

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Monthly EM&A Report for March 2018

April 2018

	Name	Signature
Prepared & Checked:	William Chan	Him
Reviewed, Approved & Certified:	Yiu Wah Fung (ETL)	n

Version: 0	Date:	12 April 2018
3 (7)() TOTOM 70	Date.	IZ / Ipili ZO IO

Disclaimer

This report is prepared for China State Construction Engineering (Hong Kong) Ltd. and is given for its sole benefit in relation to and pursuant to Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works and may not be disclosed to, quoted to or relied upon by any person other than China State Construction Engineering (Hong Kong) Ltd. without our prior written consent. No person (other than China State Construction Engineering (Hong Kong) Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong. Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: OAPANDSNEM00_0_2043L.18

12 April 2018

By Post and Fax: 2407 8382

Engineer's Representative Ove Arup & Partners Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon Hong Kong

Attention: Mr. Cliff Ko

Dear Sir,

Re: Contract No. CV/2007/03 (Environmental Permit No. EP -140/2002)
Development at Anderson Road
Site Formation and Associated Infrastructure Works
Monthly EM&A Report for March 2018

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report for March 2018 received by e-mail on 9 April 2018 for our review and comment.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.3 of the Environmental Permit No. EP-140/2002.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully,

David Yeung

Independent Environmental Checker

C.C.

AECOM

Attn.: Mr. Y. W. Fung

By Fax: 3922 9797

CSCEC

Attn.: Mr. Holmes Wong

By Email

Q:\Projects\OAPANDSNEM00\Corr\OAPANDSNEM00_0_2043L.18.docx

Table of Content

			Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	3
	1.1	Background	3
	1.2	Scope of Report	
	1.3	Project Organization	
	1.4	Summary of Construction Works	
	1.5	Summary of EM&A Programme Requirements	
2	AIR C	QUALITY MONITORING	6
	2.1	Monitoring Requirements	6
	2.2	Monitoring Equipment	6
	2.3	Monitoring Locations	
	2.4	Monitoring Parameters, Frequency and Duration	7
	2.5	Monitoring Methodology	7
	2.6	Monitoring Schedule for the Reporting Month	10
	2.7	Monitoring Results	10
3	NOIS	E MONITORING	11
	3.1	Monitoring Requirements	11
	3.2	Monitoring Equipment	
	3.3	Monitoring Locations	
	3.4	Monitoring Parameters, Frequency and Duration	12
	3.5	Monitoring Methodology	12
	3.6	Monitoring Schedule for the Reporting Month	
	3.7	Monitoring Results	13
4	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	14
	4.1	Site Inspection	14
	4.2	Advice on the Solid and Liquid Waste Management Status	15
	4.3	Environmental Licenses and Permits	
	4.4	Implementation Status of Environmental Mitigation Measures	
	4.5	Summary of Exceedances of the Environmental Quality Performance Limit	
	4.6	Summary of Complaints, Notification of Summons and Successful Prosecutions.	16
5	FUTU	JRE KEY ISSUES	18
	5.1	Construction Programme for the Coming Two Months	18
	5.2	Key Issues for the Coming Two Months	18
	5.3	Monitoring Schedule for the Coming Month	
6	CON	CLUSIONS AND RECOMMENDATIONS	19
	6.1	Conclusions	19
	6.2	Recommendations	

Monthly EM&A Report for March 2018

List of Tables	
Table 1.1	Contact Information of Key Personnel
Table 2.1	Air Quality Monitoring Equipment
Table 2.2	Locations of Air Quality Monitoring Stations
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period
Table 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Table 3.1	Noise Monitoring Equipment
Table 3.2	Locations of Impact Noise Monitoring Stations
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Summary of Impact Noise Monitoring Results in the Reporting Period
Table 4.1	Summary of Environmental Licensing and Permit Status

List of Figures

Figure 1.1	General Layout Plan
Figure 2.1	Monitoring Locations

List of Appendices

Appendix A	Project Organization Structure
Appendix B	Implementation Schedule of Environmental Mitigation Measures
Appendix C	Summary of Action and Limit Levels
Appendix D	Calibration Certificates of Equipment
Appendix E	EM&A Monitoring Schedules
Appendix F	Air Quality Monitoring Results and their Graphical Presentations
Appendix G	Noise Monitoring Results and their Graphical Presentations
Appendix H	Meteorological Data for the Reporting Month
Appendix I	Event Action Plan
Appendix J	Cumulative Statistics on Exceedances, Complaints, Notification of Summons and
	Successful Prosecutions

EXECUTIVE SUMMARY

The Project "Development at Anderson Road – Site Formation and Associated Infrastructure Works" (hereafter called "the Project") is proposed to form platforms for housing development and associated uses in area of about 20 hectares, and to carry out necessary infrastructural upgrading or improvement works to cater for the proposed development.

China State Construction Engineering (Hong Kong) Limited (CSCE) was commissioned as the Contractor of the Project. AECOM Asia Co. Ltd. (AECOM) was employed by CSCE as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project.

The impact EM&A for the Project includes air quality and noise monitoring. The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.

The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road (Schedule 2 DP) project.

The construction for the Widening of Po Lam Road (Schedule 2 DP) project was commenced on 21 September 2011.

This report documents the findings of EM&A works for ID 1A, ID 2, ID 3, ID 4 and ID 5 conducted in the period between 1 and 31 March 2018. According to the Contractor, construction activities in the reporting period were:

- Site clearance works
- Defect rectification works
- Construction of rock dowels
- Installation of ID tag in Manhole / Chamber / Catchpit
- Construction of planter

Breaches of Action and Limit Levels for Air Quality

All 1-hour TSP results were below the Action and Limit Levels in the reporting month.

All 24-hour TSP results were below the Action and Limit Levels in the reporting month, except for one (1) Action Level exceedance at monitoring location ID 2 on 29 March 2018. The exceedance was under investigation and will be reported in the monthly report for April 2018.

Breaches of Action and Limit Levels for Noise

According to the information provided by the Contractor, no Action Level exceedance of noise was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved areas with proper drainage system
 to handle run-off from maintenance works;
- Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of drainage systems and desilting facilities;
- Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
- Proper mitigation measures should be provided to avoid relocation of treated contaminated soil;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic:
- Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project site is located in the East Kowloon District. It is bounded by Anderson Road to the north, the realigned Sau Mau Ping Road to the south, Po Lam Road to the east, and Lee On Road and Shun On Road to the west.
- 1.1.2 The objective of the Project "Development at Anderson Road Site Formation and Associated Infrastructure Works" under Contract CV/2007/03 (hereafter called "the Project") is to provide land for constructing public housing and government and public facilities. The development will provide 16,100 public housing units for 48,000 people in phases between 2015 and 2016.
- 1.1.3 The scope of works of this Project includes construction of site formation, roads, drains and upgrading of existing infrastructure to provide usable land of about 20 hectares for housing and associated government, institution or community uses at the site between existing Anderson Road Quarry and Sau Mau Ping Road in Kwun Tong District.
- 1.1.4 The Project was anticipated to be completed in the fourth quarter of 2016.
- 1.1.5 Part of the Project involving widening of existing Po Lam Road is a designated project and is governed by an Environmental Permit (EP) EP-140/2002, while the rest of the Project is non-designated. Baseline monitoring covering the entire Project site was undertaken and baseline monitoring report was prepared prior to commencement of construction of the Project in accordance with Conditions 3.2 and 3.4 of the EP (EP-140/2002) and the Environmental Monitoring and Audit (EM&A) Manual. The construction for the Widening of Po Lam Road was commenced on 21 September 2011.
- 1.1.6 According to the EP and the EM&A Manual of the Project, there is a need of an EM&A programme including air quality and noise monitoring.
- 1.1.7 The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.
- 1.1.8 The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road. (Schedule 2 DP) project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was employed by the Contractor, China State Construction Engineering (Hong Kong) Limited (CSCE), as the Environmental Team (ET) to undertake the EM&A works for the Project. In accordance with the EM&A Manual of the Project, environmental monitoring of air quality, noise and environmental site inspections would be required for this Project.

1.2 Scope of Report

1.2.1 This is the 127th monthly EM&A Report under the Contract CV/2007/03 - Development at Anderson Road – Site Formation and Associated Infrastructure Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in March 2018 for ID 1A, ID 2, ID 3, ID 4 and ID 5.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
	Senior Resident Engineer	Cliff Ko	2407 0300	2407 8382
ER (Ove Arup)	Assistant Resident Engineer (Civil)	Brian Wan	2407 0300	2407 8382
IEC (Ramboll) Independent Environmental Checker		David Yeung	3465 2888	3465 2899
Contractor	Site Agent	Holmes Wong	2704 2095	2702 6553
(CSCE)	Safety and Environmental Officer	Raymond Ma	6221 9331	2702 6553
ET (AECOM)	ET Leader	Yiu Wah Fung	3922 9366	2317 7609

1.4 Summary of Construction Works

- 1.4.1 According to the Contractor, the Contactor has carried out the following major activities in the reporting month:
 - Site clearance works
 - Defect rectification works
 - Construction of rock dowels
 - Installation of ID tag in Manhole / Chamber / Catchpit
 - Construction of planter
- 1.4.2 The general layout plan of the Project site showing the contract area is shown in Figure 1.1.
- 1.4.3 The environmental mitigation measures implementation schedule are presented in Appendix B.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise and environmental site inspections for air quality, noise, water quality, chemical and waste management. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming months;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA study final report;
 and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, 1-hour and 24-hour TSP levels at 5 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix C.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170) & Graseby High Volume TSP Sampler (Model No. GMW 2310)
Calibration Kit for High Volume Sampler	Orifice (Model No. TE-5025A)

2.3 Monitoring Locations

2.3.1 Monitoring stations, ID 2, ID 3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Air Quality Monitoring Stations

ID	Location	Monitoring Station	
1A	Kwun Tong Government Secondary School	Roof top of the premises facing Anderson Road	
2	On Yat House	Roof top of the premises facing Lee On Road	
3	Sau Nga House	Roof top of the premises facing Sau Mau Ping Road	
4	Sau Ming Primary School	Roof top of the premises	
5	Sau Mau Ping Catholic Primary School	Roof top of the premises	

Monthly EM&A Report for March 2018

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
ID 1A, ID 2, ID 3, ID 4 &	1-hour TSP	At least 3 times every 6 days
ĺD5	24-hour TSP	At least once every 6 days

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (v) No furnace or incinerator flues nearby.
 - (vi) Airflow around the sampler was unrestricted.
 - (vii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (viii) A secured supply of electricity was obtained to operate the samplers.
 - (ix) The sampler was located more than 20 meters from any dripline.
 - Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xi) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half-length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in Appendix D.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix D.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for environmental monitoring in March 2018 is provided in Appendix E.

2.7 Monitoring Results

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.4 and 2.5 respectively. Detailed air quality monitoring results are presented in Appendix F.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	63.8	59.1 – 70.7	201.5	500
ID 2	65.2	59.7 – 71.3	197.0	500
ID 3	64.9	59.5 – 72.2	203.7	500
ID 4	65.0	60.1 – 71.7	264.6	500
ID 5	65.1	60.8 – 72.2	267.4	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	20.4	13.0 – 26.8	170.2	260
ID 2	63.2	10.4 – 256.2	200.0	260
ID 3	34.1	18.7 – 47.7	200.0	260
ID 4	34.0	10.5 – 48.5	181.3	260
ID 5	30.6	17.3 – 40.5	180.8	260

- 2.7.2 All 1-hour TSP results were below the Action and Limit Levels in the reporting month.
- 2.7.3 All 24-hour TSP results were below the Action and Limit Levels in the reporting month, except for one (1) Action Level exceedance at monitoring location ID 2 on 29 March 2018. The exceedance was under investigation and will be reported in the monthly report for April 2018.
- 2.7.4 The event action plan is annexed in Appendix I.
- 2.7.5 Major dust sources during the dust monitoring included construction dust from the Project site, construction dust from other construction sites nearby and nearby traffic emission.
- 2.7.6 Weather information including wind speed and wind direction is annexed in Appendix H. The information was obtained from Hong Kong Observatory Tseung Kwan O Automatic Weather Station and Anemometer Station.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, impact noise levels should be obtained at 5 noise monitoring stations. Impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix C.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238, 2250-L and 2270)
Acoustic Calibrator	B&K (Model No. 4231) and Rion (Model No. NC-74)

3.3 Monitoring Locations

3.3.1 Monitoring stations, ID 2, ID3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	1m from the exterior of the roof top façade of the premises facing Anderson Road
2	On Yat House	1m from the exterior of the roof top façade of the premises facing Lee On Road
3	Sau Nga House	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
5	Sau Mau Ping Catholic Primary School	1m from the exterior of the roof top façade of the premises facing Po Lam Road

Monthly EM&A Report for March 2018

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Parameter and Duration		Frequency
ID 1A, ID 2, ID 3, ID 4 & ID5	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Façade measurements were made at all monitoring locations.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays; $L_{eq(5-minutes)}$ during restricted hours i.e. 19:00-23:00 and 23:00-07:00 of normal weekdays, whole day of Sundays and Public Holidays
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB (A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix D.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for environmental monitoring in March 2017 is provided in Appendix E.

3.7 Monitoring Results

3.7.1 The monitoring results for noise are summarized in Table 3.4 and the monitoring data is provided in Appendix G.

Table 3.4 Summary of Impact Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}
ID 1A	57.5	51.9 – 60.4	*65/70
ID 2	60.2	48.7 – 62.9	75
ID 3	60.0	50.8 - 63.5	75
ID 4	60.5	54.2 – 65.1	*65/70
ID 5	61.6	59.7 – 63.8	*65/70

Note: *Daytime noise Limit Level of 70dB (A) applies to education institutions while 65dB (A) applies during school examination period.

- 3.7.2 According to the information provided by the Contractor, no Action Level exceedance of noise was recorded since no noise related complaint was received in the reporting month.
- 3.7.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 3.7.4 The event action plan is annexed in Appendix I.
- 3.7.5 Major noise sources during the noise monitoring included construction noise from the Project site, construction noise from other construction sites nearby, nearby traffic noise and noise from school activities and community noise.

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

4.1 Site Inspection

- 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 5 site inspections were carried out on 1, 8, 15, 22 and 29 March 2018. Particular observations and status of non-compliance issued by IEC are described below.
- 4.1.2 The Contractor rectified most of the observations as identified during the environmental site inspections in the reporting month within the agreed time frame. Rectification of the remaining identified items are being carried out by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

4.1.3 Air Quality Impact

- Deposition of dusty materials on the pedestrian road and U-channel on Sau Mau Ping Road was observed. The Contractor was advised to remove the materials for dust suppression and to implement measures to prevent debris from entering the drainage system.
- Soil was carried onto the public road by a site vehicle on On Sau Road. The Contractor was
 advised to enhance and well maintain the wheel washing facility at the exit, and wash every
 vehicle immediately before leaving the site to remove any dusty materials from its body and
 wheels.
- Fugitive dust emission from installation of rock dowel with an air-driven drill on Sau Mau Ping Road was observed. The Contractor was advised to ensure the surface is wet before operation or provide proper enclosure for the activity for dust suppression.
- Mud trail was observed at the vehicle exit points on On Sau Road. The Contractor was
 advised to clean up the mud trail; and wash vehicles immediately before leaving a
 construction site to remove dusty materials from the body and wheels of the vehicles.

4.1.4 Construction Noise Impact

• No specific observation was identified in the reporting month.

4.1.5 Water Quality Impact

• No specific observation was identified in the reporting month.

4.1.6 Chemical and Waste Management

 A chemical container without secondary containment was observed near the slope of Sau Mau Ping Road. The Contractor was advised to store it in a drip tray for preventing chemical spillage; or to dispose of it as chemical waste.

4.1.7 Landscape and Visual Impact

• No specific observation was identified in the reporting month.

4.1.8 Miscellaneous

• No specific observation was identified in the reporting month.

