
	Landscape buffers and planting in and around the development itself to	Whole development	N/A
	screen partially close views of the site.		
	Screen planting in front of retaining walls / granite cladding to those walls to	Whole development	N/A
	reduce glare and visual impacts.		
	Careful design of road elevated structure and abutments, to limit visual	Whole development	V
	impacts.		
	Roadside landscape features / hardworks to limit visual impacts.	Whole development	V
	Conservation of CDG or CDV recovered from the site for re-use in the	Whole development	N/A
	landscape restoration.		
	Preservation (by transplanting if necessary) of any trees identified as being	Whole development	V
	of particular landscape value.		
Ecology			

Appendix B EMIS 5 December 2017

China State Construction Engineering (Hong Kong) Ltd.

Offina Otato Construction Engineering (Florig	riong/ Eta.	iviorially Li	Mart Report for Neveribor 2011
Woodland planting on soft	cut slopes available (about 13.4ha) within the	Soft cut slopes	N/A
development site. Native s	pecies, preferably with documented ecological		
utility, should be used.			
Seeds of the native specie	s when possible should be added into the	Soft cut slopes	N/A
hydroseeding mix. Seeding	gs should be pit planted with placement of slow		
release fertilizer.			
Maintenance and service,	including weeding, fertilizing, replacement of	Soft cut slopes	N/A
dead plants, etc. should be	e performed during the first 1 years of planting to		
enhance the survival rate of	of the plants.		
Contaminated Land			
In accordance with the app	proved Contamination Assessment Report (CAR)	Locations specified in CAR	N/A
and Remediation Action P	lan (RAP) in Nov 2006, it is recommended that		(Works In Progress)
cement solidification / stab	ilization prior to on-site backfill for heavy metal		
contaminated soil and exc	avation followed by disposal at designated landfill		
for organic contaminated s	oil. Upon the completion of the proposed		
remediation exercise as ou	utlined in CAR & RAP, a Remediation Report will		
be complied for submissio	n to EPD to demonstrate that the proposed soil		
remediation has been carr	ied out properly and satisfactorily. Results from		
the confirmation tests will a	also be included in the Remediation Report.		
Photos showing the area of	of excavation, the solidification process, and		
remediated soil and site sh	nall also be included in the report for reference.		
andfill Gas Hazard			
Further site investigation s	hould be carried out during the detailed design	The whole development site	N/A

Appendix B EMIS 6 December 2017

Contract No. CV/2007/03

Development at Anderson Road –
Site Formation and Associated Infrastructure Works

Monthly EM&A Report for November 2017

China	State	Construction	Engineering	(Hona	Kona)	Ltd.
Oi iii ia	Olalo	Contouraction	Linginiooning	(1.10119	1101191	L.C.

stage in order to measure landfill gas around the perimeter of the site, to	
re-confirm that there is no preferential pathway for landfill gas migration and	
to assess the potential for landfill gas hazards on the future development. If	
a landfill gas hazard is identified, mitigation measures should be proposed	
and implemented to address the hazard.	

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

Appendix B EMIS 7 December 2017

APPENDIX C

Summary of Action and Limit Levels

Appendix C - Summary of Action and Limit Levels

Table 1 – Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
ID 1A	201.5	500
ID 2	197.0	500
ID 3	203.7	500
ID 4	264.6	500
ID 5	267.4	500

Table 2 – Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
ID 1A	170.2	260
ID 2	200.0	260
ID 3	200.0	260
ID 4	181.3	260
ID 5	180.8	260

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
ID 1A	When one documented	*65 / 70 dB(A)
ID 2	complaint is received	75 dB(A)
ID 3	•	75 dB(A)
ID 4	from any one of the sensitive	*65 / 70 dB(A)
ID 5	receivers	*65 / 70 dB(A)

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period

APPENDIX D

Calibration Certificates of Equipments

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	n Kwun Tong G	overnment Sec	ondary School (ID	1A)	Operator	: Choi Wi	ng Ho
Date	8-Sep-17				Next Due Date		
Pump No.	.:846	-		7		: O.T.S -	
Equipment No.	:					: 22-May-	
			Ambient (Condition			
Temper	ature, Ta	304.6	Kelvin	Press	ure, Pa	754.4	mmHg
			100 000				
Equipm	out No.		rifice Transfer Sta				
100	ent No.:	988	Slope, mc	1.98	3425	Intercept, bc	-0.0093
Last Calibr		22-May-17	1	mc x Qstd + bc	= [H x (Pa/760)	$x (298/Ta)]^{1/2}$	
Next Calibi	ration Date:	22-May-18					
		•	Calibration of	TSP Sampler			
Calibration	Н			Qstd	T		
Point	in. of water	[H x (Pa/76	50) x (298/Ta)] ^{1/2}	(m ³ /min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-ax	
1	7.1		2.63	1.33	5.5	2.31	
2	6.9		2.59	1.31	5.0	2.20	
3	5.7		2.35	1.19	4.1	2.00	
4	4.4		2.07	1.05	2.6	1.59	
5	3.1		1.74	0.88	1.6	1.25	
By Linear Regr	ession of Y on	X					
Slope, $mw =$	2.3344	_	ĵ	Intercept, bw =		-0.819	2
Correlation C	Coefficient* =	0.	9963				
	-						
41 - TCD E'	110 17 7	7	Set Point Ca				
			$d = 1.21 \text{ m}^3/\text{min } (4$	3 CFM)			
From the Regress	sion Equation, ti	ne "Y" value ac	cording to				
		m x ($Qstd + b = [W \times (P)]$	a/760) x (298/T	$[a]^{1/2}$		
					-71		
Therefore, S	Set Point $W = (r$	$(x + b)^2$	x (760 / Pa) x (Ta	a / 298) =	4.	.14	
TEG 11: G	CC 1						
II Correlation C	coefficient < 0.99	90, check and r	ecalibrate again.				
amaul.a.							
emarks:							
-							
OC Davis	110			: 81/		0/0/-)
QC Reviewer:	1		Signature: _	NE	Date:	8/7/201	/

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	Kwun Tong Go	vernment Seco	ondary School (ID)	(A)	Operator:	Choi Wir	ig Ho
Date:	8-Nov-17	_			Next Due Date:	8-Jan-	18
Pump No.:	846			V	erified Against:	O.T.S	988
Equipment No.:				F	Expiration Date:	22-May-2	2018
				,			
			Ambient C	Condition			
Temperat	ture, Ta	298	Kelvin	Pressu	ire, Pa	760.7	mmHg
	100			100 March 200 Ann			
			ifice Transfer Sta				
Equipme		988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Last Calibra		22-May-17	ı	nc x Qstd + bc =	= [H x (Pa/760)	$x (298/Ta)]^{1/2}$	
Next Calibra	ation Date:	22-May-18					
	/00 mag 1 ma	: • · · · · · · · · · · · · · · · · · ·	Calibration of	TSP Sampler			
			Canoration of	Qstd			1
Calibration Point	H in. of water	[H x (Pa/7	60) x (298/Ta)] ^{1/2}	(m ³ /min)	W in. of oil	[ΔW x (Pa/760) x	
1 OIIIt	m. or water			X - axis	111. 01 011	Y-axis	
1	7.4	1	2.72	1.38	5.5	2.35	
2	6.7		2.59	1.31	5.0	2.24	
3	5.8		2.41	1.22	4.0	2.00	
4	4.3		2.07	1.05	2.5	1.58	
5	3.1		1.76	0.89	1.6	1.27	
By Linear Regr		X					
	2.2761	_		Intercept, bw =		-0.775	50
Correlation C	oefficient* =	0	.9982	(
10.0					0.000		
			S-4 P-1-4 C	-11-4'			
Correct Alice TCD C:	-1.4 C-1:1	C t-1 O-	Set Point C			-	
From the Regress			$dtd = 1.21 \text{ m}^3/\text{min}$ (43 CFM)			
Tom the Regress	sion Equation, t	ne i vaiue a	ecording to				
		m x	Qstd + b = [W x (]	Pa/760) x (298/T	[a]] ^{1/2}		
			2				
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	$\Gamma a / 298) =$	3	.91	
*If Correlation C	oefficient < 0.0	000 check and	recalibrate again.				-
ii Correlation C	ocificient < 0.5	90, CHECK and	recambrate again.				
Remarks:							
,			541				
OC Reviewer:	W/S CHAN		Signature:	71	Date:	02/11/17	

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

Station	On Yat House	(ID2)			Operator	: Leung Yi	u Ting
Date: 21-Sep-17					Next Due Date		
Pump No.:	:10373	Verified Against:					
Equipment No.:	A-001-12T				22-May-		
			Ambient C	Condition			
Tempera	ature Ta	304	Kelvin		una Da	751.1	**
Tempere	iture, ru	304	Kelviii	riessi	ure, Pa	751.1	mmHg
		Oı	ifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	988	Slope, mc	1.98		Intercept, bc	-0.0093
Last Calibra	ation Date:	22-May-17				52000 States	0.000
Next Calibr	ation Date:	22-May-18	n	nc x Qstd + bc =	= [H x (Pa/760)	x (298/Ta)] ^{1/2}	
		•	C-171	TODG			
2000 0000		T	Calibration of	Qstd	<u> </u>		
Calibration Point	H in. of water	[H x (Pa/76	[H x (Pa/760) x (298/Ta)] ^{1/2}		W in. of oil	[ΔW x (Pa/760) x Y-axi	750 Sp. 5
1	7.0		2.60	1.32	5.2	2.24	
2	6.3		2.47	1.25	4.3	2.04	
3	5.0		2.20	1.11	2.9	1.68	
4	4.1		1.99	1.01	2.2	1.46	
5	2.9		1.68	0.85	1.4	1.16	
By Linear Regr	ession of Y on 2	X					
Slope, $mw = \frac{1}{2}$		_	1	Intercept, bw =	*	-0.837	2
Correlation C	oefficient* =	0.	9965				
 							
			Set Point Ca	lculation			
From the TSP Fie	eld Calibration (Curve, take Qst	$d = 1.21 \text{ m}^3/\text{min } (4)$	3 CFM)			
From the Regress	sion Equation, th	ne "Y" value ac	ecording to				1
		m v (Qstd + b = [W x (Pst)]	~/760) /209/T			
		шх	$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i = \sum_{i=1}^{n$	a//00) X (298/1	a)j		
Therefore, S	et Point W = (n	$(x + b)^2$	x (760 / Pa) x (Ta	a / 298) =	3.	93	
*If Correlation C	oefficient < 0.99	00, check and r	ecalibrate again.			200	
			-				
Remarks:							
-							
QC Reviewer:	NR		Signature:	MR	Date:	21/9/2017	

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	On Yat House ((ID2)			Operator:	Leung Yii	u Ting
Date:	21-Nov-17			14	Next Due Date:	21-Jan	-18
Pump No.:	10373			V	erified Against:	O.T.S	988
Equipment No.:	A-001-12T				Expiration Date:		
	· · · · · · · · · · · · · · · · · · ·						
			Ambient C	Condition			
Temperat	ture, Ta	293	Kelvin	Pressu	re, Pa	762.2	mmHg
		Or	ifice Transfer Sta	ndard Informat	ion		
Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Last Calibra		22-May-17				to the state of th	
Next Calibra	ation Date:	22-May-18	r	nc x Qstd + bc =	= [H x (Pa/760)	x (298/Ta)] ^{1/2}	
				1000			
			Calibration of	TSP Sampler			
Calibration	Н	1		Qstd	***	FAW (D (7(0)	(200 /TP >11/2
Point	in. of water	[H x (Pa/7	60) x (298/Ta)] ^{1/2}	(m ³ /min)	W in. of oil	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Y-axis	
10111				X - axis		1-41	15
1	7.1		2.69	1.36	5.3	2.33	}
2	6.2		2.51	1.27	4.3	2.09)
3	4.9		2.24	1.13	3.0	1.75	
4	3.9		1.99	1.01	2.2	1.50)
5	2.8		1.69	0.86	1.4	1.19)
By Linear Regr	ession of Y on 2	X					
Slope, mw =	2.2705	_		Intercept, bw =		-0.784	46
Correlation C	oefficient* =	0	.9986	er.			
						110.00	
0.41			Set Point C	alculation			
From the TSP Fi	eld Calibration (Curve, take Qs	$td = 1.21 \text{ m}^3/\text{min}$ (43 CFM)			
From the Regres	sion Equation, t	he "Y" value a	ccording to				
					1/2		
		m x	Qstd + b = [W x (Pa/760) x (298/1	(a)]***		
Therefore S	Set Point W = (m v Ostd + h)	² x (760 / Pa) x (7	$\Gamma_2 / 208) =$	3	.78	
Therefore, c	sectionic w	m x Qsta · o)	x(700714)x(14/250)		.70	
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.				
			_				
Remarks:							
,							
QC Reviewer:	WSCHAN		Signature:	71	Date:	21/11/17	

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

	Sau Nga Hous	<u>e (</u> ID3)			Operator	Leung Y	iu Ting		
Date	: 21-Sep-17				Next Due Date	:21-Nov	v-17		
Pump No.:	3261			V	Verified Against	O.T.S	- 988		
Equipment No.:	A-001-77T		Expiration Date: 22-May-2018						
			Ambient (Condition					
Tempera	ature, Ta	304	Kelvin	Pressu	ıre, Pa	751.1	mmHg		
		Oı	ifice Transfer Sta	ndard Informa	tion				
Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093		
Last Calibra	ation Date:	22-May-17		mc x Qstd + bc =	- III (D-/5(0)	(200/F) ×1/2			
Next Calibr	ation Date:	22-May-18		me x Qsta + be =	= [H X (Pa//60)	x (298/1a)]			
	-								
		,	Calibration of	TSP Sampler					
Calibration	Н		1/2	Qstd	W	[ΔW x (Pa/760) z	v (208/Ta)1/2		
Point	in. of water	[H x (Pa/76	$(50) \times (298/Ta)]^{1/2}$	(m³/min)	in. of oil	Y-ax			
1	7.0	+	2.60	X - axis					
2	6.2		2.60	1.32	5.1	2.22			
3	5.3	1	2.45	1.24	4.3	2.04			
4	4.2	+	2.27	1.15	3.6	1.87			
5			2.02	1.02	2.3	1.49			
	3.1	V	1.73	0.88	1.6	1.25			
By Linear Regr		A.		-					
Slope, mw = Correlation C	2.2637	_		Intercept, bw =	:31	-0.765	58		
Correlation C	oemcient" =	0.	9965						
						11 TO THE RESERVE TO			
			G. 1 B. 1 G						
From the TSD Fig	ald Calibration (Sumua talea Oat	Set Point Candidate $d = 1.21 \text{ m}^3/\text{min}$ (4)						
From the Regress				13 CFM)					
rom me Regress	sion Equation, if	ie i vaiue ac	cording to						
		m x (Qstd + b = [W x (P)]	Pa/760) x (298/T:	$a)$ $l^{1/2}$				
Therefore, S	et Point $W = (n + 1)$	$(x + b)^2$	x (760 / Pa)x(T	(a / 298) =	4.	02			
MCC 1 .: C	00. 1 0.00								
*If Correlation Co	oefficient < 0.99	0, check and r	ecalibrate again.						
Domonto.									
Remarks:									
9-									
QC Reviewer:	un -		G:	HK		21/0/-	7		
QC Reviewer: _			Signature: _	10	Date:	4/7/201	/		

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	Sau Nga House	<u>(</u> ID3)			Operator:	Leung Yii	u Ting
Date:	21-Nov-17				Next Due Date:	21-Jan	-18
Pump No.:	3261			V	erified Against:	O.T.S	988
Equipment No.:	A-001-77T			E	Expiration Date:	22-May-2	2018
					1 1000		
			Ambient (Condition			
Temperat	ture, Ta	293	Kelvin	Pressu	re, Pa	762.2	mmHg
		Or	ifice Transfer Sta	ndard Informat	ion		
Equipme		988	Slope, mc	1.984	425	Intercept, bc	-0.0093
Last Calibra		22-May-17	ı	nc x Qstd + bc =	= [H x (Pa/760)	$x (298/Ta) l^{1/2}$	
Next Calibra	ation Date:	22-May-18					
		•		TOP 0			-
			Calibration of	Qstd Qstd			
Calibration	Н	[H x (Pa/7)	50) x (298/Ta)] ^{1/2}	(m ³ /min)	W	[ΔW x (Pa/760) x	
Point	in. of water	[III A (I W)	50) x (250/14)]	X - axis	in. of oil	Y-axis	
1	7.0		2.67	1.35	5.0	2.26	5
2	6.1		2.49	1.26	4.3	2.09)
3	5.4		2.35	1.19	3.5	1.89)
4	4.1		2.05	1.04	2.4	1.56	5
5	3.0		1.75	0.89	1.5	1.24	
By Linear Regr	ession of Y on	X					
Slope , mw =	2.2477			Intercept, bw =		-0.76	78
Correlation C	oefficient* =	0	9992				
31 100							
			Set Point C				
			$std = 1.21 \text{ m}^3/\text{min } ($	43 CFM)			
From the Regres	sion Equation, t	the "Y" value a	ccording to				
		m x	Qstd + b = [W x (1)]	Pa/760) x (298/T	$[a]^{1/2}$		
					6-		
Therefore,	Set Point $W = ($	m x Qstd + b)	² x (760 / Pa) x (′	Ta / 298) =	3	.74	6
*If C1-4' C	7CC-:	000 -111	recalibrate again.				
"II Correlation C	oefficient < 0.9	990, cneck and	recalibrate again.				
Remarks:							
remarks.				Ahh		Sandware in	ASSETTION OF
QC Reviewer:	WS CHAN	J	Signature:	71	Date:	21/11/17	

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

Station	Sau Ming Prin	nary School (II	94)		Operator	: Shum Kar	n Yuen	
	: 21-Sep-17				Next Due Date	:21-Nov	v-17	
Pump No.	:1275	•		1	Verified Against	:O.T.S	988	
Equipment No.	: <u>A-001-28T</u>	-8			Expiration Date	: 22-May-	2018	
		_						
			Ambient (I				
Tempera	ature, Ta	304	Kelvin	Pressi	ure, Pa	751.1	mmHg	
		0	rifice Transfer Sta	andard Informa	tion			
Equipme	ent No.:	988	Slope, mc			Intercept, bc	-0.0093	
Last Calibr		22-May-17	200000					
Next Calibr		22-May-18	1	mc x Qstd + bc =	$= [H \times (Pa/760)]$	$(298/Ta)^{1/2}$		
			* 2					
			Calibration of	TSP Sampler				
Calibration Point	H in. of water	[H x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-axi		
1	7.1		2.62	1.33	5.2	2.24		
2	6.1		2.43	1.23	4.1	1.99		
3	4.8	3.2	1.76					
4	4.0		1.97	1.00	2.2	1.46		
5	3.1		1.73	0.88	1.6	1.25		
	ession of Y on ?	X						
Slope, mw =		_		Intercept, bw =		-0.703	9	
Correlation C	oefficient* =	0.	9954					
		17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Set Point Ca	alculation				
rom the TSP Fig	eld Calibration (Curve, take Qst	$d = 1.21 \text{ m}^3/\text{min } (4)$					
	sion Equation, th			,				
		·)	15(0) (200 m	>1/2			
		шхс	Qstd + b = [W x (P)]	(298/1° x (298/1°	a)]			
Therefore, S	Set Point W = (r	$m \times Qstd + b)^2$	x (760 / Pa)x(T	(a / 298) =	4.	00		
If Correlation C	oefficient < 0.99	00, check and r	ecalibrate again.					
emarks:			* * *					
-								
OC D '	WV			Dia		2.101-11	7	
QC Reviewer: _	11		Signature:	MC	Date:	4/2/201		