4.2 Advice on the Solid and Liquid Waste Management Status

- 4.2.1 The Contractor is registered as a chemical waste producer for this Project. C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 4.2.2 As advised by the Contractor, 220.09 tonnes of C&D materials were generated on site in the reporting month.
 - For C&D waste, 0 kg of metals was generated and collected by registered recycling collector. 0 kg of paper cardboard packaging and 0 kg of plastics were generated on site and collected by registered recycling collector. No chemical waste was collected by licensed chemical waste collectors. 220.09 tonnes of other types of wastes (e.g. general refuse and tree debris) were generated on site and disposed of at North East New Territories (NENT) Landfill.
- 4.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 4.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

4.3 Environmental Licenses and Permits

4.3.1 The environmental licenses and permits for this Project and valid in the reporting month is summarized in Table 4.1.

Table 4.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	Description	Permit No.	Valid Period		Remarks
Reference	2 ccc ipiicii		From	То	
EIAO	Environment al Permit	EP-140/2002			- Widening of a section of Po Lam Road
APCO	NA notification		16/04/09	1	- Whole Construction Site
WPCO	Discharge Licence	WT00023593 -2016	20/01/16	19/01/21	- Discharge of Construction Runoff
WDO	Chemical Waste Producer Registration	5213-292- C3249-32	19/03/08		- Whole Construction Site
	Waste Charges Account	7006839	12/03/08		- Whole Construction Site

4.4 Implementation Status of Environmental Mitigation Measures

- 4.4.1 In response to the site audit findings, the Contractor carried out corrective actions promptly for particular items recorded. Outstanding items were closely monitored to ensure mitigation measures are implemented properly.
- 4.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix B. Many necessary mitigation measures were implemented properly.

4.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 4.5.1 All 1-hour TSP results were below the Action and Limit Levels in the reporting month.
- 4.5.2 All 24-hour TSP results were below the Action and Limit Levels in the reporting month, except for one (1) Action Level exceedance at monitoring location ID 2 on 29 March 2018. The exceedance was under investigation and will be reported in the monthly report for April 2018.
- 4.5.3 According to the information provided by the Contractor, no Action Level exceedance of noise was recorded since no noise related complaint was received in the reporting month.
- 4.5.4 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 4.5.5 Cumulative statistics on exceedances is provided in Appendix J.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 4.6.1 Complaints shall be referred to the ET Leader for action. The ET Leader shall undertake the following procedures upon receipt of any complaint:-
 - Log complaint and date of receipt onto the complaint database and inform the IC(E) immediately:

Monthly EM&A Report for March 2018

- Investigate the complaint to determine its validity, and assess whether the source of the problem is due to works activities;
- Identify mitigation measures in consultation with the IC(E) if a complaint is valid and due to works:
- Advise the Contractor if additional mitigation measures are required;
- Review the Contractor's response to identified mitigation measures, and the updated situation;
- If the complaint is transferred from EPD, submit interim report to EPD on status of the complaint investigation and follow-up action within the time frame assigned by EPD;
- Undertake additional monitoring and audit to verify the situation if necessary, and review that circumstances leading to the complaint to not recur;
- Report investigation results and subsequent actions to complainant (if the source of complaint is EPD, the results should be reported within the time frame assigned by EPD); and
- Record the complaint, investigation, the subsequent actions and the results in the monthly EM&A reports.
- 4.6.2 During any complaint investigation work, the Contractor and the ER shall cooperate with the ET Leader in providing all necessary information and assistance for completion of the investigation. If mitigation measures are identified in the investigation, the Contractor shall promptly carry out the mitigation. The ER shall ensure that all necessary measures have been carried out by the Contractor.
- 4.6.3 Referring to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.
- 4.6.4 Cumulative statistics on complaints, notification of summons and successful prosecutions is provided in Appendix J.

5 FUTURE KEY ISSUES

5.1 Construction Programme for the Coming Two Months

- 5.1.1 The major construction works in April and May 2018 will be:
 - Site clearance works
 - Defect rectification works
 - Reinstate existing cross road ducts for traffic signal system
 - New Formed Slopes along On Sau Road
 - Construction of planter

5.2 Key Issues for the Coming Two Months

- 5.2.1 Key issues to be considered in the coming months included:-
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
 - Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of drainage systems and desilting facilities;
 - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil:
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
 - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.

5.3 Monitoring Schedule for the Coming Month

5.3.1 The tentative schedule for environmental monitoring in April 2018 is provided in Appendix E.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- 6.1.1 The construction phase of the project commenced in May 2008.
- 6.1.2 1-hour TSP, 24-hour TSP and noise monitoring were carried out in the reporting month.
- 6.1.3 All 1-hour TSP results were below the Action and Limit Levels in the reporting month.
- 6.1.4 All 24-hour TSP results were below the Limit Levels in the reporting month. There was an Action Level exceedance at monitoring location ID 2 in the reporting month. The exceedance was under investigation and will be reported in the monthly report for April 2018.
- 6.1.5 No Action Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 6.1.6 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 6.1.7 Environmental site inspections were carried out 5 times in March 2018. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 6.1.8 According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

6.2 Recommendations

6.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

- The Contractor was advised to remove the deposition of dusty materials on the pedestrian road and U-channel on Sau Mau Ping Road for dust suppression and to implement measures to prevent debris from entering the drainage system.
- The Contractor was advised to enhance and well maintain the wheel washing facility at the
 exit, and wash every vehicle immediately before leaving the site to remove any dusty
 materials from its body and wheels.
- The Contractor was advised to ensure the surface is wet before operation or provide proper enclosure for the activity for dust suppression.
- The Contractor was advised to clean up the mud trail; and wash vehicles immediately before leaving a construction site to remove dusty materials from the body and wheels of the vehicles.

Construction Noise Impact

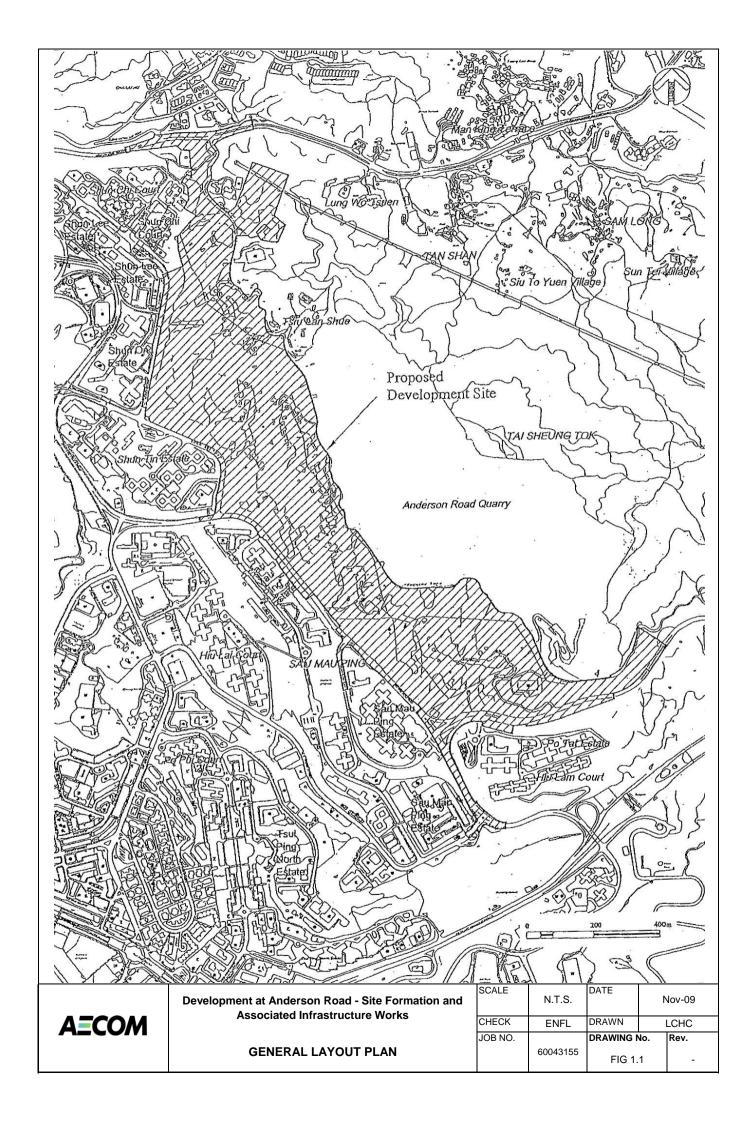
No specific observation was identified in the reporting month.

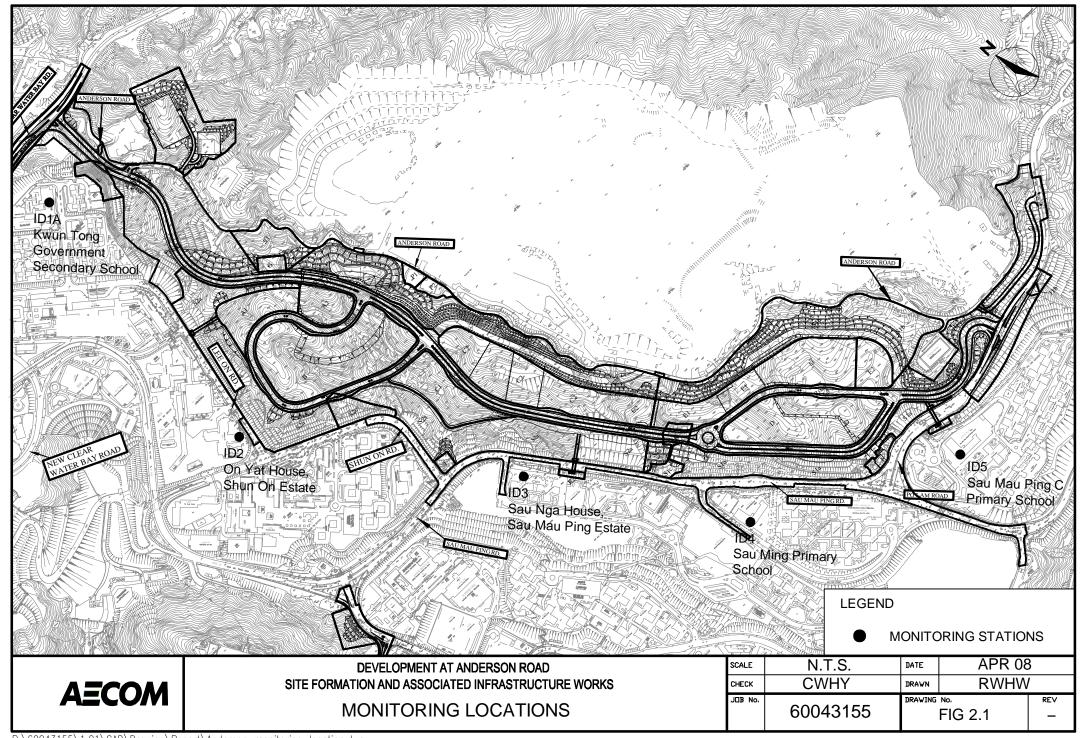
Water Quality Impact

• No specific observation was identified in the reporting month.

Chemical and Waste Management

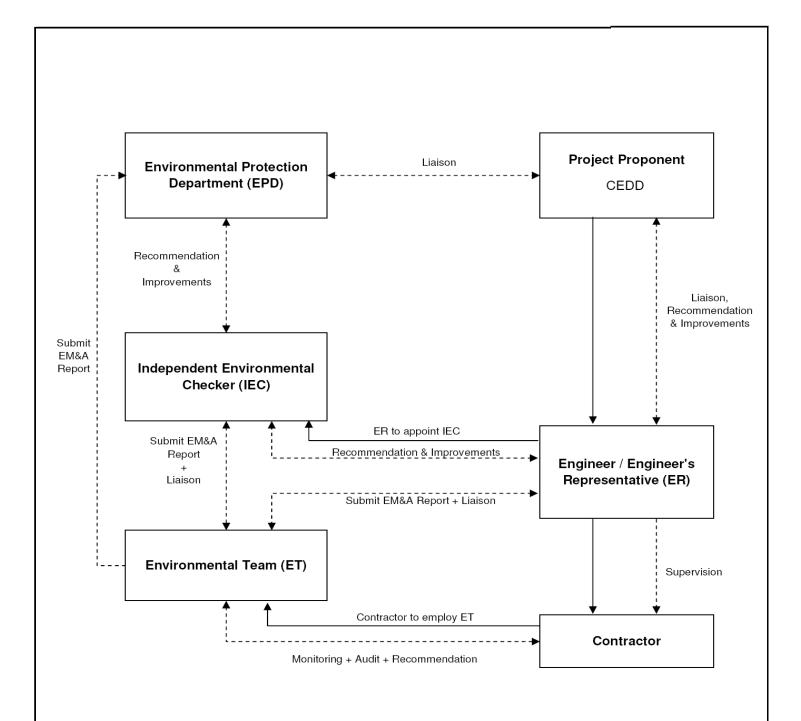
 A chemical container without secondary containment was observed near the slope of Sau Mau Ping Road. The Contractor was advised to store it in a drip tray for preventing chemical spillage; or to dispose of it as chemical waste.


Landscape and Visual Impact


• No specific observation was identified in the reporting month.

Miscellaneous

No specific observation was identified in the reporting month.



APPENDIX A

Project Organization Structure

Employment Relationship
Working Relationship

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

SCALE	N.T.S.	DATE	2009	
CHECK	ENFL	DRAWN	LCHC)
JOB NO.		APPEND	XIX	Rev
	60043155		Α	-

APPENDIX B

Implementation Schedule of Environmental Mitigation Measures

Appendix B - Implementation Schedule of Environmental Mitigation Measures

Environmental M	litigation Measures	Location	Implementation Status
Construction N	oise Impact		
Site Formation	Silenced powered mechanical equipment (PME) for most equipment	All construction sites	V
	(including drill rig, backhoe, dump truck, breaker and crane) and the		
	decrease of percentage on time usage of drill rig among the Central Area		
	from 50% to 40% is proposed.		
	Temporary movable noise barrier shall be used to shield the noise	All construction sites	M
	emanating from the drilling rig in order to provide adequate shielding for the		V
	affected NSRs.		
Construction A	r Quality Impact		
General Site	Mean vehicle speed of haulage trucks at 10km/hr.	All construction sites	V
Practice	Twice daily watering of all open site areas.	All construction sites	V
	Regular watering (once every 1 hour) of all site roads and access roads with	All acretical sites	V
	frequent truck movement.	All construction sites	
	During road transportation of excavated spoil, vehicles should be covered to	All construction sites	V
	avoid dust impact. Wheel washing facilities should be installed at all site		
	exits together with regular watering of the site access roads.		
	Tarpaulin covering of all dusty vehicle loads transported to, from and	All construction sites	V
	between site locations.	All construction sites	
	Establishment and use of vehicle wheel and body washing facilities at the	Site exits	@
	exit points of the site, combined with cleaning of public roads were		
	necessary.		