TSP - Total Suspended Particulates Sampler Field Calibration Report

Station	Sau Ming Prim	ary School (ID	94)		Operator:	Shum Kan	n Yuen	
Date:	21-Nov-17	_			Next Due Date:	21-Jan	-18	
Pump No.:	1275			V	erified Against:	O.T.S	988	
Equipment No.:	A-001-28T			F	Expiration Date:	22-May-2	2018	
	7/1-7/							
			Ambient (Condition		5055550		
Temperat	ture, Ta	293	Kelvin	Pressu	ire, Pa	762.2	mmHg	
			ifice Transfer Sta	ndard Informat	tion			
Equipme		988	Slope, mc	1.98	425	Intercept, bc	-0.0093	
Last Calibra		22-May-17	,	mc x Qstd + bc =	= [H x (Pa/760)	$(298/Ta)^{1/2}$		
Next Calibra	ation Date:	22-May-18	1 1011					
		•	Calibration of	TCD Commission	18.	F		
I		T	Calibration of	Qstd	100			
Calibration	H	[H x (Pa/7)	60) x (298/Ta)] ^{1/2}	(m ³ /min)	W	[ΔW x (Pa/760) 2	-	
Point	in. of water		, , , , , , , , , , , , , , , , , , , ,	X - axis	in. of oil	Y-ax	is	
1	7.0		2.67	1.35	5.2	2.30)	
2 6.1 2.49 1.26 4.1 2.05								
3	4.9		2.24	1.13	3.2	1.81		
4	4.0		2.02		2.4	1.56	,	
5	3.0		1.75	0.89	1.5	1.24	ŀ	
By Linear Regre	ession of Y on	X						
Slope, mw =	2.2467	_		Intercept, bw =		-0.740	67	
Correlation C	oefficient* =	0	.9985					
- 1 =cn=1			Set Point C					
			$std = 1.21 \text{ m}^3/\text{min } ($	43 CFM)				
From the Regress	sion Equation, t	he "Y" value a	ccording to					
		m x	$\mathbf{Qstd} + \mathbf{b} = [\mathbf{W} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{x} \ (\mathbf{x} \ \mathbf{x} \ (\mathbf{x} \ (\mathbf{x} \ \mathbf{x} \ (\mathbf{x} \ ($	Pa/760) x (298/1	$[a]^{1/2}$			
			- mai - m					
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Ta / 298) =	3	.81		
*If Correlation C	oefficient < 0.0	100 check and	recalibrate again.					
II Conciation C	ocificient < 0.5	90, check and	recambrate again.					
Remarks:								
				ab - 1.24 (j)		-8.5		

QC Reviewer:	WS CHA	\checkmark	Signature:	1	Date:	21/11/17		

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

		Catholic Prim	ary School (ID5)		Operator	:Shum Kar	m Yuen
	: 21-Sep-17				Next Due Date	:21-No	v-17
	: 10088	-		7	Verified Against	:O.T.S	- 988
Equipment No.	: A-001-13T	- "			Expiration Date	:22-May-	2018
Т		1	Ambient	T			
Tempera	ature, Ta	304	Kelvin	Press	ure, Pa	751.1	mmHg
	-	O	ifice Transfer Sta	andard Informa	tion		
Equipm	ent No.:	988	Slope, mc		3425	Intercept, bc	0.0002
Last Calibr		22-May-17					-0.0093
Next Calibr	ation Date:	22-May-18]	mc x Qstd + bc	= [H x (Pa/760)	$x (298/Ta)]^{1/2}$	
		•	6 111				
			Calibration of	TSP Sampler Qstd		1	
Calibration Point	H in. of water	[H x (Pa/70	60) x (298/Ta)] ^{1/2}	(m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-ax i	. /-
1	7.2		2.64	1.34	5.4	2.29	
2	6.0		2.41	1.22	4.1	1.99	
3	5.1		2.22	1.12	3.3	1.79	
4	4.1		1.99	1.01	2.6	1.59	
5	3.1		1.73	0.88	1.6	1.25	
By Linear Regr		X					
Slope, mw = Correlation C	2.1995	_		Intercept, bw =	8	-0.668	2
Correlation	oemcient" = -	0.	9980				
			Set Point Ca				
			$d = 1.21 \text{ m}^3/\text{min}$ (4)	3 CFM)			
From the Regress	sion Equation, th	ne "Y" value ac	cording to				
		m x (Qstd + b = [W x (P)]	a/760) x (298/T	a)] ^{1/2}		
Thomason C	D ' XX /	0.1.1.2	7-7-7-				
Therefore, S	et Point w = (n	n x Qstd + b) ²	x (760 / Pa) x (T	(a/298) =	4.	10	
If Correlation C	oefficient < 0.99	90, check and r	ecalibrate again				
lemarks:							
_							
OCP :	RP in			: D1 -		- 101	
QC Reviewer:	ne		Signature: _	HU	Date:	21/9/201/	

<u>TSP - Total Suspended Particulates Sampler</u> <u>Field Calibration Report</u>

Station	Sau Mau Ping	Catholic Prima	ry School (ID5)		Operator:	Shum Kan	n Yuen
Date:	21-Nov-17	_			Next Due Date:	21-Jan	-18
Pump No.:	10088			V	erified Against:	O.T.S	988
Equipment No.:	A-001-13T			F	Expiration Date:	22-May-2	2018
			Ambient C	Condition			
Temperat	ture Ta	293	Kelvin	Pressu	Pa Da	762.2	mmUa
Temperat	iure, ra	293	Keivin	Pressu	ire, Pa	762.2	mmHg
***		Or	rifice Transfer Sta	ndard Informat	tion		
Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Last Calibra	100	22-May-17		33.55= 33.5			
Next Calibra		22-May-18	I	nc x Qstd + bc =	$= [H \times (Pa/760)]$	x (298/Ta)] ^{1/2}	
			Calibration of				
Calibration Point	H in. of water	[H x (Pa/70	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-a x	. , , ,
1	7.2		2.71	1.37	5.4	2.35	5
2	6.1		2.49	1.26	4.3	2.09)
3	5.1		2.28	1.15	3.3	1.83	}
4	4.2		2.07	1.05	2.5	1.60)
5	3.1		1.78	0.90	1.7	1.32	2
By Linear Regr	ession of Y on	X					
Slope, mw =	2.2093			Intercept, bw =		-0.693	39
Correlation C	oefficient* =	0	.9985	·			
		-9	700		1000		
			Set Point C	alculation			
From the TSP Fig	eld Calibration	Curve, take Os	$std = 1.21 \text{ m}^3/\text{min } (4.1)$				
From the Regress							
0	1				1/2		
		m x	Qstd + b = [W x (]	Pa/760) x (298/T	[a] ^{1/2}		
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Га / 298) =	3	.84	6
*If Correlation C	Coefficient < 0.9	990, check and	recalibrate again.				
Remarks:							
OC D	1000	6An /	C.	21	_	. / /¬	
QC Reviewer:	W> U	MN	Signature:	4	Date:	2//1///	a)

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - May 22, 2017 Rootsmeter S/N 0438320 Ta (K) - Operator Tisch Orifice I.D 0988 Pa (mm) -									
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3910 0.9810 0.8750 0.8330 0.6890	METER DIFF Hg (mm) 3.2 6.4 7.9 8.8 12.7	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00			

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9984 0.9942 0.9921 0.9910 0.9858	0.7178 1.0135 1.1338 1.1897 1.4307	1.4161 2.0027 2.2391 2.3484 2.8322	0.9957 0.9915 0.9894 0.9883 0.9831	0.7158 1.0107 1.1308 1.1865 1.4269	0.8844 1.2507 1.3983 1.4666 1.7687
Qstd slop intercept coefficie	(b) = ent (r) =	1.98425 -0.00930 0.99998	 Qa slope intercept coefficie	(b) =	1.24250 -0.00581 0.99998

y = SQRT[H2O(Ta/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hq)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:				Laser D	ust Mon	itor		
	facturer/Brand:			SIBATA				
Mode				LD-3				
	ment No.:			A.005.0				
Sensi	tivity Adjustment	t Scale Set	tting:	557 CP	М			
Opera	ator:		-	Mike Sh	ek (MSKI	M)		
Standa	ard Equipment							
Equip	ment:	Dur	nrocht (De	oto ob miole	TEOL®			
Venue			precht & Pa			ahaal)		
Mode			erport (Pui ies 1400AB	ring seco	oridary S	споот		
Serial		_		0AB2198	00803			
Coriai	110.			00C1436		V . 40500		
Last C	Calibration Date*		ay 2017	0001430	39003	K _o : <u>12500</u>	1	
*Remar	ks: Recommend			re calibra	tion is 1	vear		
	tion Result							
							-	
Sensit	tivity Adjustment	Scale Set	ting (Before	Calibratio	on):	557 CF	PΜ	
Sensit	tivity Adjustment	Scale Set	ting (After C	alibration):	557 CF		
					,-		141	
Hour	Date	Т	ime	Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)				dition	(mg/m³)	Count ²	Minute ³
				Temp	R.H.	Y-axis	Count	X-axis
	100			(°C)	(%)	I-dais	1.0	A-dxIS
1	06-05-17	12:30	- 13:30	27.5	78	0.04741	1894	31.57
2	06-05-17	13:30	- 14:30	27.6	78	0.04823	1933	32.22
3	06-05-17	14:30	- 15:30	27.6	79	0.04968	1987	33.12
4	06-05-17	15:30	- 16:30	27.6	79	0.04785	1915	31.92
Note:	 Monitoring of 	lata was m	easured by	Rupprec	ht & Pata	shnick TEOM®		
	Total Count	was logge	d by Laser I	Dust Mon	itor			
	Count/minut	te was calc	culated by (T	otal Cou	nt/60)			
By Linea	ar Regression of	Y or X						
	(K-factor):		0.0015					
Correla	ation coefficient:		0.9957					
Validity	y of Calibration F	Record:	6 May 20	18				
Remarks	s:							
	22							
					/			
				Y.	1/			
QC Re	viewer: YW F	ung	_ Signat	ure:		Date	: 08 May	2017

Type:				Laser D	ust Mo	nitor		
Manufa	cturer/Brand:			SIBATA				
Model N				LD-3				
	ent No.:			A.005.0				
Sensitiv	vity Adjustment	Scale Sett	ing:	702 CP	M			
Operato	or:		ā	Mike Sh	ek (MSł	KM)		
Standard	d Equipment							
Equipm	iont:	D		-411-1	TEOL			
Venue:			orecht & Pa erport (Pui					
Model N			s 1400AB		oriuary .	Scrioor		
Serial N		Cont		OAB2198	200803			
Conditi		Sens		200C1436		K _o : 12	500	
Sensor: <u>1200C143659803</u> K _o : <u>12500</u> Last Calibration Date*: <u>6 May 2017</u>								
*Remarks: Recommended interval for hardware calibration is 1 year								
Calibrati	on Result			100				1
120				9.				
	ity Adjustment					702	CPM	
Sensitiv	vity Adjustment	Scale Setti	ng (After C	Calibration	1):	702	CPM	
Hour	Date	Т:.	ne	A mar la	!t	0	T =	0 11
Hour	(dd-mm-yy)	111	ne	Amb		Concentration ¹	Total	Count/
	(uu-iiiii-yy)				R.H.	(mg/m³) Y-axis	Count ²	Minute ³
				Temp (°C)	(%)	1-axis		X-axis
1	06-05-17	12:45 -	13:45	27.5	78	0.04885	1831	30.52
2	06-05-17	13:45 -	14:45	27.6	78	0.05077	1905	31.75
3	06-05-17	14:45 -	15:45	27.6	79	0.05196	1946	32.43
4	06-05-17	15:45 -	16:45	27.6	79	0.04903	1842	30.70
Note:						tashnick TEOM®		
	2. Total Count							
	3. Count/minu	te was calc	ulated by (Total Cou	ınt/60)			
Ry Linear	Regression of	VorV						
	Kegression of K-factor):	1 01 7	0.0016					
	tion coefficient:		0.9979					
Oomelai	don coemcient.		0.9979					
Validity	of Calibration F	Record:	6 May 20)18				
-								
Remarks	:							
	W							
					1. /			
QC Rev	viewer: YW F	ung	Signa	ature:	V		Date: 08	3 May 2017

Type:				Laser D	ust Mon	itor		
	facturer/Brand:		_	SIBATA				
Mode				LD-3				
	ment No.:		_	A.005.09				
Sensi	tivity Adjustment	Scale Setting:	_	797 CP	М			
Opera	ator:		:	Mike She	ek (MSKI	M)		
Standa	rd Equipment							12 10 11 10 10 10 10 10 10 10 10 10 10 10
Equip	ment:	Pupprocht	9 Do	tooboiele	TEOL®			
Venue		Rupprecht Cyberport				- l I)		
Mode		Series 140		ing seco	muary S	criooij		
Serial	1 Individuals	Control:		DAB2198	90803			
		Sensor:		00C1436		K _o : 12500		
Last C	Calibration Date*			7001700	30000	10/2500		
*Remar	ks: Recommend	led interval for ha	rdwar	e calibra	tion is 1	/ear		
	tion Result							
Sensit	ivity Adjustment	Scale Setting (Be	efore (Calibratio	n):	_797CF	PM	
Sensit	ivity Adjustment	Scale Setting (Af	ter Ca	alibration):	_797 CF	PM	
Hour	Date	Time		Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)	100 May 100 May 100 May		1-20-0	dition	(mg/m³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)		'*	
1	06-05-17		3:00	27.5	78	0.04715	1881	31.35
2	06-05-17		:00	27.6	78	0.04843	1939	32.32
3	06-05-17		5:00	27.6	79	0.04987	1992	33.20
Note:	06-05-17		:00	27.6	79	0.04794	1916	31.93
note.	Total Count	lata was measure was logged by La e was calculated	aser D	oust Mon	itor	shnick TEOM®		
	ar Regression of	Y or X						
	(K-factor):	0.00	15					
Correla	ation coefficient:	0.996	61					
Validity	of Calibration F	Record: 6 Ma	y 201	8				
Remark	s:							
					14			
QC Re	viewer: YW F	ung S	ignatu	ıre:	4/	Date	. 08 May	, 2017

Model	facturer/Brand: No.: ment No.:		-	Laser Do SIBATA LD-3 A.005.10	'5	tor		
	tivity Adjustment	Scale Settir	ng: _	753 CPI				
Opera	tor:		ş. <u>—</u>	Mike She	ek (MSKI	м)		
Standa	rd Equipment		4					
Equip	ment:	Dunn	racht 0 Da	da a b m i a l c	TEOLAR			
Venue			recht & Pa rport (Pui `			abaa/\		
Model			s 1400AB	ring sect	nuary S	311001)		
Serial		Contr		0AB2198	20803			
Ooriai	110.	Senso		00C1436		K _o : 12500		
Last C	alibration Date*:		/ 2017	00011000	20000			
	ks: Recommend	ed interval f	or hardwa	re calibra	tion is 1	/ear		
Sensit	ivity Adjustment ivity Adjustment	Scale Settir	ng (After C	alibration): `	753 CF		
Hour	Date	Tin	ne		pient	Concentration ¹	Total	Count/
	(dd-mm-yy)				dition	(mg/m ³)	Count ²	Minute
				Temp	R.H.	Y-axis	1	X-axis
1	07-05-17	10:00 -	11:00	(°C) 25.5	(%) 81	0.04331	1734	20.00
2	07-05-17	11:00 -	12:00	25.6	81	0.04337	1789	28.90 29.82
3	07-05-17	12:00 -	13:00	25.6	82	0.04559	1823	30.38
4	07-05-17	13:00 -	14:00	25.7	81	0.04672	1867	31.12
Slope	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged e was calcu	by Laser I	Dust Mon	itor	shnick TEOM®		
	y of Calibration F	Record: _	7 May 20	18				
Remark	s:							

Type:					ust Mon	itor		
Mode	facturer/Brand:		-	SIBATA				
	ment No.:		-	LD-3	4-			
	tivity Adjustment	Scale Setting		A.005.1 799 CP				
		. Ocale Setting		199 CF	IVI	1 TT		
Opera	ator:		-	Mike Sh	ek (MSKI	M)		
Standa	ard Equipment							
Equip	ment:	Ruppre	cht & Pa	atashnick	TEOM®			
Venue				Ying Seco		chool)		
Mode	***************************************	Series						
Serial	No:	Control	14	0AB2198	99803			
		Sensor:		00C1436	59803	K _o : 12500		
Last C	Calibration Date*	6 May 2	2017					
*Remar	ks: Recommend	led interval for	hardwa	re calibra	tion is 1	year		
Calibra	tion Result						1	
Concil	hivita Adivataa aat	CI- C- III	(D. f	0 !!! !!		24 334494 AVECTOR		
Soneit	tivity Adjustment	Scale Setting	(Before	Calibratio	on):	CF		
Selisii	tivity Adjustment	Scale Setting	(After C	alibration):	CP	M	
Hour	Date	Time		Λml	pient	Concentration	T	T 0
11001	(dd-mm-yy)	111116		COLUMN CONTRACTOR	dition	Concentration ¹	Total	Count/
	(() () () () ()			Temp	R.H.	(mg/m³) Y-axis	Count ²	Minute ³
				(°C)	(%)	I -dXIS	1	X-axis
1	07-05-17	09:15 -	10:15	25.5	81	0.04372	1749	29.15
2	07-05-17	10:15 -	11:15	25.5	81	0.04501	1804	30.07
3	07-05-17	11:15 -	12:15	25.6	81	0.04536	1817	30.28
4	07-05-17	12:15 -	13:15	25.6	82	0.04688	1873	31.22
Note:	 Monitoring of 	lata was meas	ured by	Rupprec	ht & Pata	shnick TEOM®		
	Total Count	was logged by	/Laser [Dust Mon	itor			
	Count/minut	e was calculat	ed by (T	otal Cou	nt/60)			
D. I in								
	ar Regression of							
	(K-factor):		0015					
Correi	ation coefficient:	_0.	9975					
Validity	y of Calibration F	Record: 07	7 May 20	018				
Remark	s:							
L								
QC Re	viewer: YW F	ung	Signat	ure:	1,	Date	: 08 May	2017
	9		J	NAMES OF TAXABLE PARTY.		Date	_ oo iviay	2017

Type:					ust Mon	itor		
	facturer/Brand:			SIBATA				
	4040400		9	LD-3B				
	ment No.:			A.005.1				
Sensi	itivity Adjustment	Scale Setti	ng:	643 CP	PM			
Opera	ator:		9	Mike Sh	ek (MSK	M)		
Standa	ard Equipment							4
Equip	ment:	Punr	rocht & D	ataahniak	TEOM®			
Venue			recht & Pa			-60		
Mode			rport (Pui s 1400AB		ondary S	cnooi)		
Serial		Cont		0AB2198	00000			
Contai	140.	Sens	-	00C1436		V . 40500		
Last C	Calibration Date*		y 2017	0001430	59603	K _o : <u>12500</u>		
*Remar	rks: Recommend			re calibra	tion is 1	vear	//	
	tion Result							
							-	
Sensit	tivity Adjustment	Scale Settin	na (Before	Calibratio	on).	643 CP	NAC	
Sensit	tivity Adjustment	Scale Settin	ng (After C	alibration	۱۱). ۱۰	643 CP		
	, , , , , , , , , , , , , , , , , , , ,		.9 (,	anbration).	_043 CF	IVI	
Hour	Date	Tir	ne	Δm	bient	Concentration ¹	Total	Count/
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(dd-mm-yy)				dition	(mg/m³)	Count ²	Minute ³
	(,			Temp	R.H.	Y-axis	Count	
				(°C)	(%)	I -axis	1-	X-axis
1	07-05-17	09:45 -	10:45	25.5	81	0.04337	1737	28.95
2	07-05-17	10:45 -	11:45	25.6	81	0.04542	1816	30.27
3	07-05-17	11:45 -	12:45	25.6	82	0.04619	1843	30.72
4	07-05-17	12:45 -	The second second	25.7	81	0.04715	1889	31.48
Note:	 Monitoring of 	lata was me	asured by	Rupprec	ht & Pata	shnick TEOM®		
	Total Count	was logged	by Laser I	Dust Mon	itor			
	Count/minut	te was calcu	lated by (1	Γotal Cou	nt/60)			
					,			
	ar Regression of	Y or X						
	(K-factor):	_	0.0015	<u></u>				
Correla	ation coefficient:	_	0.9971					
Validity	y of Calibration F	Record:	7 May 20	18				
Remark	s:	20.012						
						No.		
					10 1			
QC Re	viewer: YW F	ung	Signat	ure:	V/	Date	: 08 May	, 2017
			Jigirial				. Uo iviay	2017