General Site	Suitable side and tailboards on haulage vehicles.	All construction sites	V
Practice	Watering of temporary stockpiles.	All construction sites	V
Blasting	Use of select aggregate and fines to stem the charge with drill holes and watering of blast face.	All construction sites	N/A
	Use of vacuum extraction drilling methods.	All construction sites	N/A
	Carefully sequenced blasting.	All construction sites	N/A
Crushing	Fabric filters installed for the crushing plant.	All construction sites	V
	Water sprays on the crusher.	All construction sites	V
Loading and Unloading	Water sprays at all fixed loading and unloading points (at the crusher and conveyor belts).	All construction sites	V
Points, and conveyor Belt	The loading point at the crusher is enclosed with dust collection system installed.	All construction sites	V
System	When transferring materials from conveyor belt or crusher to the dump trucks or chutes, dust curtains are used for controlling dust.	All construction sites	V
	Cover the conveyor belts with steel roof and canvas sides.	All construction sites	V
Construction W	/ater Quality Impact		
Construction	All active working areas should be bounded to retain storm water with	Site drainage system	V
Phase	sufficient retention time to ensure that suspended solids are not discharged		
	from the site in concentrations above those specified in the TM for the		
	Victoria Harbour (Phase I) WCZ. All fuel storage areas should be bounded		
	with drainage directed to an oil interceptor.		
		•	

Offina State Soft	struction Engineering (Florig Rong) Etc.	11/10/11/11	y LIVIGA Report for March 2010
	Separate treatment facilities may be required for effluent from site offices, toilets (unless chemical toilets are used) and canteens.	Site drainage system	V
	Discharged wastewater from the construction sites to surface water and/or public drainage systems should be controlled through licensing. Discharge should follow fully the terms and conditions in the licenses.	All works area	V
	Relevant practice for dealing with various type of construction discharges provided in EPD's ProPECC Note PN 1/94 should be adopted.	All works area	@
Waste Managem	nent		
Waste Disposal	Different types of wastes should be segregated, stored, transported and disposed of separately in accordance with the relevant legislative requirements and guidelines as proper practice of waste management.	All construction sites	@
	Sorting of wastes should be done on-site. Different types of wastes should be segregated and stored in different stockpiles, containers or skips to enhance recycling of materials and proper disposal of spoil.	All construction sites	V
	Excavated spoil should be used as much as possible to minimize off-side fill material requirements and disposal of spoil.	All construction sites	V
	Chemical waste should be recycled on-site or removed by licenced companies. It should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical wastes. When off-site	All construction sites	V

			·
	disposal is required, it should be collected and delivered by licenced		
	contractors to Tsing Yi Chemical Waste Treatment Facility and disposed of		
	in accordance with the Chemical Waste (General) Regulation.		
	Necessary mitigation measures should be adopted to prevent the	All construction sites	V
	uncontrolled disposal of chemical and hazardous waste into air, soil, surface		
	waters and ground waters.		
Waste Storage	Chemical material storage areas should be bounded, constructed of	All construction sites	V
	impervious materials and have the capacity to contain 120 percent of the		
	total volume of the containers. Indoor storage areas must have sufficient		
	ventilation to prevent the build-up of fumes, and must be capable of		
	evacuating the space in the event of an accidental release. Outdoor storage		
	areas must be covered with a canopy or contain provisions for the safe		
	removal of rainwater. In both cases, storage areas must not be connected to		
	the foul or stormwater sewer system.		
	Dangerous materials as defined under the DGO, including fuel, oil and	All construction sites	V
	lubricants, should be stored and properly labelled on site in accordance with		
	the requirements in the DGO. If transportation of hazardous materials is		
	necessary, hazardous materials, chemical wastes and fuel should be		
	packed or stored in containers or vessels of suitable design and construction		
	to prevent leakage, spillage or escape.		
	Human waste should be discharged into septic tanks provided by the	All construction sites	V
	contractors and removed regularly by a hygiene services company. Refuse		
	containers such as open skips should be provided at every work site for use		

	by the workforce. On-site refuse collection points must also be provided.		
Landscape ar	nd Visual		
Additional	Planting and vegetation restoration (including transplanted trees) on soil	Whole development	V
Measures	slopes including restoration of grassland, scrub and woodland on slopes		
	around the development platforms and access road. Restoration would be		
	undertaken using predominantly native species.		
Additional	Screen planting along the access roads, to limit impacts of elevated	Whole development	@
Measures	structures and rock slopes.		
	Colouring of shotcrete slopes.	Whole development	X
	Limited planting on shotcrete slopes.	Whole development	X
	Landscape buffers and planting in and around the development itself to	Whole development	Х
	screen partially close views of the site.		
	Screen planting in front of retaining walls / granite cladding to those walls to	Whole development	@
	reduce glare and visual impacts.		
	Careful design of road elevated structure and abutments, to limit visual	Whole development	V
	impacts.		
	Roadside landscape features / hardworks to limit visual impacts.	Whole development	@
	Conservation of CDG or CDV recovered from the site for re-use in the	Whole development	V
	landscape restoration.		
	Preservation (by transplanting if necessary) of any trees identified as being	Whole development	V
	of particular landscape value.		
Ecology			I

Offina Otato Coriot	raction Engineering (Fielig Reng) Eta.	WOTH	y Emart Report for Maron 2010
	Woodland planting on soft cut slopes available (about 13.4ha) within the	Soft cut slopes	V
	development site. Native species, preferably with documented ecological		
	utility, should be used.		
	Seeds of the native species when possible should be added into the	Soft cut slopes	X
	hydroseeding mix. Seedings should be pit planted with placement of slow		
	release fertilizer.		
	Maintenance and service, including weeding, fertilizing, replacement of	Soft cut slopes	@
	dead plants, etc. should be performed during the first 1 years of planting to		
	enhance the survival rate of the plants.		
Contaminated La	nd		
	In accordance with the approved Contamination Assessment Report (CAR)	Locations specified in CAR	@
	and Remediation Action Plan (RAP) in Nov 2006, it is recommended that		
	cement solidification / stabilization prior to on-site backfill for heavy metal		
	contaminated soil and excavation followed by disposal at designated landfill		
	for organic contaminated soil. Upon the completion of the proposed		
	remediation exercise as outlined in CAR & RAP, a Remediation Report will		
	be complied for submission to EPD to demonstrate that the proposed soil		
	remediation has been carried out properly and satisfactorily. Results from		
	the confirmation tests will also be included in the Remediation Report.		
	Photos showing the area of excavation, the solidification process, and		
	remediated soil and site shall also be included in the report for reference.		
Landfill Gas Haza	ırd		
	Further site investigation should be carried out during the detailed design	The whole development site	V

Contract No. CV/2007/03

Development at Anderson Road –
Site Formation and Associated Infrastructure Works

Monthly EM&A Report for March 2018

China State Construction Engineering (Hong Kong) Ltd.

stage in order to measure landfill gas around the perimeter of the site, to	
re-confirm that there is no preferential pathway for landfill gas migration and	
to assess the potential for landfill gas hazards on the future development. If	
a landfill gas hazard is identified, mitigation measures should be proposed	
and implemented to address the hazard.	

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX C

Summary of Action and Limit Levels

Appendix C - Summary of Action and Limit Levels

Table 1 – Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
ID 1A	201.5	500
ID 2	197.0	500
ID 3	203.7	500
ID 4	264.6	500
ID 5	267.4	500

Table 2 – Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
ID 1A	170.2	260
ID 2	200.0	260
ID 3	200.0	260
ID 4	181.3	260
ID 5	180.8	260

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
ID 1A	When one documented	*65 / 70 dB(A)
ID 2	complaint is received	75 dB(A)
ID 3		75 dB(A)
ID 4	from any one of the sensitive	*65 / 70 dB(A)
ID 5	receivers	*65 / 70 dB(A)

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period

APPENDIX D

Calibration Certificates of Equipments

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma		7 Rootsmeter Orifice I.I	438320 0988	Ta (K) - Pa (mm) -	295 - 754.38	
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3910 0.9810 0.8750 0.8330 0.6890	METER DIFF Hg (mm) 3.2 6.4 7.9 8.8 12.7	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9984 0.9942 0.9921 0.9910 0.9858	0.7178 1.0135 1.1338 1.1897 1.4307	1.4161 2.0027 2.2391 2.3484 2.8322	0.9957 0.9915 0.9894 0.9883 0.9831	0.7158 1.0107 1.1308 1.1865 1.4269	0.8844 1.2507 1.3983 1.4666 1.7687
Qstd slop intercept coefficie	(b) = ent (r) =	1.98425 -0.00930 0.99998	 Qa slope intercept coefficie	(b) =	1.24250 -0.00581 0.99998

y = SQRT[H2O(Ta/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hq)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Station	Kwun Tong Go	overnment Seco	ondary School (ID1	IA)	Operator:	Choi Wir	ng Ho
	8-Jan-18		350		Next Due Date:	8-Mar-	18
Pump No.:				V	erified Against:	O.T.S	988
Equipment No.:				I	Expiration Date:	22-May-	2018
			Ambient (Condition			
Tempera	ture Ta	291	Kelvin	772	ıre, Pa	758.7	mmHg
Tompera							
		Or	ifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Last Calibra	ation Date:	22-May-17		mc x Qstd + bc =	= (H v (Pa/760)	v (298/Ta)] ^{1/2}	
Next Calibra	ation Date:	22-May-18		ine x Qstu + be -	- [II X (I a//00)	x (290/14)]	
		T	Calibration of				
Calibration Point	H in. of water	[H x (Pa/70	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-ax	
1	7.3		2.73	1.38	5.5	2.37	7
2	6.6		2.60	1.32	4.9	2.24	
3	5.7		2.41	1.22	3.8	1.97	
4	4.4		2.12	1.07	2.5	1.60	
5	3.2		1.81	0.92	1.8	1.36	5
By Linear Regr		X				0.55	
Slope, mw =		_		Intercept, bw =	=	-0.75	11
Correlation C	Coefficient* =	0	.9957	•			
			Set Point C	Calculation			
From the TSP Fi	eld Calibration	Curve, take Qs	$td = 1.21 \text{ m}^3/\text{min } ($	(43 CFM)			
From the Regres							
150			Ostd + b = [W x (D - /5/0) /400 /5	E-11/2		
		m x	Qstd + b = W x	ra//ou) x (298/)	(a)		
Therefore,	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (Ta / 298) =	3	5.80	
							9
*If Correlation C	Coefficient < 0.9	990, check and	recalibrate again.				
Remarks:							
	Cl LV			1		8/1/18	
OC Reviewer:	Sham K		Signature:	gr-	Date:	8/1/18	

Station	On Yat House	<u>(I</u> D2)			Operator:	Leung Yı	u Ting
Date:	21-Jan-18				Next Due Date:	20-Mar	-18
Pump No.:	10373			V	erified Against:	O.T.S	988
Equipment No.:				I	Expiration Date:	22-May-	2018
			Ambient C	Condition			
Tempera	ture, Ta	285	Kelvin	Pressu	ıre, Pa	763.3	mmHg
		Oı	ifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Last Calibra	ation Date:	22-May-17	_	nc x Qstd + bc =	- III - (Da/760)	- (209/Ta)1 ^{1/2}	
Next Calibr	ation Date:	22-May-18	I	ne x Qsta + be =	= [H X (Fa//60)	x (296/1a)]	
			Calibration of	TSP Sampler			120
Calibration	Н		1/2	Qstd	W	[ΔW x (Pa/760) :	x (298/Ta)] ^{1/2}
Point	in. of water	$[H \times (Pa/760) \times (298/Ta)]^1$		(m³/min)	in. of oil	Y-axis	
2.		-		X - axis	5.4	2.24	
1	7.2		2.75	1.39	5.4	2.38	
2	6.2		2.55	1.29	4.4	2.15	
3	5.0		2.29	1.16	3.0	1.77	
4	3.9		2.02	1.02	2.3	1.55	*****
5	2.8		1.71	0.87	1.4	1.21	
By Linear Regr		X		.		0.77	10
	2.2365	_		Intercept, bw =		-0.75	10
Correlation C	coefficient* =	0	.9961				
			G . B G	7 7 6			
D 1 TODE	110 11 1	C . 1 O	Set Point C				
			$std = 1.21 \text{ m}^3/\text{min} (4)$	43 CFM)			
From the Regres	sion Equation, t	ne "Y" value a	eccording to				
		m x	$\mathbf{Qstd} + \mathbf{b} = [\mathbf{W} \times (\mathbf{l} + \mathbf{b})]$	Pa/760) x (298/T	$[a]^{1/2}$		
Therefore,	Set Point $W = ($	m x Qstd + b)	² x (760 / Pa) x (7	$\Gamma a / 298) =$	3	.64	
					_		
*If Correlation C	Coefficient < 0.9	990, check and	recalibrate again.				
Remarks:							
	· ·		ANSWER THE STATE OF				
OC Reviewer:	L1.		C:		D-1	22-1-18	
OC Reviewer:	91 Llung		Signature:		Date:	1 10	

Station	Sau Nga House	e (ID3)			Operator:	Leung Yil	ı i ing
Date:	21-Jan-18				Next Due Date:	20-Mar-	-18
Pump No.:	3261			V	erified Against:	O.T.S	988
Equipment No.:	A-001-77T			E	Expiration Date:	22-May-2	2018
	49 - 810-0777767 - 07						
			Ambient C	Condition			
Temperat	ture, Ta	285	Kelvin	Pressu	ire, Pa	763.3	mmHg
		Or	ifice Transfer Sta	ndard Informat	tion		
Equipme	nt No.:	988	Slope, mc	1.984	425	Intercept, bc	-0.0093
Last Calibra	tion Date:	22-May-17		nc x Qstd + bc =	- IH v (Po/760)	v (208/Ta)11/2	\$40,000
Next Calibra	ation Date:	22-May-18	1	ne x Qstu + be -	- [H X (Fa//00)	1 (296/14)]	
			Calibration of	TSP Sampler			
Calibration Point	H in. of water	[H x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-axi	
1	7.1		2.73	1.38	5.1	2.31	
2	6.1		2.53	1.28	4.4	2.15	
3	5.4		2.38	1.20	3.5	1.92	
4	4		2.05	1.04	2.4	1.59	
5	2.8		1.71	0.87	1.4	1.21	
By Linear Regre	ession of Y on	X					
Slope, mw =	2.1901			Intercept, bw =		-0.691	.4
Correlation C	oefficient* =	0	.9986				

			Set Point C	ATTENDED TO THE PERSON OF THE			
			$td = 1.21 \text{ m}^3/\text{min } (4)$	43 CFM)			
From the Regress	sion Equation, t	he "Y" value a	ccording to				
		m x	Qstd + b = [W x (l)]	Pa/760) x (298/T	(a)] ^{1/2}		
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3	.65	
*If Correlation C	oefficient < 0.9	90, check and	recalibrate again.				
		7					
Remarks:							
-					1 7 10 1 18.8	20	
QC Reviewer:	t Lan		Signature:		Date:	27-1-119	

Station	Sau Ming Prim	ary School (ID	94)		Operator:	Shum Kan	n Yuen
Date:	21-Jan-18				Next Due Date:	20-Mar	r-18
Pump No.:	1275			O.T.S	988		
Equipment No.:	A-001-28T			F	Expiration Date:	22-May-	2018
		· ·	Ambient C	Condition			
Temperat	ture, Ta	285	Kelvin	Pressu	ıre, Pa	763.3	mmHg
		Or	ifice Transfer Sta	ndard Informat	tion		
Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Last Calibra	tion Date:	22-May-17	***	nc x Qstd + bc =	= (H v (Pa/760)	v (208/Ta)] ^{1/2}	
Next Calibra	ation Date:	22-May-18		iic x Qstu + bc -	- [II X (I &/ 700)	x (296/1 a)]	
<u></u>							
		1	Calibration of				
Calibration	Н	[H (D-/7/	(208/Ta)1/2	Qstd (m ³ /min)	W	[ΔW x (Pa/760) x	x (298/Ta)] ^{1/2}
Point	in. of water	[H X (Pa) /	[H x (Pa/760) x (298/Ta)] ^{1/2}		in. of oil	Y-axis	
1	7.1		2.73	X - axis	5.2	2.34	
2	6.1		2.53	1.28	4.2	2.10	
3	4.8		2.25	1.14	3.3	1.86	
4	4.1		2.08	1.05	2.4	1.59	
5	3.0		1.77	0.90	1.5	1.26	,
By Linear Regr	ession of Y on	X				7-10-51-5-51	
Slope, mw =	2.2374			Intercept, bw =		-0.743	30
Correlation C	oefficient* =	0.	.9975				
			·				
			Set Point C				
			$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
From the Regress	sion Equation, t	he "Y" value a	ccording to				
		m v (Qstd + b = [W x (I	Pa/760) x (298/T	$(a)1^{1/2}$		
			Q3544 × 5 (1 × 14 / 2	. II. 700) II (250/1	·-/]		
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Ta / 298) =	3	.67	
					_	22-24	
*If Correlation C	coefficient < 0.9	90, check and	recalibrate again.				
D 1							
Remarks:							
i .	<u> </u>						1.000
QC Reviewer:	47 1,		Signature:	5	Date	2)-1-18	
QC Keviewer:	11 000		Signature:		Date:	1 10	