Type:			2	Laser D	ust Mon	itor		
	facturer/Brand:			SIBATA	- 5			
Mode			_	LD-3B				
	ment No.:		_	A.005.14				
Sensi	tivity Adjustment	Scale Sett	ing: _	786 CP	M			
Opera	ator:		_	Mike Sh	ek (MSKI	M)		
Standa	rd Equipment				3,000	<i>b</i> .		
Equip								
Equip			precht & Pa					
Venue Mode			erport (Pui `	Ying Seco	ondary S	chool)		
Serial			s 1400AB	0400400	00000			
Serial	INO.	Cont		0AB2198		16 (0.000		
Last C	Calibration Date*:	Sens	sor: <u>120</u> y 2017	00C1436	59803	K₀: <u>12500</u>		
	Janoration Bato	0 1010	y 2011					32
*Remar	ks: Recommend	ed interval	for hardwa	re calibra	tion is 1	year		
Calibra	tion Result			WI			7	
0	C 16 A D 4							-
Sensit	tivity Adjustment	Scale Setti	ng (Before	Calibration	on):	_786 CP		
Sensit	tivity Adjustment	Scale Setti	ng (After Ca	alibration):	_786 CP	M	
Hour	Date	т:	me					
riour	(dd-mm-yy)	111	ne		pient	Concentration ¹	Total	Count/
	(dd-iiiii-yy)				dition	(mg/m³)	Count ²	Minute ³
				Temp (°C)	R.H. (%)	Y-axis	1.	X-axis
1	07-05-17	13:45	- 14:45	25.7	81	0.04335	1856	30.93
2	07-05-17	14:45	- 15:45	25.8	82	0.04461	1913	31.88
3	07-05-17	15:45	- 16:45	25.8	82	0.04602	1972	32.87
4	07-05-17		- 17:45	25.9	81	0.04714	2024	33.73
Note:	1. Monitoring d	ata was me	easured by	Rupprec	ht & Pata	shnick TEOM®		00.70
	Total Count	was logged	by Laser [Dust Mon	itor			
	Count/minut	e was calcu	ulated by (T	otal Cou	nt/60)			
Dulings	on Danuaria	V V						
	ar Regression of	Y or X	0.0044					
	(K-factor): ation coefficient:		0.0014					
Correi	ation coefficient:		0.9989					
Validity	y of Calibration F	lecord:	7 May 201	18				
Remark	s:							
						/		
					m/			
QC Re	viewer: YW F	ung	Signat	ure:	1/	Date	: 08 May	2017

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0309 01

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K

Type/Model No.:

4231

Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

_

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer: Request No.:

-

Date of receipt:

09-Mar-2017

Date of test:

13-Mar-2017

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	Serial No. 2412857 2743150 2346941 61227 US36087050	Expiry Date: 14-Apr-2017 28-Apr-2017 26-Apr-2017 18-Apr-2017 18-Apr-2017	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI
Digital multi-meter Audio analyzer	8903B	GB41300350	18-Apr-2017 19-Apr-2017	CEPREI CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 50 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

15-Mar-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港 黄 竹 坑 道 3^{*}7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA1201 01

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd. NC-73

Type/Model No.: Serial/Equipment No.:

NC-73 10307223 CN.004.08)

Adaptors used:

2

Item submitted by

Curstomer:

AECOM ASIA CO. LTD.

Address of Customer:

...

Request No.: Date of receipt:

01-Dec-2016

Date of test:

05-Dec-2016

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	14-Apr-2017	SCL
Preamplifier	B&K 2673	2239857	28-Apr-2017	CEPREI
Measuring amplifier	B&K 2610	2346941	26-Apr-2017	CEPREI
Signal generator	DS 360	61227	18-Apr-2017	CEPREI
Digital multi-meter	34401A	US36087050	18-Apr-2017	CEPREI
Audio analyzer	8903B	GB41300350	19-Apr-2017	CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements, are presented on page 2 of this certificate.

Min/Peng Jun Qi

Huang Jia

Approved Signatory:

Date:

08-Dec-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

11.009.04

Certificate No.:

17CA0407 01

Page

2

Item tested

Description: Manufacturer:

Sound Level Meter (Type 1) **B&K**

Microphone **B&K**

4188

Type/Model No.: Serial/Equipment No.: 2238 2285692

2250455

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

07-Apr-2017

Date of receipt:

Date of test:

10-Apr-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 Serial No. 2288444

Expiry Date: 18-Jun-2017

Traceable to: CIGISMEC

Signal generator Signal generator

DS 360 DS 360 33873 61227

18-Apr-2017 18-Apr-2017

CEPREI CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

50 ± 10 % 1010 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1. and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Approved Signatory:

Date:

11-Apr-2017

Company Chop:

Huang Jian Min/Feng Jun Qi

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0303 01-01

Page

of

Item tested

Description: Manufacturer: Type/Model No.:

Adaptors used:

Sound Level Meter (Type 1) **B&K**

2250-L (1.0/1.0/ 2681366

Microphone **B&K** 4950 2665582

Preamp **B&K** ZC0032 17190

Item submitted by

Serial/Equipment No.:

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No :

03-Mar-2017

Date of receipt:

Date of test:

07-Mar-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator Signal generator

Signal generator

Model: B&K 4226

DS 360 DS 360

Serial No. 2288444

33873 61227

Expiry Date:

18-Jun-2017 18-Apr-2017 18-Apr-2017

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 60 ± 10 % 1010 ± 5 hPa

Relative humidity: Air pressure:

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

rMin/Feng Jun Qi Huang Ji

Date: 08-Mar-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0303 01-02

Page

1

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) B & K

Microphone B & K Pream B & K ZC0032

of

Type/Model No.: Serial/Equipment No.: Adaptors used: 2270 2644597 N.012.0/ , 4189 2846461

17965

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.: Date of receipt:

03-Mar-2017

Date of feceipt.

03-Mai-2017

Date of test:

07-Mar-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226 DS 360

DS 360

 I:
 Serial No.

 226
 2288444

2288444 33873 61227 Expiry Date:

18-Jun-2017 18-Apr-2017 18-Apr-2017 Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

Date: 08-Mar-2017

Company Chop:

州の神服

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

APPENDIX E

EM&A Monitoring Schedules

CV/2007/03 - Development at Anderson Road Impact Air Quality and Noise Monitoring Schedule for November 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Nov	2-Nov	3-Nov	4-Nov
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		
5-Nov	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov	11-Nov
		24-hour TSP				
		1-hour TSP				
		Noise				
		(ID1-5)				
12-Nov		14-Nov	15-Nov	16-Nov	17-Nov	18-Nov
	24-hour TSP					24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					(104.5)
40 No.	(ID1-5)	04 No.	00 Na.	00 No.	04 No.	(ID1-5)
19-Nov	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov	25-Nov
					24-hour TSP	
					1-hour TSP	
					Noise (ID1-5)	
26-Nov	27-Nov	28-Nov	29-Nov	30-Nov	(ט-ועו)	
20-1107	Z1-INUV	Z0-INUV	Z9-110V	24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		
				(1010)		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for December 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Dec	2-Dec
3-Dec	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec
			24-hour TSP			
			1-hour TSP			
			Noise			
			(ID1-5)			
10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec
		24-hour TSP				
		1-hour TSP				
		Noise				
17-Dec	18-Dec	(ID1-5) 19-Dec	20-Dec	21-Dec	22-Dec	23-Dec
17-Dec	24-hour TSP	19-000	20-Dec	21-000	22-000	24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					Noise
	(ID1-5)					(ID1-5)
24-Dec	25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec
					24-hour TSP	
					1-hour TSP	
					Noise	
					(ID1-5)	
31-Dec						

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX F

Air Quality Monitoring Results and their Graphical Presentations

Appendix F Air Quality Monitoring Results

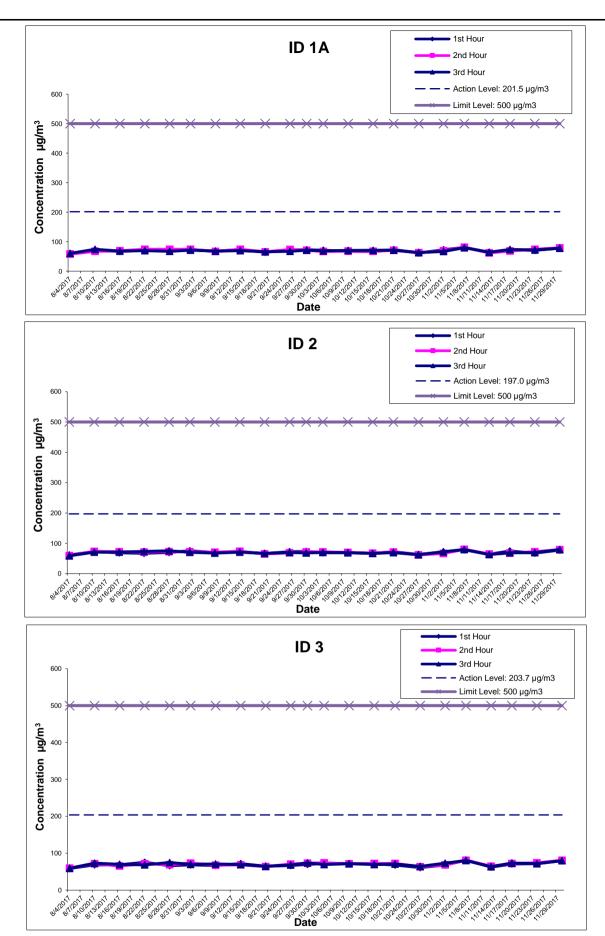
1-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Nov-17	10:40	72.3	69.4	67.2
7-Nov-17	10:10	80.4	81.2	79.7
13-Nov-17	10:02	63.6	62.3	64.1
18-Nov-17	13:10	72.2	68.5	73.3
24-Nov-17	10:26	70.6	74.2	71.9
30-Nov-17	10:30	78.3	78.8	78.0
			Average	72.6
			Min	62.3
			Max	81.2