Station	Sau Mau Ping	Catholic Prima	ry School (ID5)		Operator:	Shum Kan	n Yuen	
Date:	21-Jan-18	_			Next Due Date:	20-Mai	20-Mar-18	
Pump No.:	10088			O.T.S	988			
Equipment No.:	A-001-13T			H	Expiration Date:	22-May-	2018	
			Ambient C	Condition				
Temperat	ure, Ta	285	Kelvin	Pressu	re, Pa	763.3	mmHg	
		Or	ifice Transfer Sta	ndard Informat	tion	No.		
Equipme	nt No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093	
Last Calibra	tion Date:	22-May-17	n	nc x Qstd + bc =	= (H x (Pa/760)	$(298/Ta)^{1/2}$		
Next Calibra	tion Date:	22-May-18			[22 12 (2 12.7 (27.7)			
			Calibration of					
Calibration	Н	[H v (Do/74	50) v (208/Ta)] ^{1/2}	Qstd (m³/min)	W	[ΔW x (Pa/760) :		
Point	in. of water	[H x (Pa/760) x (298/Ta)] ^{1/2}		X - axis	in. of oil	Y-axis		
1	7.1		2.73	1.38	5.5	2.40		
2	6.0		2.51	1.27	4.3	2.13	3	
3	5.1		2.31	1.17	3.3	1.86	5	
4	4.2		2.10	1.06	2.5	1.62	2	
5	3.0		1.77	0.90	1.6	1.30)	
By Linear Regr	ession of Y on	X						
Slope, mw =	2.3034			Intercept, bw =		-0.80	07	
Correlation C	oefficient* =	0	.9980					
		11500						
		****	Set Point C					
From the TSP Fig	eld Calibration	Curve, take Qs	$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)				
From the Regress	sion Equation,	he "Y" value a	ccording to					
		m v	Qstd + b = [W x (J)]	Pa/760) v (208/1	$[a]^{1/2}$			
		III X	Qstu · b – [w x (s	(2)0/ 1	· • /]			
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3	.76		
						1000		
*If Correlation C	coefficient < 0.9	990, check and	recalibrate again.					
Remarks:						· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	17.5						
	VII		0.		D. (22-1-18		
QC Reviewer:	1/ ley		Signature:		Date:	' ' ' ' '		

<u>Tisch TSP Mass Flow Controlled High Volume Air Sampler</u> Field Calibration Report

Station	Kwun Tong Go	overnment Sec	ondary School (ID)	lA)	Operator:	Shum Kam	n Yuen
Date:	8-Mar-18				Next Due Date:	8-May-	18
Pump No.:	846					O.T.S	
Equipment No.:	A-001-64T			I	Expiration Date:	22-May-2	2018
Model:	TE-5170						
			Ambient C	Condition			
Temperat	ture, Ta	293	Kelvin	Pressu	ıre, Pa	763.3	mmHg
		Oı	ifice Transfer Sta	ndard Informa	tion		
Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Last Calibra	tion Date:	22-May-17		no v Ootd bo	- III (Da/760)	- (209/T-)1 ^{1/2}	
Next Calibra	ation Date:	22-May-18	I	nc x Qstd + bc =	= [H X (Pa//60)	x (298/1a)]	
		•			500		
			Calibration of	TSP Sampler			
Calibration	Н		1.10	Qstd	w	[ΔW x (Pa/760) x	(208/Ta)1 ^{1/2}
Point	in. of water	[H x (Pa/7)	50) x (298/Ta)] ^{1/2}	(m ³ /min)	in. of oil	Y-axi	
	7.1			X - axis		7.50.50.10.50.50.50.50.50.50.50.50.50.50.50.50.50	***************************************
1	7.1		2.69	1.36	5.6	2.39	
2	6.4		2.56	1.29	4.7	2.19	
3	5.5		2.37	1.20	3.8	1.97	
4	4.2		2.07	1.05	2.6	1.63	
5	3.4		1.86	0.94	1.7	1.32	
By Linear Regr		X					
Slope, mw =		_		Intercept, bw =		-1.011	1
Correlation C	oefficient* =	0	.9992				
			C + D I + C				-
From the TSD Eig	old Coliberation	C 4-1 O-	Set Point C				
From the Regress			$td = 1.21 \text{ m}^3/\text{min}$ (4	43 CFM)			
rrom the Regress	sion Equation, t	ne "Y" value a	ccording to				
		m x	Qstd + b = [W x (I)]	Pa/760) x (298/T	$[a]^{1/2}$		
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3	.93	
*If Correlation C	coefficient < 0.9	90, check and	recalibrate again.				
Remarks:							
	116 614	v		21		01-10	
QC Reviewer:	WS CHA	J	Signature:	4	Date:	8/3/18	

Graseby TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

Station	On Yat House	(<u>I</u> D2)			Operator:	Leung Yiu	i Ting
Date:	21-Mar-18	_			Next Due Date:	21-May-	-18
Pump No.:	10373			V	erified Against:	O.T.S	988
Equipment No.:	A-001-12T			H	Expiration Date:	22-May-2	2018
Model:	GMW 2310						
						2002	
			Ambient C	Condition			
Temperat	ture, Ta	297	Kelvin	Pressu	ire, Pa	761.3	mmHg
		Or	rifice Transfer Sta	ndard Informat	tion		
Equipme	nt No.:	988	Slope, mc	1.98	1000	Intercept, bc	-0.0093
Last Calibra		22-May-17					0.0075
Next Calibra		22-May-18	n	nc x Qstd + bc =	= [H x (Pa/760)	$x (298/Ta)]^{1/2}$	
			Calibration of	TSP Sampler			3,275
Calibration Point	H in. of water	[H x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) x Y-axi	
1	7.1		2.67	1.35	5.4	2.33	
2	6.2		2.50	1.26	4.5	2.13	
3	4.9		2.22	1.12	3.0	1.74	
4	3.9		1.98	1.00	2.3	1.52	
5	2.9		1.71	0.87	1.3	1.14	}
By Linear Regr		X					
Slope, mw =	2.4545	_		Intercept, bw =		-0.977	′0
Correlation C	oefficient* =	0	.9981				
		2500					
			Set Point C	alculation	400		
From the TSP Fig	eld Calibration	Curve, take Os	$ttd = 1.21 \text{ m}^3/\text{min } (4.1)$			100000000000000000000000000000000000000	
From the Regress							
	-		_		1/2		
		m x	$\mathbf{Qstd} + \mathbf{b} = [\mathbf{W} \times (\mathbf{J} + \mathbf{b})]$	Pa/760) x (298/1	[a)] ^{1/2}		
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =	3	.95	
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.	4 W 4 W 30			
		yo, encentara	rocumorate again.				
Remarks:							
			7 9				
,				7			
QC Reviewer:	WS CHAN	1	Signature:	41	Date:	21/03/18	

<u>Tisch TSP Mass Flow Controlled High Volume Air Sampler</u> Field Calibration Report

Station	Sau Nga House	(ID3)			Operator	: Leung Y	iu Ting
Date:	21-Mar-18				Next Due Date	: 21-Ma	ay-18
Pump No.:	3261			V	erified Against	: O.T.S	988
Equipment No.:	A-001-77T			I	Expiration Date	: 22-May	<i>r</i> -2018
Model:	TE-5170					3	
			Ambient C	Condition		_	
Temperat	ture, Ta	297	Kelvin	Pressu	ıre, Pa	761.3	mmHg
		Or	ifice Transfer Sta	ndard Informat	tion		
Equipme	ent No.:	988	Slope, mc	1.98		Intercept, bc	-0.0093
Last Calibra		22-May-17					·•
Next Calibra		22-May-18	n	nc x Qstd + bc =	= [H x (Pa/760)	x (298/Ta)] ^{1/2}	
1 - 0X5.2							
			Calibration of			4	
Calibration Point	H in. of water	[H x (Pa/70	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) Y-a	
1	7.2		2.69	1.36	5.1	2.2	26
2	6.2		2.50	1.26	4.3	2.0)8
3	5.4		2.33	1.18	3.4	1.8	35
4	4.1		2.03	1.03	2.4	1.5	55
5	2.8		1.68	0.85	1.4	1.1	.9
By Linear Regr		X					
Slope, mw =		_		Intercept, bw =		-0.62	267
Correlation C	oefficient* =	0	.9986				
-							
			Set Point C	alculation			**
			$ttd = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
From the Regres	sion Equation, t	he "Y" value a	ccording to				
		m x	Qstd + b = [W x (]	Pa/760) x (298/T	[a]] ^{1/2}		
Therefore, S	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (7	Γa / 298) =		3.76	_
4220 1 1 6	200 1 0 0						
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.				
Remarks:							
			3 200				
				* * *			
QC Reviewer:	WS CHAN		Signature:	31	Date	: 4/03/18	<u> </u>

Graseby TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

Date: 21-May-18 Pump No: 1775 Pump No: 1775 Pump No: 2175 Pump No: 2175 Pump No: 2018 Pump No:	Station	Sau Ming Prim	ary School (ID	4)		Operator:	Shum Kam	Yuen
Equipment No.: A-001-28T Model: GMW 2310	Date:	21-Mar-18				Next Due Date:	21-May	-18
Ambient Condition Temperature, Ta 297 Kelvin Pressure, Pa 761.3 mmHg	Pump No.:	1275			V	erified Against:		
$ \begin{array}{ c c c c c c }\hline & Ambient Condition \\ \hline Temperature, Ta & 297 & Kelvin & Pressure, Pa & 761.3 & mmHg \\ \hline \hline & & & & & & & & & & & & & & & & &$	Equipment No.:	A-001-28T			F	Expiration Date:	22-May-2	2018
Calibration Date: 22-May-17 Next Calibration Date: 22-May-18 Calibration of TSP Sampler Calibration H on of water (H x (Pa/760) x (298/Ta)) (m³/min)	Model:	GMW 2310						
Calibration Date: 22-May-17 Next Calibration Date: 22-May-18 Calibration of TSP Sampler Calibration H on of water (H x (Pa/760) x (298/Ta)) (m³/min)								
				Ambient C	Condition			
Calibration Date: 22-May-17 Next Calibration Date: 22-May-18 Teleproper 22-May-19 Teleproper 22-May-19 Teleproper 22-May-18	Temperat	ture, Ta	297	Kelvin	Pressu	ıre, Pa	761.3	mmHg
Equipment No.: 988		-	1/10/2020					
Last Calibration Date: 22-May-17 Next Calibration Date: 22-May-18 me x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2}			Or	ifice Transfer Sta	ndard Informat	tion		
Next Calibration Date: 22-May-18 mc x Qstd + bc = H x (Pa/760) x (298/Ta) \(^{1/2}\)	Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Calibration Date:	Last Calibra	ation Date:	22-May-17			III - (D-/7(0)	(200/5-)1/2	
Calibration Point in. of water $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ $Qstd \pmod{m^3/\min}$ W in. of oil W $Y-axis$ $Y-axis$ 1 7.2 2.69 1.36 5.2 2.29 2 6.1 2.48 1.25 4.2 2.05 3 4.9 2.22 1.12 3.3 1.82 4 3.9 1.98 1.00 2.4 1.55 5 2.9 1.71 0.87 1.6 1.27 By Linear Regression of Y on X Slope , mw = $\frac{2.0647}{2.0993}$ Intercept, bw = $\frac{-0.5165}{2.993}$ Intercept $\frac{1}{2}$ \frac	Next Calibra	ation Date:	22-May-18	r	nc x Qsta + bc =	= [H X (Pa//60)	x (298/Ta)]	
Calibration Point in. of water $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ $Qstd \pmod{m^3/\min}$ W in. of oil W $Y-axis$ $Y-axis$ 1 7.2 2.69 1.36 5.2 2.29 2 6.1 2.48 1.25 4.2 2.05 3 4.9 2.22 1.12 3.3 1.82 4 3.9 1.98 1.00 2.4 1.55 5 2.9 1.71 0.87 1.6 1.27 By Linear Regression of Y on X Slope , mw = $\frac{2.0647}{2.0993}$ Intercept, bw = $\frac{-0.5165}{2.993}$ Intercept $\frac{1}{2}$ \frac			7.0					
Calibration Point in. of water $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ $Qstd \pmod{m^3/\min}$ W in. of oil W $Y-axis$ $Y-axis$ 1 7.2 2.69 1.36 5.2 2.29 2 6.1 2.48 1.25 4.2 2.05 3 4.9 2.22 1.12 3.3 1.82 4 3.9 1.98 1.00 2.4 1.55 5 2.9 1.71 0.87 1.6 1.27 By Linear Regression of Y on X Slope , mw = $\frac{2.0647}{2.0993}$ Intercept, bw = $\frac{-0.5165}{2.993}$ Intercept $\frac{1}{2}$ \frac				Calibration of	TSP Sampler			
Point in. of water $[H \times (Pa'760) \times (298/1a)]^{1/2}$ (m''/min) $X - axis$ in. of oil $Y - axis$ 1 7.2 2.69 1.36 5.2 2.29 2 6.1 2.48 1.25 4.2 2.05 3 4.9 2.22 1.12 3.3 1.82 4 3.9 1.98 1.00 2.4 1.55 5 2.9 1.71 0.87 1.6 1.27 By Linear Regression of Y on X Slope , mw = 2.0647 Intercept, bw = 2.0647 Intercept, bw = 2.0647 Correlation Coefficient* = 2.0993 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = $1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to $2.000000000000000000000000000000000000$	Calibration	н			Qstd	W	[AW v (Po/760) v	(208/Ta)1/2
1			[H x (Pa/76	50) x (298/Ta)] ^{1/2}		223		
2 6.1 2.48 1.25 4.2 2.05 3 4.9 2.22 1.12 3.3 1.82 4 3.9 1.98 1.00 2.4 1.55 5 2.9 1.71 0.87 1.6 1.27 By Linear Regression of Y on X Slope , mw = 2.0647 Intercept, bw = -0.5165 Correlation Coefficient* = 0.9993 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again.					X - axis		1 6/1	
3							2.29	
		6.1		2.48	1.25	4.2	2.05	
By Linear Regression of Y on X Slope , mw = 2.0647 Intercept, bw = -0.5165 Correlation Coefficient* = 0.9993 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = $1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)^2 x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again.				2.22	1.12	3.3	1.82	
By Linear Regression of Y on X Slope, $mw = 2.0647$ Intercept, $bw = -0.5165$ Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to $m \times Qstd + b = [W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point $W = (m \times Qstd + b)^2 \times (760/Pa) \times (Ta/298) = 3.91$ *If Correlation Coefficient < 0.990, check and recalibrate again.		3.9		1.98	1.00	2.4	1.55	
Slope, $mw = 2.0647$ Intercept, $bw = -0.5165$ Correlation Coefficient* = 0.9993 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m ³ /min (43 CFM) From the Regression Equation, the "Y" value according to $m \times Qstd + b = [W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point $W = (m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) = 3.91$ *If Correlation Coefficient < 0.990, check and recalibrate again.	5	2.9		1.71	0.87	1.6	1.27	
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again.	By Linear Regr	ession of Y on	X					
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again.	Slope, $mw = \frac{1}{2}$	2.0647			Intercept, bw =	:	-0.516	i5
From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again.	Correlation C	oefficient* =	0	.9993				
From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again.						-		
From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again.					STAIL STAIL			
From the Regression Equation, the "Y" value according to $\mathbf{m} \times \mathbf{Q} \times \mathbf{d} + \mathbf{b} = [\mathbf{W} \times (\mathbf{Pa}/760) \times (298/\mathbf{Ta})]^{1/2}$ Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) =	1000			Set Point C	alculation			
$m \times Qstd + b = [W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point W = $(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) = 3.91$ *If Correlation Coefficient < 0.990, check and recalibrate again.	From the TSP Fi	eld Calibration	Curve, take Qs	$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:	From the Regress	sion Equation,	the "Y" value a	ccording to				
Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 3.91 *If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:					- (=<0)	- >-1/2		
*If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:			m x	Qstd + b = [W x (I)]	Pa/760) x (298/1	[a)]		
*If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:	Therefore S	Set Point W = (m v Ostd + h)	² v (760 / Pa) v (7	Γ ₂ / 208) =	3	01	
Remarks:	increiore, s	octronic w	m x Qsta · o)	x(700714)x((a / 250)		./1	
	*If Correlation C	Coefficient < 0.9	990, check and	recalibrate again.				
	Remarks:							
QC Reviewer: WS (WAS) Signature: Pl Date: 21/03/18					- WW - W		18.00	-
QC Reviewer: WS (WAN) Signature: Pl Date: 21/03/18			7.99			1000-1000-0-1		
	QC Reviewer:	WS CLIAN	<i>f</i>	Signature:	21	Date	21/03/18	

Graseby TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

Date: 21-May-18 Pump No: 10088 Pump No: 20081 Pump No:	Station	Sau Mau Ping	Catholic Prima	ry School (ID5)		Operator:	Shum Kam	Yuen
Equipment No.: A-001-13T Model: GMW 2310	Date:	21-Mar-18				Next Due Date:	21-May	-18
Ambient Condition Temperature, Ta 297 Kelvin Pressure, Pa 761.3 mmHg	Pump No.:	10088			V	erified Against:	O.T.S	988
Ambient Condition Temperature, Ta 297 Kelvin Pressure, Pa 761.3 mmHg	Equipment No.:	A-001-13T			F	Expiration Date:	22-May-2	.018
Temperature, Ta 297 Kelvin Pressure, Pa 761.3 mmHg	Model:	GMW 2310						
Temperature, Ta 297 Kelvin Pressure, Pa 761.3 mmHg								00.980.00
Calibration Date: 22-May-17 Next Calibration Date: 22-May-18 Slope, mc 1.98425 Intercept, be -0.0093				Ambient C	Condition			
Equipment No.: 988 Slope, mc 1.98425 Intercept, bc -0.0093 Last Calibration Date: 22-May-18 mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2} -0.0093 Calibration of TSP Sampler Calibration Point in of water Point in of wa	Tempera	ture, Ta	297	Kelvin	Pressu	ıre, Pa	761.3	mmHg
Equipment No.: 988 Slope, mc 1.98425 Intercept, bc -0.0093 Last Calibration Date: 22-May-18 mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2} -0.0093 Calibration of TSP Sampler Calibration Point in of water Point in of wa								
Last Calibration Date: 22-May-17			Or	ifice Transfer Sta	ndard Informat	tion		
Next Calibration Date: 22-May-18 mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2}	Equipme	ent No.:	988	Slope, mc	1.98	425	Intercept, bc	-0.0093
Calibration Date: 22-May-18	Last Calibra	ation Date:	22-May-17	*	0-41 - 1	III - (D-/7(0)	(200/75-)1/2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Next Calibra	ation Date:	22-May-18	I	nc x Qsta + bc =	= [H X (Pa//60)	x (298/1a)]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u> </u>	2 No. 2017 No. 2017			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Calibration of	TSP Sampler			
Point in. of water $[H \times (Pa'/60) \times (298/1a)]^{1/2}$ (m''/min) $X - axis$ in. of oil $Y - axis$ 1 7.2 2.69 1.36 5.5 2.35 2 6.0 2.46 1.24 4.4 2.10 3 5.1 2.26 1.14 3.4 1.85 4 4.2 2.05 1.04 2.5 1.59 5 3.1 1.77 0.90 1.5 1.23 By Linear Regression of Y on X Slope , mw = 2.4562 Intercept, bw = 2.4562 Intercept, bw = 2.4562 Correlation Coefficient* = 2.4562 Intercept, bw = 2.4562 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = $1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to $2.25 \text{ m}^3/\text{m}^3/m$	Calibration	н			.472	W	[AW v (Pa/760) v	(208/Ta)1 ^{1/2}
1	The second figures		[H x (Pa/76	60) x (298/Ta)] ^{1/2}		0.20		8 95
2 6.0 2.46 1.24 4.4 2.10 3 5.1 2.26 1.14 3.4 1.85 4 4.2 2.05 1.04 2.5 1.59 5 3.1 1.77 0.90 1.5 1.23 By Linear Regression of Y on X Slope, mw = 2.4562 Intercept, bw = -0.9662 Correlation Coefficient* = 0.9990 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again.						16.00		
3 5.1 2.26 1.14 3.4 1.85 4 4.2 2.05 1.04 2.5 1.59 5 3.1 1.77 0.90 1.5 1.23 By Linear Regression of Y on X Slope, mw = 2.4562 Intercept, bw = -0.9662 Correlation Coefficient* = 0.9990 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again.			1000					
								·
By Linear Regression of Y on X Slope , $mw = 2.4562$ Intercept, $bw = -0.9662$ Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to $m \times Qstd + b = [W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point $W = (m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) = 4.00$ *If Correlation Coefficient < 0.990, check and recalibrate again.					1.04		1.59	
Slope , mw = 2.4562 Intercept, bw = -0.9662 Correlation Coefficient* = 0.9990 Set Point Calculation From the TSP Field Calibration Curve, take Qstd = $1.21 \text{ m}^3/\text{min}$ (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)^2 x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again.				1.77	0.90	1.5	1.23	
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:			X					
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:	15 5		_		Intercept, bw =		-0.966	2
From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again.	Correlation C	oefficient* =	0	.9990				
From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again.	N 1886 - VOLUME							
From the TSP Field Calibration Curve, take Qstd = 1.21 m³/min (43 CFM) From the Regression Equation, the "Y" value according to m x Qstd + b = [W x (Pa/760) x (298/Ta)]^{1/2} Therefore, Set Point W = (m x Qstd + b)² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again.								
From the Regression Equation, the "Y" value according to $\mathbf{m} \times \mathbf{Q} \times \mathbf{M} + \mathbf{b} = [\mathbf{W} \times (\mathbf{Pa}/760) \times (\mathbf{298/Ta})]^{1/2}$ Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again.						E-870		
$m \times Qstd + b = [W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point W = $(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) = 4.00$ *If Correlation Coefficient < 0.990, check and recalibrate again.	From the TSP Fi	eld Calibration	Curve, take Qs	$std = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:	From the Regres	sion Equation,	the "Y" value a	ccording to				
Therefore, Set Point W = (m x Qstd + b) ² x (760 / Pa) x (Ta / 298) = 4.00 *If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:				O-44 + b - 1117 - 0	D- /7(0) (200/7	C->11/2		
*If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:			шх	$Qsta + b = [w \ x \ (b)]$	ra//00) X (298/1	(a)]		
*If Correlation Coefficient < 0.990, check and recalibrate again. Remarks:	Therefore, S	Set Point W = (m x Ostd + b)	² x (760 / Pa) x (7	Γa / 298) =	4	.00	
Remarks:	1110101010,	(m n Qolu - 0)	n(100/14)n(, 250)			
	*If Correlation C	Coefficient < 0.9	990, check and	recalibrate again.				
	Remarks:							
OC Reviewer: WS (HAN) Signature: P1 Date: 21/32/18				1700 14 200000 200	- 0%			
QC Reviewer: WS (HAN) Signature: P1 Date: 21/32/18								
	QC Reviewer:	WS CHAN	J	Signature:	PI	Date:	21/03/18	

Type				Laser D	ust Mon	itor		
	facturer/Brand:			SIBATA				
	l No.:			LD-3				
	ment No.:			A.005.0				
Sensi	itivity Adjustmen	t Scale Se	etting:	557 CP	М			
Opera	ator:			Mike Sh	ek (MSK	M)		
Standa	ard Equipment							
Fauin	ment:	D.	nnracht 0 F	lata ab miali	TEOL®			
Venue			pprecht & P berport (Pui			ahaal)		
Mode			ries 1400AE		Jiluary S	criooi)		
Serial		_		, 40AB2198	00803			
	1.7 1.75.1			200C1436		K _o : 12500	,	
Last C	Calibration Date*		lay 2017	20001400	09000	No		
*Remar	rks: Recommend	ded interva	al for hardwa	are calibra	tion is 1	year		
Calibra	tion Result							
Sensit	tivity Adjustment	Scale Set	tting (Before	Calibration	on):	557 CF	PM	
Sensit	tivity Adjustment	Scale Set	tting (After 0	Calibration):	557 CF		
Hour	Date	Т	「ime	Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Con	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)	N. 10.3996.07.7.0000	1.0	
1	06-05-17	12:30	- 13:30	27.5	78	0.04741	1894	31.57
2	06-05-17	13:30	- 14:30	27.6	78	0.04823	1933	32.22
3	06-05-17	14:30	- 15:30	27.6	79	0.04968	1987	33.12
4	06-05-17	15:30	- 16:30	27.6	79	0.04785	1915	31.92
Note:	1. Monitoring of	lata was n	neasured by	/ Rupprec	ht & Pata	shnick TEOM®		
	2. Total Count	was logge	ed by Laser	Dust Mon	itor			
	Count/minut	te was cal	culated by (Total Cou	nt/60)			
Duling	on Donners's (V V						
Slope	ar Regression of (K-factor):	Y or X	0.0045					
	ation coefficient:		0.0015					
Correi	alion coefficient:		0.9957					
Validity	y of Calibration F	Record:	6 May 20)18				
Damada								
Remark	S:							
QC Re	viewer: YW F	iuna	Signa	ture:	1	D .		00:-
~ J 1 10	10001	urig	_ Signa	iule.		Date	: 08 May	/ 2017

Type:				Laser D	ust Mo	nitor		
	cturer/Brand:			SIBATA				
Model N				LD-3				
	ent No.:		6.	A.005.0				
Sensitiv	rity Adjustment	Scale Sett	ng:	702 CP	М			
Operato	or:		=	Mike Sh	ek (MSł	(M)		
Standard	d Equipment							
Equipm	ont:	D		-411-1	TEOL			
Venue:	CIII.		orecht & Pa erport (Pui					
Model N	yo .		s 1400AB		oriuary .	3011001)		
Serial N		Cont		OAB2198	00803	99		
ochari	10.	Sens		00C1436		K _o : 12:	500	
Last Ca	libration Date*:		y 2017	0001430	09000	No	500	
*Remarks	s: Recommend		•	are calibra	ation is 1	year	×	
Calibrati	on Result			138				1
9000 V0000		100						
	ity Adjustment					702	CPM	
Sensitiv	ity Adjustment	Scale Setti	ng (After C	alibration	1):	702	CPM	
Hour	Date	Tir	ne	Amb		Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond		(mg/m ³)	Count ²	Minute ³
	,			Temp	R.H.	Y-axis		X-axis
4	00.05.47	10.15	10.15	(°C)	(%)			
2	06-05-17	12:45 -	13:45	27.5	78	0.04885	1831	30.52
3	06-05-17	13:45 -	14:45	27.6	78	0.05077	1905	31.75
4	06-05-17 06-05-17	14:45 -	15:45	27.6	79	0.05196	1946	32.43
		15:45 -	16:45	27.6	79	0.04903	1842	30.70
						tashnick TEOM®		
	Total CountCount/minut							
	5. Countrillina	e was calc	Jialeu by (TOTAL COL	111/00)			
Bv Linear	Regression of	Y or X						
	(-factor):		0.0016					
	ion coefficient:		0.9979					
Validity	of Calibration F	Record:	6 May 20	18				
Remarks:								
***					, /			
QC Rev	iewer: YW F	una	Signa	ituro:	4/	-)ate: 08	3 May 2017

Type:			Laser D	ust Mon	itor		
	facturer/Brand:		SIBATA				
Mode			LD-3				
	ment No.:		A.005.0	9a			
Sensi	tivity Adjustment	Scale Setting:	797 CP	M			
Opera	ator:		Mike Sh	ek (MSK	M)		
Standa	rd Equipment						
Equip	mont:	D	5				
Venue		Rupprecht &					
Model		Cyberport (F		ondary S	chool)		
Serial	10/00/2004	Series 1400/ Control:		00000			
Ochai	NO.	Sensor:	140AB2198 1200C1436		1/ 10500		
Last C	Calibration Date*		120001430	59803	K _o : _12500		
			4				
*Remar	ks: Recommend	led interval for hard	ware calibra	tion is 1	year		
Calibra	tion Result	-				- /	
0							
Sensit	ivity Adjustment	Scale Setting (Befo	ore Calibration	on):	_797 CF		
Sensit	ivity Adjustment	Scale Setting (Afte	r Calibration):		PM	
Hour	Date	Time	Δm	bient	Concentration ¹	Total	Counti
	(dd-mm-yy)	70		dition	(mg/m³)	Count ²	Count/ Minute ³
	, ,,,		Temp	R.H.	Y-axis	Count	X-axis
			(°C)	(%)	- date	1.6	N-dx13
1	06-05-17	12:00 - 13:0		78	0.04715	1881	31.35
2	06-05-17	13:00 - 14:0	00 27.6	78	0.04843	1939	32.32
3	06-05-17	14:00 - 15:0	00 27.6	79	0.04987	1992	33.20
4	06-05-17	15:00 - 16:0		79	0.04794	1916	31.93
Note:	Monitoring of	lata was measured	by Rupprec	ht & Pata	ashnick TEOM®		
	2. Total Count	was logged by Las	er Dust Mon	itor			
	3. Count/minut	e was calculated by	y (Total Cou	nt/60)			
By Lines	ar Regression of	VorV					
	(K-factor):	0.0015	:				
	ation coefficient:	0.9961					
	anon occinional.	_0.5501					
Validity	of Calibration F	Record: 6 May	2018				
Remarks	s:						
				-			
							2
QC Re	viewer: YW F	iuna Sia	nature:	1/	Date	· 08 May	0047

Model	facturer/Brand: No.: ment No.:		-	Laser Do SIBATA LD-3 A.005.10	'5	tor		
	tivity Adjustment	Scale Settir	ng: _	753 CPI				
Opera	tor:		3 —	Mike She	ek (MSKI	м)		
Standa	rd Equipment		4					
Equip	ment:	Dunn	racht 0 Da	da a b m i a l c	TEOLAR			
Venue			recht & Pa rport (Pui `			abaa/\		
Model			s 1400AB	ring sect	nuary S	311001)		
Serial		Contr		0AB2198	20803			
Ooriai	110.	Senso		00C1436		K _o : 12500		
Last C	alibration Date*:		/ 2017	00011000	20000			
	ks: Recommend	ed interval f	or hardwa	re calibra	tion is 1	/ear		
Sensit	ivity Adjustment ivity Adjustment	Scale Settir	ng (After C	alibration): `	753 CF		
Hour	Date	Tin	ne		pient	Concentration ¹	Total	Count/
	(dd-mm-yy)				dition	(mg/m ³)	Count ²	Minute
				Temp	R.H.	Y-axis	1	X-axis
1	07-05-17	10:00 -	11:00	(°C) 25.5	(%) 81	0.04331	1734	20.00
2	07-05-17	11:00 -	12:00	25.6	81	0.04337	1789	28.90 29.82
3	07-05-17	12:00 -	13:00	25.6	82	0.04559	1823	30.38
4	07-05-17	13:00 -	14:00	25.7	81	0.04672	1867	31.12
Slope	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged e was calcu	by Laser I	Dust Mon	itor	shnick TEOM®		
	y of Calibration F	Record: _	7 May 20	18				
Remark	s:							