1-hour TSP Monitoring Results at Station ID 2 (On Yat House)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Nov-17	10:55	71.5	66.9	71.8
7-Nov-17	10:35	78.9	80.1	79.3
13-Nov-17	10:20	64.1	64.4	62.8
18-Nov-17	13:25	74.1	67.5	68.6
24-Nov-17	10:40	67.8	72.2	69.6
30-Nov-17	10:45	77.7	78.6	79.4
			Average	72.0
			Min	62.8
			Max	80.1

1-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

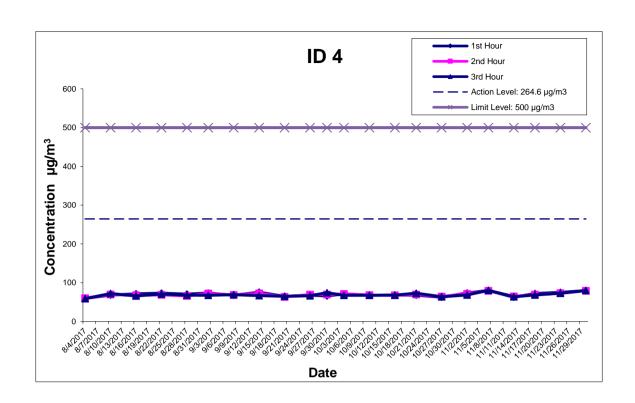

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Nov-17	11:15	67.9	68.7	72.7
7-Nov-17	11:35	81.6	80.5	80.1
13-Nov-17	10:49	62.4	64.6	63.3
18-Nov-17	13:42	70.5	71.8	73.4
24-Nov-17	10:52	72.0	73.9	71.4
30-Nov-17	11:30	80.0	80.6	79.6
			Average	73.1
			Min	62.4
			Max	81.6

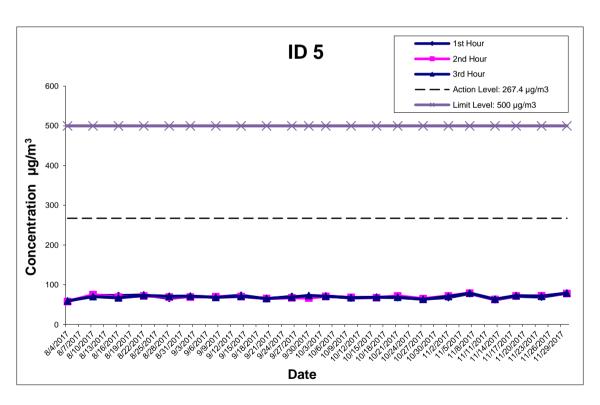
1-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Nov-17	11:30	73.4	71.3	68.3
7-Nov-17	11:10	79.9	79.1	80.4
13-Nov-17	11:06	62.8	64.5	63.7
18-Nov-17	13:58	72.1	69.2	68.4
24-Nov-17	11:06	75.0	73.0	72.8
30-Nov-17	13:10	79.6	79.0	79.9
			Average	72.9
			Min	62.8
			Max	80.4

1-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-Nov-17	11:45	67.9	72.0	70.6
7-Nov-17	11:55	77.9	78.9	79.2
13-Nov-17	11:30	62.2	63.0	63.7
18-Nov-17	14:15	71.3	71.8	72.7
24-Nov-17	11:17	68.9	72.2	71.2
30-Nov-17	13:25	78.7	78.1	79.1
			Average	72.2
			Min	62.2
			Max	79.2





Development at Anderson Road - Site Formation and Associated Infrastructure Works

Graphical Presentations of Impact 1-hour TSP
Monitoring Results

SCALE	N.T.S.	DATE	Dec-1	7
CHECK	FYW	DRAWN	CCW	T
JOB NO.		APPEND	IX No.	Rev.
	60043155	İ	F	-

<u> Development at Anderson Road - Site Formation</u>
and Associated Infrastructure Works

Graphical Presentations of Impact 1-hour TSP
Monitoring Results

SCALE	N.T.S.	DATE	Dec-1	7
CHECK	FYW	DRAWN	CCW	Т
JOB NO.	60043155	APPEND	IX No.	Rev.

Appendix F

Air Quality Monitoring Results

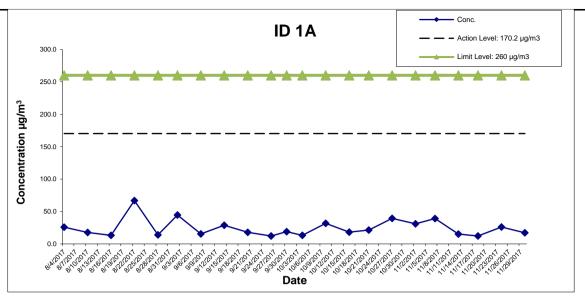
24-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

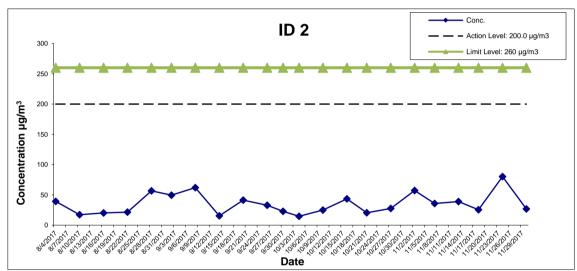
Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Filter Weight (g)		Particulate	Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
2-Nov-17	Sunny	23.8	1014.3	1.31	1.31	1.31	1883.1	2.7767	2.8353	0.0586	25051.79	25075.79	24.00	31.1
7-Nov-17	Cloudy	23.6	1016.0	1.35	1.35	1.35	1944.7	2.7952	2.8714	0.0762	25075.79	25099.79	24.00	39.2
13-Nov-17	Cloudy	21.9	1013.2	1.31	1.31	1.31	1885.9	2.7580	2.7869	0.0289	25099.79	25123.79	24.00	15.3
18-Nov-17	Fine	23.9	1012.2	1.30	1.30	1.30	1875.7	2.6123	2.6355	0.0232	25123.79	25147.79	24.00	12.4
24-Nov-17	Sunny	18.0	1022.1	1.31	1.31	1.31	1891.9	2.7935	2.8428	0.0493	25147.79	25171.79	24.00	26.1
30-Nov-17	Cloudy	22.3	1016.9	1.30	1.31	1.31	1880.1	2.5969	2.6292	0.0323	25171.79	25195.79	24.00	17.2
													Average	23.5
													Min	12.4
													May	30.2

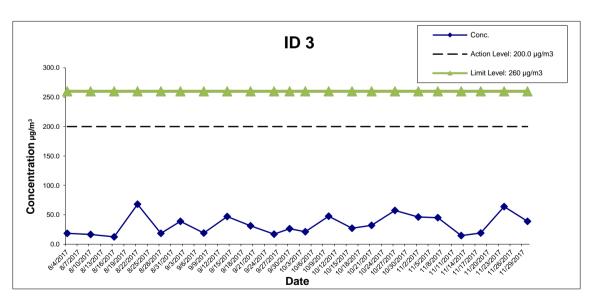
24-hour TSP Monitoring Results at Station ID 2 (On Yat House)

Date	Weather	Air	Atmospheric Flow Rate (m³/min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate	Elapse Time		Sampling	Conc.	
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Nov-17	Sunny	23.8	1014.3	1.30	1.30	1.30	1870.1	2.7795	2.8864	0.1069	22297.12	22321.12	24.00	57.2
7-Nov-17	Cloudy	23.6	1016.0	1.35	1.34	1.34	1936.2	2.7944	2.8638	0.0694	22321.12	22345.12	24.00	35.8
13-Nov-17	Cloudy	21.9	1013.2	1.30	1.30	1.30	1873.0	2.7530	2.8259	0.0729	22345.12	22369.12	24.00	38.9
18-Nov-17	Fine	23.9	1012.2	1.29	1.29	1.29	1862.6	2.6119	2.6593	0.0474	22369.12	22393.12	24.00	25.4
24-Nov-17	Sunny	18.0	1022.1	1.31	1.30	1.31	1879.2	2.7931	2.9440	0.1509	22393.12	22417.12	24.00	80.3
30-Nov-17	Cloudy	22.3	1016.9	1.30	1.30	1.30	1867.1	2.5833	2.6335	0.0502	22417.12	22441.12	24.00	26.9
													Average	44.1
													Min	25.4
													Max	80.3

24-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

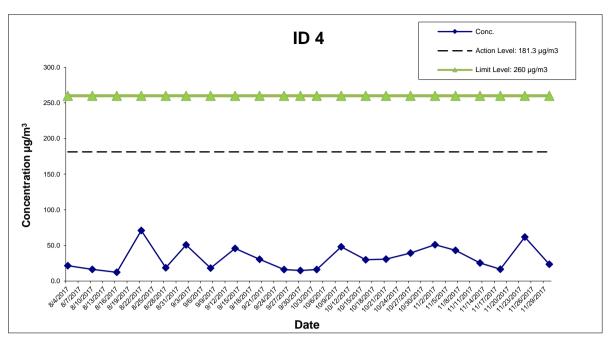

Date	Weather	Air	Atmospheric	pheric Flow Rate (m³/min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate	Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Nov-17	Sunny	23.8	1014.3	1.31	1.31	1.31	1884.7	2.7828	2.8696	0.0868	24635.01	24659.01	24.00	46.1
7-Nov-17	Cloudy	23.6	1016.0	1.35	1.35	1.35	1945.2	2.8244	2.9123	0.0879	24659.01	24683.01	24.00	45.2
13-Nov-17	Cloudy	21.9	1013.2	1.31	1.31	1.31	1887.6	2.7613	2.7887	0.0274	24683.01	24707.01	24.00	14.5
18-Nov-17	Fine	23.9	1012.2	1.30	1.30	1.30	1877.2	2.5804	2.6161	0.0357	24707.01	24731.01	24.00	19.0
24-Nov-17	Sunny	18.0	1022.1	1.32	1.31	1.32	1893.7	2.8088	2.9300	0.1212	24731.01	24755.01	24.00	64.0
30-Nov-17	Cloudy	22.3	1016.9	1.31	1.31	1.31	1881.6	2.5765	2.6494	0.0729	24755.01	24779.01	24.00	38.7
													Average	37.9
													Min	14.5
													Max	64.0