Type:			-		ust Mon	itor		
Mode	facturer/Brand:			SIBATA				
	ment No.:		-	LD-3 A.005.1	10			
	tivity Adjustment	Scale Setting	1:	799 CP				
Opera			-	SI SECTION SECTION	ek (MSKI	MA)		
			-	IVIING SITE	ek (IVISKI			
Standa	ard Equipment	_						
	ment:			atashnick				
Venue				Ying Seco	ondary S	chool)		
Mode Serial	***************************************		1400AB	0400400	00000			
Ochai	INO.	Contro Sensor		0AB2198 00C1436		V . 40500		
Last C	Calibration Date*			0001430	09003	K₀: <u>12500</u>		
*Remar	ks: Recommend	led interval fo	r hardwa	re calibra	tion is 1	year		
Calibra	tion Result						1	
Sensit	tivity Adjustment	Scale Setting	(Refore	Calibratio	m).	799 CP	11.4	
Sensit	tivity Adjustment	Scale Setting	(After C	alibration):):	799 CP		
		9	(,.	700 01	IVI	
Hour	Date	Time)	COLUMN TO SERVICE AND ADDRESS OF THE PERSON	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)				dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis	14	X-axis
1	07-05-17	09:15 -	10:15	(°C) 25.5	(%)	0.04070	47.40	
2	07-05-17	10:15 -	11:15	25.5	81 81	0.04372 0.04501	1749	29.15
3	07-05-17	11:15 -	12:15	25.6	81	0.04536	1804 1817	30.07 30.28
4	07-05-17	12:15 -	13:15	25.6	82	0.04688	1873	31.22
Note:	1. Monitoring of	lata was mea	sured by	Rupprec	ht & Pata	shnick TEOM®	1010	01.22
	Total Count	was logged b	y Laser [Dust Mon	itor			
	Count/minut	e was calcula	ted by (T	otal Cou	nt/60)			
By Lines	ar Regression of	V or V						
	(K-factor):		.0015					
	ation coefficient:		.9975					
Validity	y of Calibration F			240				
validity	y or Calibration F	kecord: _0	7 May 20)18	-			
Remark	s:							
		W-1						
OC P4	viewer: YW F		C:	lana an	1		- Income and a second	
QU NE	viewer: YW F	urig	Signat	ure:		Date	08 May	2017

Type:					ust Mon	itor		
	ıfacturer/Brand:			SIBATA				
	el No.:			LD-3B				
	oment No.:			A.005.1				
Sensi	itivity Adjustment	t Scale Setti	ng:	643 CP	M			
Opera	ator:			Mike Sh	ek (MSK	M)		
Standa	ard Equipment							14
Equip	ment:	Dung	rocht 0 D	-4b-:-l-	TEOLO			
Venue			recht & Pa			ah a a 1)		
Mode			rport (Pui s 1400AB		ondary S	cnooi)		
Serial		Cont		0AB2198	00000			
Contai	110.	Sens	-	00C1436		V . 40500		
Last C	Calibration Date*		y 2017	0001430	59603	K _o : <u>12500</u>		
*Remar	rks: Recommend			re calibra	tion is 1	vear	79-34	
	ntion Result							
								-
Sensit	tivity Adjustment	Scale Settin	na (Before	Calibratio	on).	643 CP	DA.A	
Sensit	tivity Adjustment	Scale Settin	ng (After C	alibration	۱۱). ۱۰	643 CP		
	, , , , , , , , , , , , , , , , , , , ,		.9 (,	anbration	<i>)</i> ·	CF	IVI	
Hour	Date	Tir	ne	Δm	pient	Concentration ¹	Total	Count/
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(dd-mm-yy)				dition	(mg/m³)	Count ²	Minute ³
	(,			Temp	R.H.	Y-axis	Count	
				(°C)	(%)	I -axis	1-	X-axis
1	07-05-17	09:45 -	10:45	25.5	81	0.04337	1737	28.95
2	07-05-17	10:45 -	11:45	25.6	81	0.04542	1816	30.27
3	07-05-17	11:45 -	12:45	25.6	82	0.04619	1843	30.72
4	07-05-17	12:45 -	The second second	25.7	81	0.04715	1889	31.48
Note:	 Monitoring of 	lata was me	asured by	Rupprec	ht & Pata	shnick TEOM®		
	Total Count	was logged	by Laser I	Dust Mon	itor			
	Count/minut	e was calcu	lated by (1	Total Cou	nt/60)			
					,			
	ar Regression of	Y or X						
	(K-factor):	_	0.0015	2				
Correla	ation coefficient:	_	0.9971					
Validity	y of Calibration F	Record:	7 May 20	18				
Remark	s:							
1								
					la	/		- 18-7 (Called
QC Re	eviewer: YW F	una	Signat	ure.	V)/	Doto	. 00 М	, 2017
			Jigirial			Date:	: _08 May	2017

Type:			_	Laser D	ust Mon	itor		
	facturer/Brand:			SIBATA	. >			
Mode			_	LD-3B				
	ment No.:		_	A.005.14				
Sensi	tivity Adjustment	Scale Set	ting: _	786 CP	M			
Opera	ator:		_	Mike Sh	ek (MSKI	M)		
Standa	ard Equipment					<i>b</i> .		
Equip	na n u t.							
Equip			precht & Pa					
Venue Mode			erport (Pui `	ring Seco	ondary S	chool)		
Serial			ies 1400AB	0400400	00000			
Serial	INO.	Con		DAB2198				
Last C	Calibration Date*:	Sen 6 M	sor: <u>120</u> ay 2017	00C1436	59803	K₀: <u>12500</u>		
Laor	Janoration Bate .		ay 2011			, «;		1/2
*Remar	ks: Recommend	ed interval	l for hardwa	re calibra	ition is 1	year		
Calibra	tion Result						7	
0	er er a er a							-
Sensi	tivity Adjustment	Scale Sett	ting (Before	Calibration	on):	_786CP		
Sensit	tivity Adjustment	Scale Sett	ting (After Ca	alibration):	_786 CP	M	
Hour	Date		ime	Δ				
riour	(dd-mm-yy)		ime		bient	Concentration ¹	Total	Count/
	(dd-iiiii-yy)				dition	(mg/m³)	Count ²	Minute ³
				Temp (°C)	R.H. (%)	Y-axis	1.	X-axis
1	07-05-17	13:45	- 14:45	25.7	81	0.04335	1856	30.93
2	07-05-17	14:45	- 15:45	25.8	82	0.04461	1913	31.88
3	07-05-17	15:45	- 16:45	25.8	82	0.04602	1972	32.87
4	07-05-17	16:45	- 17:45	25.9	81	0.04714	2024	33.73
Note:	1. Monitoring d	ata was m	easured by	Rupprec	ht & Pata	shnick TEOM®		00.70
	Total Count	was logge	d by Laser [Dust Mon	itor			
	Count/minut	e was calc	culated by (T	otal Cou	nt/60)			
Dulings	on Donnessia	V V						
	ar Regression of	Y or X	0.0044					
	(K-factor): ation coefficient:		0.0014					
Corre	auon coemcient:		0.9989					
Validity	y of Calibration F	Record:	7 May 201	18				
Remark	s:							
		-				/		
					IN/			
QC Re	eviewer: YW F	ung	Signat	ure:	//	Date	: 08 May	2017

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

11.009.04

Certificate No.:

17CA0407 01

Page

of

2

Item tested

Description: Manufacturer:

Sound Level Meter (Type 1) B&K

Microphone B&K

4188

Type/Model No .: Serial/Equipment No.:

2238 2285692

2250455

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No .:

Date of receipt:

07-Apr-2017

Date of test:

10-Apr-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model:

B&K 4226

DS 360 DS 360 Serial No. 2288444

33873 61227

Expiry Date:

18-Jun-2017 18-Apr-2017 18-Apr-2017

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 50 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and

replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3. between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

lin/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date:

11-Apr-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0407 01

Page

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.2	
	С	Pass	0.3	
	Lin	Pass	1.0	2.1
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	2.0	2.2
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz		0.3	
Frequency weightings	A	Pass	0.3	
, , ,	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
and a digitaling	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	A CONTRACTOR OF THE CONTRACTOR	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
Time a succession	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Lai Sheng Jie

Checked by:

I don Tro Wai

Date:

10-Apr-2017

Date:

11-Apr-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

End

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0901 01

Page

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

B&K

2238

B&K

2800927

4188 2791211

Microphone

Adaptors used:

Type/Model No.

Item submitted by

Serial/Equipment No.:

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer: Request No .:

Date of receipt:

01-Sep-2017

Date of test:

09-Sep-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator

Model: B&K 4226

DS 360

DS 360

Serial No.

2288444 33873

61227

Expiry Date:

08-Sep-2018 25-Apr-2018

01-Apr-2018

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity:

21 ± 1 °C 50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jia Min/Feng Jun Qi Date:

09-Sep-2017

Company Chop:

The results reported hothis certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co. Ltd

Form No CARP152-1/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0901 01

Page

1 **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	1.0	2.1
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	2.0	2.2
, 34	Reference SPL on all other ranges		0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference rence Char 5 dB and the	Pass	0.3	
Frequency weightings	At reference range , Step 5 dB at 4 kHz A	Pass	0.3	
. requeries weightings	C	Pass	0.3	
		Pass	0.3	
Time weightings	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
Dook roomana	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
_	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
D .	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Lai Sheng Jie

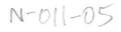
Checked by:

Fung Chi Yip

Date: 09-Sep-2017

Date:

09-Sep-2017


The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA1006 01

Page

2

Item tested

Description Manufacturer: Sound Level Meter (Type 1) **B&K**

Type/Model No.: Serial/Equipment No.: Adaptors used:

2250 3001291

Microphone B & K

4189 3005374 Preamp B&K ZC0032

23853

of

Item submitted by

Customer Name:

AECOM ASIA CO LIMITED

Address of Customer: Request No.

Date of receipt:

06-Oct-2017

Date of test:

06-Oct-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model:

DS 360

B&K 4226 DS 360

Serial No. 2288444

33873 61227 **Expiry Date:** 08-Sep-2018

25-Apr-2018 01-Apr-2018

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 50 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

- 1. The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- 3 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Actual Measurement data are documented on worksheets.

Approved Signatory:

in/Feng

Date:

06-Oct-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument

© Soils & Materials Engineering Co., Ltd

Form No CARP152-1/Issue 1/Rev.C/01/02/2007

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA1006 01

Page

2

2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by:

Date:

Lai Sheng Jie

Checked by:

Fung Chi Yip

Date:

06-Oct-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-2/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0321 01-02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Preamp

Manufacturer: Type/Model No.: **B&K** 2250-L

B&K 4950

B&K ZC0032

Serial/Equipment No.: Adaptors used:

2681366

2665582

17190

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.

Date of receipt:

21-Mar-2018

Date of test:

23-Mar-2018

Reference equipment used in the calibration

Description:

Model:

Serial No.

(N.011.01)

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444 33873

08-Sep-2018 25-Apr-2018

CIGISMEC CEPREI

Signal generator

DS 360

61227

01-Apr-2018

CEPREI

Ambient conditions

Temperature:

Air pressure:

21 ± 1 °C

Relative humidity:

50 ± 10 % 1000 ± 5 hPa

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1; 1997 and the lab calibration procedure SMTP004-CA-152
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1; 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Feng Jun Qi

Actual Measurement data are documented on worksheets

Approved Signatory:

Date:

24-Mar-2018

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0321 01-02

2

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
and generalize money	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range, Step 5 dB at 4 kHz	Pass	-0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
, , , ,	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip Date:

End

Checked by

Lam Tze Wai

23-Mar-2018

Date:

24-Mar-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co. Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港 黄竹坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0922 03-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.:

NC-74

Serial/Equipment No.:

34246490 / N.004.10

Adaptors used:

_

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer: Request No.:

-

Date of receipt:

22-Sep-2017

Date of test:

28-Sep-2017

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-Apr-2018	SCL
Preamplifier	B&K 2673	2743150	05-May-2018	CEPREI
Measuring amplifier	B&K 2610	2346941	03-May-2018	CEPREI
Signal generator	DS 360	61227	01-Apr-2018	CEPREI
Digital multi-meter	34401A	US36087050	25-Apr-2018	CEPREI
Audio analyzer	8903B	GB41300350	21-Apr-2018	CEPREI
Universal counter	53132A	MY40003662	22-Apr-2018	CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1000 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Ain/Feng Jun Qi

Approved Signatory:

Date:

28-Sep-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0922 03-02

Page:

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	(Output level in dB re 20 µPa) Estimated Expanded Uncertainty dB
Shown	Level Setting	Sound Pressure Level	
Hz	dB	dB	
1000	94.00	94.07	0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.011 dB

Estimated expanded uncertainty

0.005 dB

Actual Output Frequency 3.

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1002.1 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4.

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 2.8 %

Estimated expanded uncertainty

07%

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Checked by:

Fung Chi Yip

Date:

28-Sep-2017

Date:

28-Sep-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0309 01

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K 4231

Type/Model No.: Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

-

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer: Request No.:

-

Date of receipt:

09-Mar-2017

Date of test:

13-Mar-2017

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	14-Apr-2017	SCL
Preamplifier	B&K 2673	2743150	28-Apr-2017	CEPREI
Measuring amplifier	B&K 2610	2346941	26-Apr-2017	CEPREI
Signal generator	DS 360	61227	18-Apr-2017	CEPREI
Digital multi-meter	34401A	US36087050	18-Apr-2017	CEPREI
Audio analyzer	8903B	GB41300350	19-Apr-2017	CEPREI
Universal counter	53132A	MY40003662	19-Apr-2017	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 50 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

15-Mar-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0309 01

Page:

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.27	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0 1 Hz

Coverage factor k = 2.2

4. **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Lai Sheng Jie

13-Mar-2017

Checked by:

Fung Chi Yip Date: 5-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP156-2/Issue 1/Rev C/01/05/2005

APPENDIX E

EM&A Monitoring Schedules

CV/2007/03 - Development at Anderson Road Impact Air Quality and Noise Monitoring Schedule for March 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				01-Mar	02-Mar	03-Mar
					24-hour TSP	
					1-hour TSP	
					Noise	
					(ID1-5)	
04-Mar	05-Mar	06-Mar	07-Mar		09-Mar	10-Mar
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		
11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar	17-Mar
			24-hour TSP			
			1-hour TSP			
			Noise			
			(ID1-5)			
18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar	24-Mar
		24-hour TSP				24-hour TSP
		1-hour TSP				1-hour TSP
		Noise				(ID1-5)
		(ID1-5)				
25-Mar	26-Mar	27-Mar	28-Mar		30-Mar	31-Mar
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for April 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Apr	02-Apr	03-Apr	04-Apr	05-Apr	06-Apr	07-Apr
			24-hour TSP 1-hour TSP Noise (ID1-5)			24-hour TSP 1-hour TSP (ID1-5)
08-Apr	09-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr
					24-hour TSP 1-hour TSP Noise (ID1-5)	
15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr	21-Apr
				24-hour TSP 1-hour TSP Noise (ID1-5)		
22-Apr	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr	
			24-hour TSP 1-hour TSP Noise (ID1-5)			24-hour TSP 1-hour TSP (ID1-5)
29-Apr	30-Apr					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX F