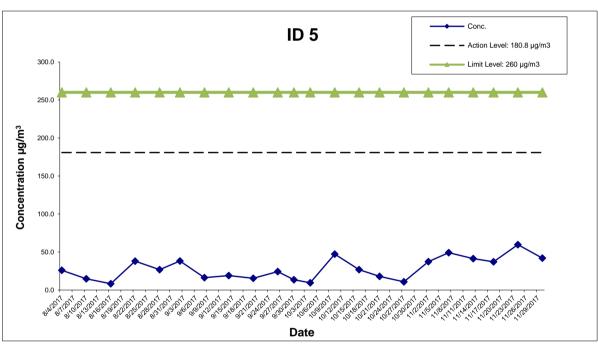

24-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)


Date	Weather	Air	Air Atmospheric Flow Rate (m ³		e (m³/min.)	Av. flow Total vol.		Filter Weight (g)		Particulate	ate Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
2-Nov-17	Sunny	23.8	1014.3	1.31	1.31	1.31	1883.7	2.7737	2.8698	0.0961	25335.67	25359.67	24.00	51.0
7-Nov-17	Cloudy	23.6	1016.0	1.36	1.35	1.36	1952.6	2.7661	2.8505	0.0844	25359.67	25383.67	24.00	43.2
13-Nov-17	Cloudy	21.9	1013.2	1.31	1.31	1.31	1886.9	2.7527	2.8008	0.0481	25383.67	25407.67	24.00	25.5
18-Nov-17	Fine	23.9	1012.2	1.30	1.30	1.30	1875.2	2.5738	2.6052	0.0314	25407.67	25431.67	24.00	16.7
24-Nov-17	Sunny	18.0	1022.1	1.32	1.31	1.32	1893.7	2.8001	2.9170	0.1169	25431.67	25455.67	24.00	61.7
30-Nov-17	Cloudy	22.3	1016.9	1.30	1.31	1.31	1880.2	2.5529	2.5972	0.0443	25455.67	25479.67	24.00	23.6
													Average	37.0
													Min	16.7
													Max	64.7

24-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

Date	Weather Condition	Air Temp. (°C)	Atmospheric Pressure(hPa)	Flow Rate	e (m³/min.) Final	Av. flow (m³/min)	Total vol. (m°)	Filter W Initial	eight (g) Final	Particulate weight(g)	Elapse Initial	e Time Final	Sampling Time(hrs.)	Conc. (µg/m³)
2-Nov-17	Sunny	23.8	1014.3	1.30	1.30	1.30	1877.3	2.7699	2.8398	0.0699	20127.37	20151.37	24.00	37.2
7-Nov-17	Cloudy	23.6	1016.0	1.36	1.35	1.36	1951.5	2.7753	2.8712	0.0959	20151.37	20175.37	24.00	49.1
13-Nov-17	Cloudy	21.9	1013.2	1.31	1.31	1.31	1880.3	2.7486	2.8264	0.0778	20175.37	20199.37	24.00	41.4
18-Nov-17	Fine	23.9	1012.2	1.32	1.33	1.32	1907.7	2.5806	2.6512	0.0706	20199.37	20223.37	24.00	37.0
24-Nov-17	Sunny	18.0	1022.1	1.31	1.31	1.31	1887.0	2.7989	2.9115	0.1126	20223.37	20247.37	24.00	59.7
30-Nov-17	Cloudy	22.3	1016.9	1.30	1.30	1.30	1873.9	2.5734	2.6522	0.0788	20247.37	20271.37	24.00	42.1
													Average	44.4
													Min	37.0
													Max	59.7





Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Dec-	17
	CHECK		DRAWN	CCW	Τ
Graphical Presentations of Impact 24-hour TSP Monitoring Results	JOB NO.	60043155	APPEND	IX No.	Re

Rev.

G **Monitoring Results**

Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	De
and Associated Infrastructure Works	CHECK	FYW	DRAWN	CC
Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPENDI	X No.
Monitoring Posults		60043155	l r	=

Dec-17 CCWT

F

Rev.

Monitoring Results

APPENDIX G

Noise Monitoring Results and their Graphical Presentations

Appendix G Noise Monitoring Results

Daytime Noise Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

_	Weather		Noise Level for 30-min, dB(A) ⁺			Baseline Baseline Noise			
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
2-Nov-17	Fine	10:42	60.2	63.9	62.7	61.0	57.8	70	N
7-Nov-17	Cloudy	10:15	58.7	62.8	61.2	58.5	57.8	70	N
13-Nov-17	Sunny	10:02	58.5	64.0	61.6	59.3	57.8	70	N
24-Nov-17	Sunny	15:43	59.2	65.8	63.6	62.3	57.8	70	N
30-Nov-17	Cloudy	10:30	58.0	61.0	60.0	56.0	57.8	70	N
		Min	58.0	61.0		56.0			
		Max	60.2	65.8		62.3			
		Average				59.9			

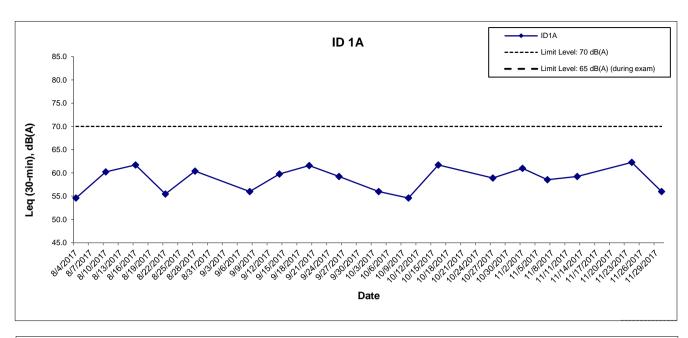
Daytime Noise Monitoring Results at Station ID 2 (On Yat House)

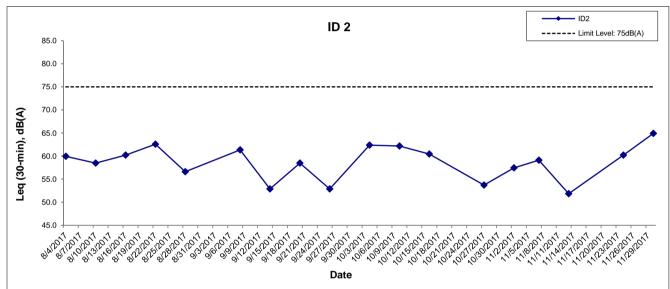
	Date Weather Condition	Nois	Noise Level for 30-min, dB(A) ⁺				Baseline Baseline Noise		
Date		Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
2-Nov-17	Fine	13:10	60.6	65.1	63.3	57.4	62.0	75	N
7-Nov-17	Cloudy	14:50	60.2	66.1	63.8	59.1	62.0	75	N
13-Nov-17	Sunny	14:16	60.0	63.5	62.4	51.8	62.0	75	N
24-Nov-17	Sunny	14:50	60.5	67.4	64.2	60.2	62.0	75	N
30-Nov-17	Cloudy	10:45	63.0	68.5	66.7	64.9	62.0	75	N
		Min	60.0	63.5		51.8			
		Max	63.0	68.5		64.9			
		Average				60.5			

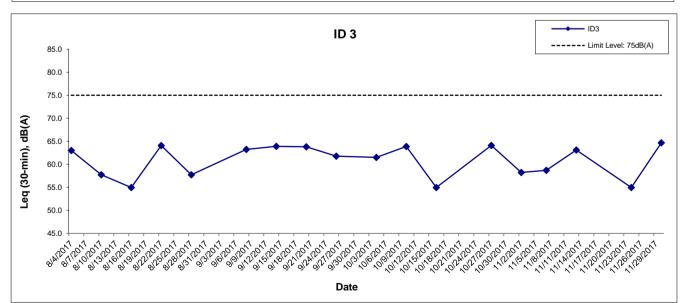
Daytime Noise Monitoring Results at Station ID 3 (Sau Nga House)

	Weather		Noise Level for 30-min, dB(A) ⁺			Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
2-Nov-17	Fine	11:17	63.0	66.7	65.1	58.2	64.1	75	N
7-Nov-17	Cloudy	13:10	62.4	67.4	65.2	58.7	64.1	75	N
13-Nov-17	Sunny	10:49	60.0	64.5	63.1	63.1	64.1	75	N
24-Nov-17	Sunny	13:59	60.9	67.0	64.6	55.0	64.1	75	N
30-Nov-17	Cloudy	11:30	63.5	69.0	67.4	64.7	64.1	75	N
		Min	60.0	64.5		55.0			
		Max	63.5	69.0		64.7			
		Average				61.3			

Daytime Noise Monitoring Results at Station ID 4 (Sau Ming Primary School)