Air Quality Monitoring Results and their Graphical Presentations

Appendix F Air Quality Monitoring Results

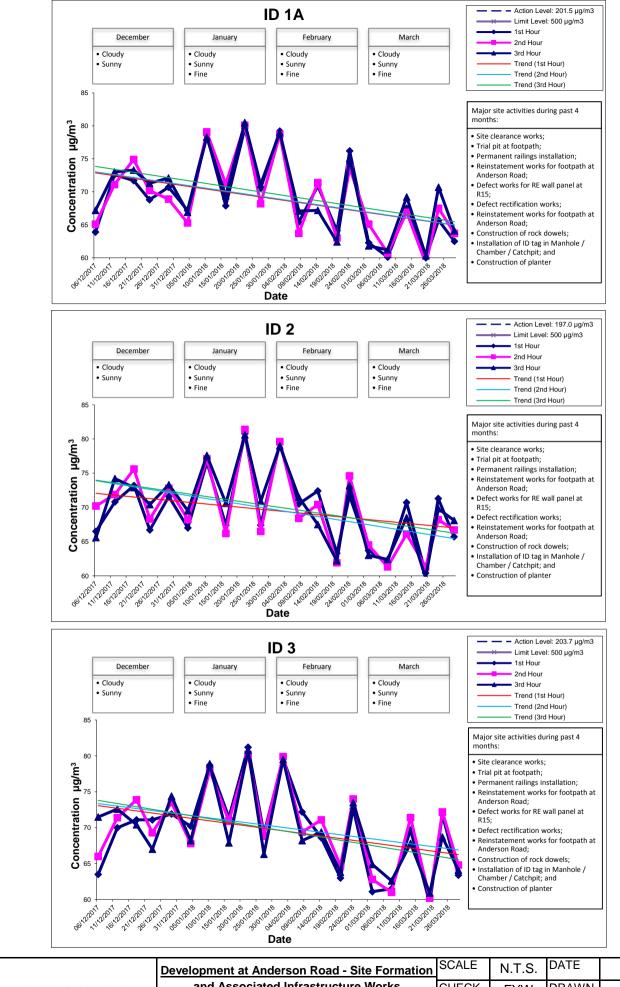
1-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
02-Mar-18	10:25	62.3	65.1	61.8
08-Mar-18	11:00	60.1	60.7	61.2
14-Mar-18	10:22	67.5	66.9	69.2
20-Mar-18	10:15	60.0	59.1	60.3
24-Mar-18	10:25	65.7	67.5	70.7
29-Mar-18	14:05	62.5	63.7	64.1
<u>, </u>			Average	63.8
			Min	59.1
			Max	70.7

1-hour TSP Monitoring Results at Station ID 2 (On Yat House)

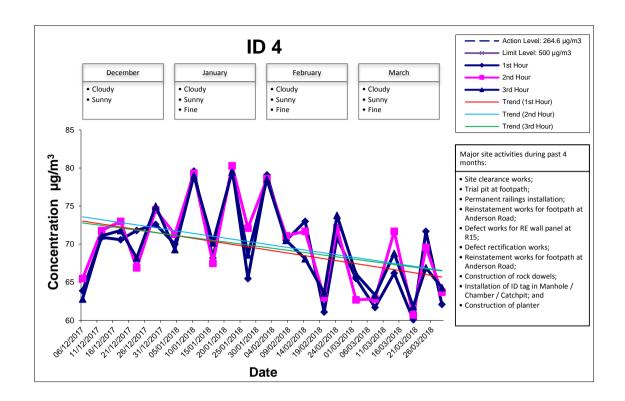
	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
02-Mar-18	10:42	63.7	64.5	63.0
08-Mar-18	11:10	62.0	61.3	62.4
14-Mar-18	10:40	70.7	66.1	68.5
20-Mar-18	10:28	60.4	61.3	59.7
24-Mar-18	10:40	71.3	68.2	69.8
29-Mar-18	14:15	65.7	66.7	68.1
			Average	65.2
			Min	59.7
			Max	71.3

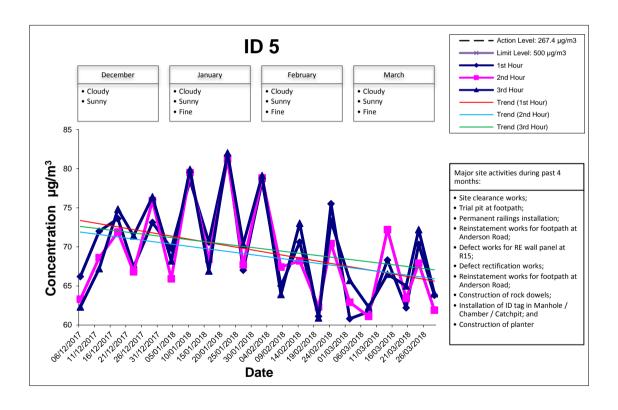
1-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)


	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
02-Mar-18	10:55	61.1	62.8	64.9
08-Mar-18	13:00	61.5	61.0	62.6
14-Mar-18	10:58	69.7	71.4	67.8
20-Mar-18	10:46	59.5	60.2	60.9
24-Mar-18	10:58	71.8	72.2	68.7
29-Mar-18	10:15	63.4	64.8	64.1
			Average	64.9
			Min	59.5
			Max	72.2

1-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
02-Mar-18	11:15	65.5	62.7	66.1
08-Mar-18	13:15	61.7	62.8	63.3
14-Mar-18	11:15	66.2	71.7	68.8
20-Mar-18	11:02	60.1	60.7	61.8
24-Mar-18	11:14	71.7	69.6	66.9
29-Mar-18	10:00	62.1	63.7	64.3
			Average	65.0
			Min	60.1
			Max	71.7


1-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)


	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
02-Mar-18	11:30	60.8	62.9	65.7
08-Mar-18	14:00	61.7	61.1	62.3
14-Mar-18	11:30	68.3	72.2	66.5
20-Mar-18	11:15	62.2	63.4	65.0
24-Mar-18	11:30	70.3	67.9	72.2
29-Mar-18	09:45	63.8	61.9	64.0
			Average	65.1
			Min	60.8
			Max	72.2

Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Apr-1	8
and Associated Infrastructure Works	CHECK	FYW	DRAWN	DTT\	N
Graphical Presentations of Impact 1-hour TSP	JOB NO.		APPEND	X No.	Rev.
Monitoring Results		60043155	ı	=	-

Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Apr-1	8
	CHECK		DRAWN	DTTV	N
Graphical Presentations of Impact 1-hour TSP	JOB NO.		APPEND	X No.	Rev.
Monitoring Results		60043155	I	=	-

Appendix F

Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

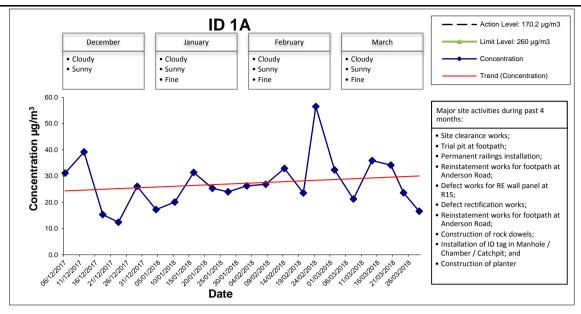
Date	Weather	Air	Atmospheric	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
02-Mar-18	Fine	21.3	1012.1	1.34	1.35	1.34	1935.3	2.7441	2.7859	0.0418	20555.79	20579.79	24.00	21.6
08-Mar-18	Cloudy	14.5	1019.4	1.31	1.33	1.32	1906.1	2.7111	2.7359	0.0248	20579.79	20603.79	24.00	13.0
14-Mar-18	Fine	20.2	1014.8	1.35	1.35	1.35	1946.8	2.7497	2.8002	0.0505	20603.79	20627.79	24.00	25.9
20-Mar-18	Sunny	21.4	1013.0	1.31	1.31	1.31	1887.3	2.7075	2.7408	0.0333	20627.79	20651.79	24.00	17.6
24-Mar-18	Sunny	21.1	1018.9	1.35	1.35	1.35	1940.7	2.7238	2.7574	0.0336	20651.79	20675.79	24.00	17.3
29-Mar-18	Sunny	22.7	1014.7	1.30	1.31	1.30	1879.0	2.5485	2.5989	0.0504	20675.79	20699.79	24.00	26.8
													Average	20.4
													Min	13.0
													Max	26.8

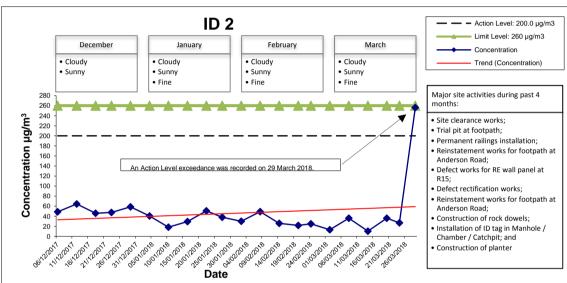
24-hour TSP Monitoring Results at Station ID 2 (On Yat House)

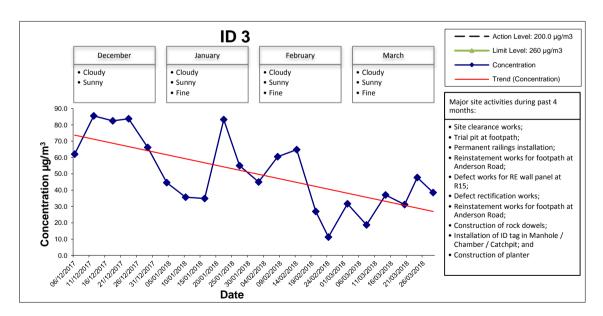
Date	Weather	Air	Atmospheric	spheric Flow Rate (m³/min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
02-Mar-18	Fine	21.3	1012.1	1.34	1.34	1.34	1926.4	2.7137	2.7393	0.0256	22801.12	22825.12	24.00	13.3
08-Mar-18	Cloudy	14.5	1019.4	1.31	1.32	1.32	1894.0	2.6942	2.7627	0.0685	22825.12	22849.12	24.00	36.2
14-Mar-18	Fine	20.2	1014.8	1.30	1.22	1.26	1816.0	2.7267	2.7456	0.0189	22849.12	22873.12	24.00	10.4
20-Mar-18	Sunny	21.4	1013.0	1.30	1.30	1.30	1874.4	2.6945	2.7622	0.0677	22873.12	22897.12	24.00	36.1
24-Mar-18	Sunny	21.1	1018.9	1.34	1.34	1.34	1932.0	2.7120	2.7637	0.0517	22897.12	22921.12	24.00	26.8
29-Mar-18	Sunny	22.7	1014.7	1.32	1.32	1.32	1900.3	2.5432	3.0300	0.4868	22921.12	22945.12	24.00	256.2
													Average	63.2
													Min	10.4
													Max	256.2

24-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

Date	Weather	Air	Atmospheric	Flow Rate	Flow Rate (m3/min.)		Total vol.	Filter W	/eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
02-Mar-18	Fine	21.3	1012.1	1.34	1.35	1.34	1935.6	2.7092	2.7705	0.0613	25139.01	25163.01	24.00	31.7
08-Mar-18	Cloudy	14.5	1019.4	1.32	1.33	1.33	1908.2	2.6909	2.7265	0.0356	25163.01	25187.01	24.00	18.7
14-Mar-18	Fine	20.2	1014.8	1.35	1.35	1.35	1947.4	2.7270	2.7991	0.0721	25187.01	25211.01	24.00	37.0
20-Mar-18	Sunny	21.4	1013.0	1.31	1.31	1.31	1889.0	2.6673	2.7261	0.0588	25211.01	25235.01	24.00	31.1
24-Mar-18	Sunny	21.1	1018.9	1.35	1.35	1.35	1941.2	2.7413	2.8339	0.0926	25235.01	25259.01	24.00	47.7
29-Mar-18	Sunny	22.7	1014.7	1.30	1.31	1.31	1880.5	2.5676	2.6401	0.0725	25259.01	25283.01	24.00	38.6
													Average	34.1
													Min	18.7
													Max	47.7

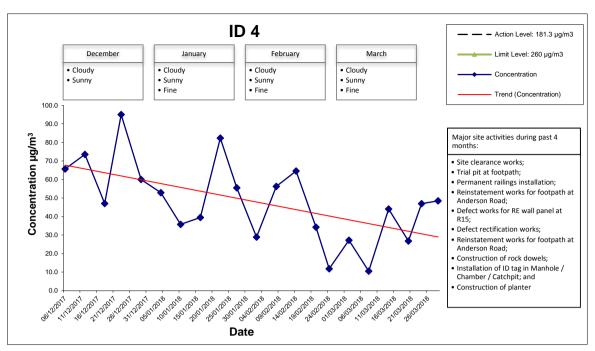

24-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)

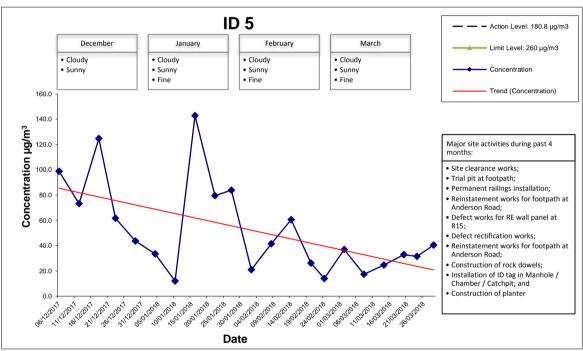

Date	Weather	Air	Atmospheric	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Filter W	/eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
02-Mar-18	Fine	21.3	1012.1	1.35	1.35	1.35	1941.9	2.6814	2.7342	0.0528	25839.09	25863.09	24.00	27.2
08-Mar-18	Cloudy	14.5	1019.4	1.32	1.34	1.33	1910.2	2.6784	2.6985	0.0201	25863.09	25887.09	24.00	10.5
14-Mar-18	Fine	20.2	1014.8	1.36	1.36	1.36	1955.1	2.7362	2.8224	0.0862	25887.09	25911.09	24.00	44.1
20-Mar-18	Sunny	21.4	1013.0	1.31	1.31	1.31	1888.5	2.7311	2.7817	0.0506	25911.09	25935.09	24.00	26.8
24-Mar-18	Sunny	21.1	1018.9	1.35	1.35	1.35	1948.1	2.7376	2.8290	0.0914	25935.09	25959.09	24.00	46.9
29-Mar-18	Sunny	22.7	1014.7	1.30	1.31	1.30	1878.8	2.5921	2.6832	0.0911	25959.09	25983.09	24.00	48.5
													Average	34.0
													Min	10.5
													Max	48.5


24-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

Date	Weather	Air	Atmospheric	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate	Elapse Time		Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
02-Mar-18	Fine	21.3	1012.1	1.35	1.35	1.35	1941.0	2.7161	2.7877	0.0716	22607.37	22631.37	24.00	36.9
08-Mar-18	Cloudy	14.5	1019.4	1.31	1.33	1.32	1902.9	2.7097	2.7426	0.0329	22631.37	22655.37	24.00	17.3
14-Mar-18	Fine	20.2	1014.8	1.36	1.36	1.36	1953.9	2.7035	2.7516	0.0481	22655.37	22679.37	24.00	24.6
20-Mar-18	Sunny	21.4	1013.0	1.31	1.31	1.31	1881.9	2.7301	2.7920	0.0619	22679.37	22703.37	24.00	32.9
24-Mar-18	Sunny	21.1	1018.9	1.35	1.35	1.35	1947.0	2.7292	2.7906	0.0614	22703.37	22727.37	24.00	31.5
29-Mar-18	Sunny	22.7	1014.7	1.30	1.30	1.30	1872.6	2.5533	2.6291	0.0758	22727.37	22751.37	24.00	40.5
													Average	30.6
													Min	17.3

Max 40.5

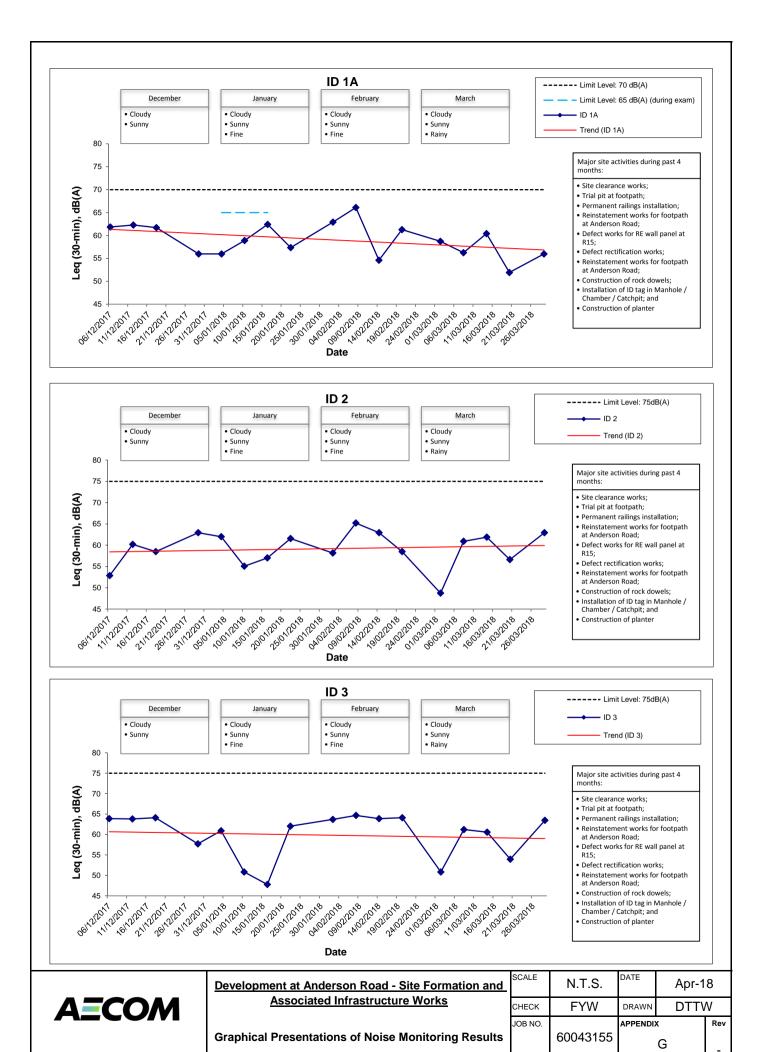


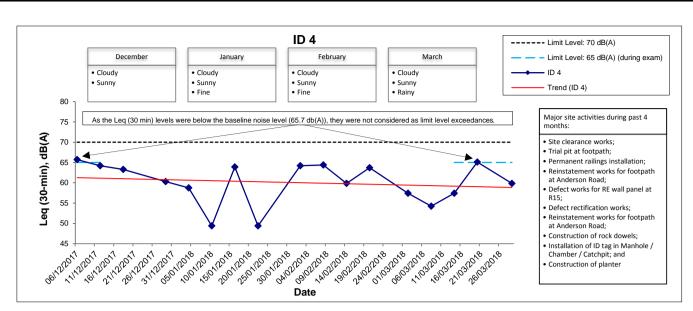


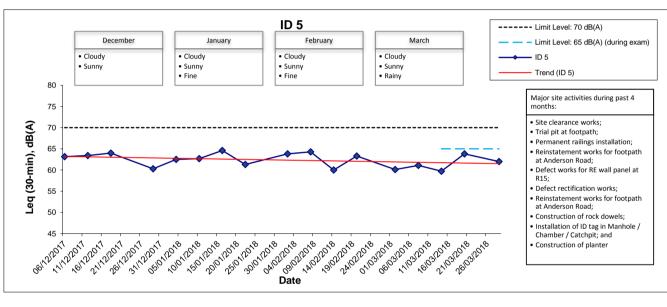
Development at Anderson Road - Site Formation
and Associated Infrastructure Works
and Associated initiastracture Works

Graphical Presentations of Impact 24-hour TSP
Monitoring Results

	60043155	I	F	-
JOB NO.		APPEND	IX No.	Rev.
CHECK	FYW	DRAWN	DTT\	V
SCALE	N.T.S.	DATE	Apr-1	8


AECOM


Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Apr-1	8
and Associated Infrastructure Works	CHECK	FYW	DRAWN	DTT\	Ν
Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPENDIX No.		Rev.
Monitoring Results		60043155	F		-


Graphica	I Presentations of Impact 24-hour TSP
	Monitoring Results

APPENDIX G

Noise Monitoring Results and their Graphical Presentations

AECOM	
--------------	--

Development at Anderson Road - Site Formation and Associated Infrastructure Works

Graphical Presentations of Noise Monitoring Results

SCALE	N.T.S.	DATE	Apr-1	8
CHECK	FYW	DRAWN	DTT\	٧
JOB NO.		APPENDI	X	Rev
	60043155		G	_

APPENDIX H

Meteorological Data for the Reporting Month

GOVHK香港政府一站通 繁體版 简体版

SEARCH Enter search keyword(s)

What's new

About us

HKO Side Lights

Our Services Visitors Figures

Press releases

Weather Note (Chinese) Today's Weather Warnings

Local Weather Observations

Weather Forecast Weather Monitoring Imagery

Computer Forecast **Products** MyObservatory Met on Map

Tropical Cyclones Aviation Weather Services

Marine Meteorological Services

Weather Information for Sports

Weather Information for Communities

China Weather World Weather

Climatological Information Services

> Climate Watch

> Climate Statistics

> Climate Prediction

> Climate Knowledge

> Need More Information?

> Global Climate Services

> Other Useful Links

Climate Forecast

Climate Change

El Nino and La Nina Earthquakes and

Tsunamis

Astronomy, Space Weather and

Geomagnetism

Time and Calendar

Radiation Monitoring,

Assessment and

Protection

Educational Resources

Publications

(_ -	
Rook	
Dack	

Daily Extract of Meteorological Observations, March 2018

Year 2018 ▼ Month 3 ▼ Go

			King's Park Waglan Isla		land^						
Day	Mean Pressure (hPa)	Air T Absolute Daily Max (deg. C)	Mean (deg. C)	Absolute Daily Min (deg. C)	Mean Dew Point (deg. C)	Mean Relative Humidity (%)	Mean Amount of Cloud (%)	Total Rainfall (mm)	Total Bright Sunshine (hours)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
01	1012.5	24.8	21.3	19.4	18.9	86	47	0.0	***	***	***
02	1012.1	24.7	21.3	19.5	17.3	78	80	Trace	***	***	***
03	1011.2	23.6	22.0	21.0	20.4	91	86	0.0	***	***	***
04	1011.0	27.3	24.0	21.9	22.0	89	86	Trace	***	***	***
05	1012.4	27.8	25.1	23.4	22.1	84	71	0.0	***	***	***
06	1017.2	23.5	19.8	18.3	16.7	83	82	Trace	***	***	***
07	1016.7	20.6	19.1	17.6	15.5	79	86	Trace	***	***	***
08	1019.4	20.5	14.5	12.5	11.4	82	90	20.3	***	***	***
09	1022.8	19.8	14.8	11.1	7.4	61	12	0.0	***	***	***
10	1022.1	20.3	16.7	13.7	10.0	66	12	0.0	***	***	***
11	1021.5	22.5	18.0	15.3	12.1	69	20	0.0	***	***	***
12	1019.0	23.3	19.6	16.9	13.9	71	10	0.0	***	***	***
13	1016.7	24.5	20.9	18.1	16.3	75	48	0.0	***	***	***
14	1014.8	20.8	20.2	19.4	17.1	83	88	2.4	***	***	***
15	1013.2	25.1	22.1	20.1	19.1	84	76	Trace	***	***	***
16	1014.8	26.3	22.7	20.3	19.2	81	39	0.0	***	***	***
17	1017.3	22.0	19.5	18.6	16.9	85	87	Trace	***	***	***
18	1016.0	24.1	20.8	19.2	17.7	83	85	Trace	***	***	***
19	1011.7	25.6	22.8	20.7	20.2	86	87	Trace	***	***	***
20	1013.0	25.3	21.4	16.9	15.5	70	55	Trace	***	***	***
21	1016.7	24.1	18.7	14.5	8.2	51	5	0.0	***	***	***
22	1016.9	24.1	19.5	16.2	10.6	57	9	0.0	***	***	***
23	1018.4	24.7	20.5	17.2	14.0	68	11	0.0	***	***	***
24	1018.9	23.8	21.1	19.6	16.8	77	78	Trace	***	***	***
25	1019.4	24.5	21.7	20.5	15.6	68	80	Trace	***	***	***
26	1018.3	26.5	22.6	20.4	17.0	71	69	0.0	***	***	***
27	1016.2	26.0	22.8	20.8	17.7	73	50	0.0	***	***	***
28	1014.7	26.7	22.7	21.0	18.5	77	41	0.0	***	***	***
29	1014.3	27.0	22.9	21.1	18.8	78	69	0.0	***	***	***
30	1015.4	27.9	23.5	21.2	18.8	76	46	0.0	***	***	***
31	1015.5	27.5	23.5	21.4	16.3	65	31	0.0	***	***	***
Mean/Total	1016.1	24.4	20.8	18.6	16.2	76	56	22.7	***	***	***
Normal§	1016.0	21.4	19.1	17.2	15.7	82	79	82.2	90.8	060	23.0

^{***} unavailable

Trace means rainfall less than 0.05 mm

§ 1981-2010 Climatological Normal, unless otherwise specified

2003 | Important notices | Privacy policy

Last revision date: <17 Jun 2016>

[^] Information of wind direction and wind speed for Waglan Island are based on automatic weather station data since January 1989

GOVHK香港政府一站通 繁體版 简体版

SEARCH Enter search keyword(s)

SITE MAP

Home

About us

What's new

HKO Side Lights

Our Services
Visitors Figures

Press releases

Weather Note (Chinese)
Today's Weather

Warnings

Local Weather Observations

Weather Forecast
Weather Monitoring
Imagery

Computer Forecast Products

MyObservatory Met on Map

Tropical Cyclones

Aviation Weather

Services

Marine Meteorological Services

Weather Information for Sports

Weather Information for Communities

China Weather

World Weather

Climatological Information Services

- > Climate Watch
- > Climate Statistics
- > Climate Prediction
- > Climate Knowledge
- > Need More Information?
- > Global Climate Services

> Other Useful Links

Climate Forecast

Climate Change

El Nino and La Nina Earthquakes and

Tsunamis

ISUITATTIS

Astronomy, Space Weather and Geomagnetism

Time and Calendar

Radiation Monitoring,

Assessment and

Protection

Educational Resources

Publications

Back	Daily]

Daily Extract of Meteorological Observations, February 2018

Year 2018 ▼ Month 2 ▼ Go

	Hong Kong Observatory						King's Park	Waglan Island^			
Day	Mean Pressure (hPa)	Air T Absolute Daily Max (deg. C)	Mean (deg. C)	Absolute Daily Min (deg. C)	Mean Dew Point (deg. C)	Mean Relative Humidity (%)	Mean Amount of Cloud (%)	Total Rainfall (mm)	Total Bright Sunshine (hours)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
01	1022.2	12.3	10.2	6.8	3.7	64	76	0.0	2.0	350	29.2
02	1024.6	12.3	11.1	9.3	4.6	64	88	Trace	0.0	350	37.7
03	1025.9	11.8	10.2	8.8	1.6	55	88	0.0	0.0	350	34.3
04	1026.1	11.7	10.2	9.2	0.4	51	88	0.0	0.0	360	33.3
05	1026.6	11.8	9.8	8.1	-0.9	48	79	0.0	1.7	350	32.3
06	1023.7	14.2	11.1	7.9	1.0	50	48	0.0	10.1	360	32.2
07	1021.0	15.3	12.7	10.5	3.8	56	79	0.0	1.4	050	24.8
08	1018.8	16.7	14.0	11.3	6.3	61	73	0.0	8.1	360	24.4
09	1016.5	17.1	15.5	13.7	11.3	76	90	0.0	1.4	050	24.1
10	1017.4	22.1	18.0	15.9	14.1	78	71	0.0	6.9	050	15.4
11	1022.7	19.7	16.1	14.5	8.8	63	78	0.0	7.1	360	23.7
12	1026.4	19.0	14.9	11.9	6.8	59	26	0.0	10.3	360	20.3
13	1023.8	18.4	15.2	12.8	8.0	64	32	0.0	10.5	060	25.3
14	1019.1	18.6	16.8	14.6	8.4	58	74	0.0	2.3	030	17.6
15	1016.0	24.0	19.8	17.2	15.4	76	57	0.0	4.7	010	8.4
16	1015.0	24.8	20.6	17.5	16.4	78	10	0.0	10.2	210	6.2
17	1016.9	20.2	17.7	16.6	15.1	85	72	Trace	2.7	080	35.5
18	1017.6	20.2	18.3	16.5	14.6	79	87	0.0	0.4	050	22.7
19	1016.0	24.4	21.4	19.5	18.0	81	82	Trace	2.8	020	12.4
20	1014.3	25.0	21.0	18.8	18.6	86	83	Trace	1.5	030	16.6
21	1014.9	19.4	18.2	16.7	15.4	84	92	Trace	0.0	030	29.2
22	1018.2	16.8	15.1	13.0	13.2	89	100	2.3	0.0	360	33.6
23	1019.9	16.5	14.8	12.8	12.2	85	87	2.0	1.4	060	27.7
24	1019.0	20.8	18.3	15.5	13.2	72	86	0.2	2.8	060	21.4
25	1018.0	23.5	20.4	18.4	16.8	80	81	Trace	4.9	010	16.0
26	1019.8	18.7	17.3	16.5	14.1	81	83	Trace	0.1	060	25.5
27	1017.3	23.2	19.1	15.8	13.6	71	83	0.0	8.5	060	22.4
28	1013.7	26.2	21.4	18.5	17.6	79	57	Trace	6.9	030	10.9
Mean/Total	1019.7	18.7	16.0	13.9	10.4	70	73	4.5	108.7	050	23.7
Normal§	1018.5	18.9	16.8	15.0	13.0	80	74	54.4	94.2	070	24.5

[^] Information of wind direction and wind speed for Waglan Island are based on automatic weather station data since January 1989

Trace means rainfall less than 0.05 mm

§ 1981-2010 Climatological Normal, unless otherwise specified

2003 | Important notices | Privacy policy

Last revision date: <17 Jun 2016>

APPENDIX I

Event Action Plan

Appendix I – Event Action Plan

Event and Action Plan for Air Quality

Event		ACTION		
	ET	IC(E)	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Identify source Inform IC(E) and ER. Repeat measurement to confirm finding. Increase monitoring frequency to daily 	Check monitoring data submitted by ET. Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice. Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source. Inform IC(E) and ER. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with IC(E) and Contractor for remedial actions required. If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented.	 Submit proposal for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.

Event and Action Plan for Air Quality

Event	ACTION							
	ET	IC(E)	ER	Contractor				
LIMIT LEVEL								
Exceedance for one sample	 Identify source. Inform ER and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals Amend proposal if appropriate. 				
Exceedance for two or more consecutive samples	 Identify source. Inform ER and EPD. Repeat measurements to confirm finding. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation to by implemented. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise implementation of remedial measures.	 Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with IC(E), agree with Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop the portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 				

Event and Action Plan for Noise

Event		Action		
	ET	IC(E)	ER	Contractor
	 Notify IC(E) and Contractor. Carry out investigation. Report the results of investigation to IC(E) and Contractor. Discuss with Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E). Implement noise mitigation proposals.
	 Notify IC(E), ER, EPD and Contractor. Identify sources. Repeat measurements to confirm finding. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IC(E), ER and EPD the causes and actions taken for the exceedance. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by ER until the exceedance is abated.

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J - Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this	Total no. recorded since
		month	project commencement
1-Hour TSP	Action	•	-
	Limit	-	-
24-Hour TSP	Action	1	16
	Limit	-	1
Noise	Action	-	32
	Limit	-	1

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. recorded in this month	Total no. recorded since project commencement
Environmental complaints	-	-	-	-	74
Notification of summons	-	-	-	-	6
Successful Prosecutions	-	-	-	-	2