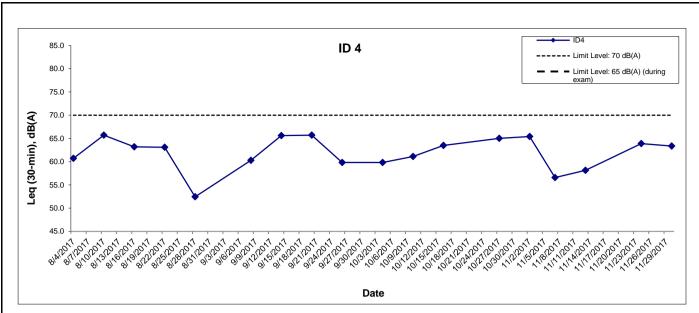

Doto	Date Weather Condition	Nois	e Level for	30-min, dE	3(A) ⁺	Baseline	Baseline Noise		
Date		Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
2-Nov-17	Fine	13:55	63.1	66.6	65.4	65.4	65.7	70	N
7-Nov-17	Cloudy	11:15	62.6	67.7	66.2	56.6	65.7	70	N
13-Nov-17	Sunny	15:06	62.5	67.0	66.4	58.1	65.7	70	N
24-Nov-17	Sunny	13:10	57.9	66.5	63.9	63.9	65.7	70	N
30-Nov-17	Cloudy	13:10	64.0	69.5	67.7	63.4	65.7	70	N
		Min	57.9	66.5		56.6			
		Max	64.0	69.5		65.4			
		Average				62.6			

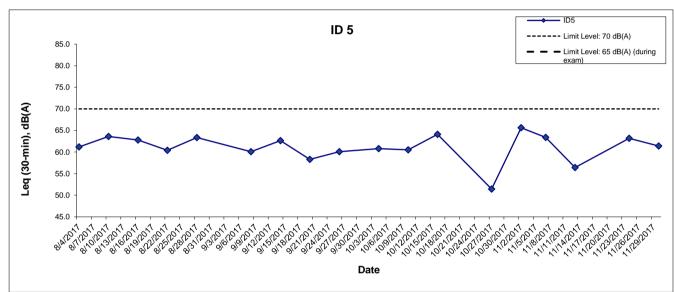

Daytime Noise Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)


Date	Date Weather		Noise Level for 30-min, dB(A) ⁺				Baseline Noise	Limit Level**,	Exceedance
_ = ====	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
2-Nov-17	Fine	14:50	65.7	69.5	68.2	65.6	64.7	70	N
7-Nov-17	Cloudy	14:00	58.6	66.9	63.4	63.4	64.7	70	N
13-Nov-17	Sunny	11:30	63.0	66.5	65.3	56.4	64.7	70	N
24-Nov-17	Sunny	11:17	57.6	67.4	63.2	63.2	64.7	70	N
30-Nov-17	Cloudy	13:25	58.0	62.5	61.4	61.4	64.7	70	N
		Min	57.6	62.5		56.4			
		Max	65.7	69.5		65.6			
		Average				62.9			

⁺ - Façade measurement

^{** -} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.




AECOM

<u>Development at Anderson Road - Site Formation and</u>
<u>Associated Infrastructure Works</u>

Graphical Presentations of Noise Monitoring Results

SCALE	N.T.S.	DATE	Dec-1	7
CHECK	FYW	DRAWN	CCW	Т
JOB NO.		APPENDI	X	Rev
	60043155		-	

Development at Anderson Road - Site Formation and
Associated Infrastructure Works

Graphical Presentations of Noise Monitoring Results

SCALE	N.T.S.	DATE	Dec-1	7	
CHECK	FYW	DRAWN	CCW	Т	
JOB NO.		APPENDI	x	Rev	
	60043155		G		

APPENDIX H

Meteorological Data for the Reporting Month

12/7/2017 Daily Extract

GovHK香港政府一站通 🔪 繁體版 简体版

SEARCH Enter search keyword(s)

SITE MAP

Home

About us

What's new

HKO Side Lights
Our Services
Visitors Figures
Press releases

Weather Note (Chinese)

Back

Daily Extract of Meteorological Observations , November 2017

Year 2017 ▼ Month 11 ▼ Go

	Hong Kong Observatory						King's Park Waglan Islar		land^		
Day	Mean Pressure (hPa)	Air T Absolute Daily Max (deg. C)	Mean (deg. C)	Absolute Daily Min (deg. C)	Mean Dew Point (deg. C)	Mean Relative Humidity (%)	Mean Amount of Cloud (%)	Total Rainfall (mm)	Total Bright Sunshine (hours)	Prevailing Wind Direction (degrees)	Mear Wind Spee (km/h
01	1017.2	26.4	23.0	20.5	16.1	66	29	0.0	10.3	***	***
02	1014.3	27.8	23.8	20.9	16.9	67	22	0.0	10.3	***	***
03	1015.5	27.6	24.5	22.0	16.7	63	64	0.0	10.2	***	***
04	1018.9	25.8	23.6	20.7	14.8	58	86	0.3	1.5	***	***
05	1018.5	25.6	23.0	20.3	15.8	64	78	Trace	8.3	***	***
06	1016.4	25.8	23.3	21.3	17.1	68	87	Trace	1.5	***	***
07	1016.0	26.0	23.6	21.8	18.9	75	88	0.3	0.0	***	***
08	1015.9	27.3	24.6	23.1	20.6	78	88	Trace	1.0	***	***
09	1015.8	26.8	24.4	22.8	19.4	74	77	Trace	6.2	***	***
10	1014.9	28.4	25.0	22.9	20.0	74	56	0.0	9.2	***	***
11	1014.1	26.5	24.7	23.4	20.6	78	89	0.0	1.5	***	***
12	1013.6	23.5	22.1	21.1	19.8	87	93	14.7	0.0	***	***
13	1013.2	22.7	21.9	21.5	20.3	91	95	12.5	0.0	***	***
14	1014.6	24.0	23.0	22.0	20.9	88	88	0.2	0.2	***	***
15	1016.0	23.9	23.2	22.6	20.3	84	84	0.0	0.1	***	***
16	1015.1	26.2	23.4	22.2	19.9	81	68	0.0	7.9	***	***
17	1011.6	26.2	24.2	22.9	21.3	84	42	0.0	9.8	***	***
18	1012.2	26.5	23.9	20.1	20.8	83	60	1.9	3.2	***	***
19	1017.7	20.2	19.9	19.4	17.0	84	88	1.0	0.0	***	***
20	1018.8	20.3	19.3	17.9	15.4	78	91	0.0	0.0	***	***
21	1018.0	21.4	19.3	17.5	15.1	77	88	0.0	0.6	***	***
22	1016.5	22.9	19.8	17.3	14.0	70	60	0.0	9.0	***	***
23	1019.9	20.3	17.8	15.5	10.9	64	47	0.0	5.4	***	***
24	1022.1	20.8	18.0	16.5	11.3	65	86	0.0	3.8	***	***
25	1021.5	19.1	18.0	16.9	13.1	73	88	0.0	0.0	***	***
26	1020.2	22.4	19.7	18.1	14.8	73	73	0.0	4.7	***	***
27	1018.1	22.1	20.3	18.5	16.3	78	84	Trace	0.7	***	***
28	1017.4	24.6	22.2	20.6	18.3	79	76	Trace	2.4	***	***
29	1016.9	26.4	23.8	21.6	20.4	82	74	0.0	5.7	***	***
30	1016.9	23.2	22.3	21.8	20.5	90	86	0.3	0.8	***	***
Mean/Total	1016.6	24.4	22.2	20.5	17.6	76	74	31.2	114.3	***	***
Normal [§]	1017.7	24.1	21.8	19.8	16.0	71	54	37.6	180.1	080	27.

^{***} unavailable

Trace means rainfall less than 0.05 mm

Today's Weather Warnings Local Weather Observations Weather Forecast Weather Monitoring Imagery Computer Forecast **Products** MyObservatory Met on Map **Tropical Cyclones** Aviation Weather Services Marine Meteorological Services Weather Information for Sports Weather Information for Communities China Weather World Weather Climatological Information Services > Climate Watch > Climate Statistics > Climate Prediction > Climate Knowledge > Need More Information? > Global Climate Services > Other Useful Links Climate Forecast

Climate Change

Earthquakes and

Astronomy, Space Weather and

Geomagnetism

Tsunamis

El Nino and La Nina

http://www.hko.gov.hk/cis/dailyExtract_e.htm?y=2017&m=11

[^] Information of wind direction and wind speed for Waglan Island are based on automatic weather station data since January 1989

^{§ 1981-2010} Climatological Normal, unless otherwise specified

APPENDIX I

Event Action Plan

Appendix I – Event Action Plan

Event and Action Plan for Air Quality

Event	ACTION						
	ET	IC(E)	ER	Contractor			
ACTION LEVEL	ACTION LEVEL						
Exceedance for one sample	 Identify source Inform IC(E) and ER. Repeat measurement to confirm finding. Increase monitoring frequency to daily 	Check monitoring data submitted by ET. Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice. Amend working methods if appropriate.			
Exceedance for two or more consecutive samples	 Identify source. Inform IC(E) and ER. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with IC(E) and Contractor for remedial actions required. If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented.	 Submit proposal for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 			

Event and Action Plan for Air Quality

Event		ACTION					
	ET	IC(E)	ER	Contractor			
LIMIT LEVEL	IMIT LEVEL						
Exceedance for one sample	 Identify source. Inform ER and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals Amend proposal if appropriate. 			
Exceedance for two or more consecutive samples	 Identify source. Inform ER and EPD. Repeat measurements to confirm finding. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation to by implemented. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise implementation of remedial measures.	 Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with IC(E), agree with Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop the portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 			

Event and Action Plan for Noise

Event	Action							
	ET	IC(E)	ER	Contractor				
1.Exceedance for Action Level	 Notify IC(E) and Contractor. Carry out investigation. Report the results of investigation to IC(E) and Contractor. Discuss with Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	Review the analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implementation of remedial measures.	Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented.	Submit noise mitigation proposals to IC(E). Implement noise mitigation proposals.				
1.Exceedance for Limit Level	 Notify IC(E), ER, EPD and Contractor. Identify sources. Repeat measurements to confirm finding. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IC(E), ER and EPD the causes and actions taken for the exceedance. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by ER until the exceedance is abated. 				

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J - Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this	Total no. recorded since	
		month	project commencement	
1-Hour TSP	Action	-	-	
	Limit	-	-	
24-Hour TSP	Action	-	15	
	Limit	-	1	
Noise	Action	-	32	
	Limit	-	1	

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. recorded in this month	Total no. recorded since project commencement
Environmental complaints	-	-	-	-	74
Notification of summons	-	-	-	-	6
Successful Prosecutions	-	-	-	-	2