

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Monthly EM&A Report for July 2018

August 2018

	Name	Signature
Prepared & Checked:	Alex Chan	Alex Chan
Reviewed, Approved & Certified:	Yiu Wah Fung (ETL)	n/

Version: 0	Date:	24 August 2018
------------	-------	----------------

Disclaimer

This report is prepared for China State Construction Engineering (Hong Kong) Ltd. and is given for its sole benefit in relation to and pursuant to Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works and may not be disclosed to, quoted to or relied upon by any person other than China State Construction Engineering (Hong Kong) Ltd. without our prior written consent. No person (other than China State Construction Engineering (Hong Kong) Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong. Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: OAPANDSNEM00 0 2062L.18

24 August 2018

By Post and Fax: 2407 8382

Engineer's Representative Ove Arup & Partners Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon Hong Kong

Attention: Mr. Cliff Ko

Dear Sir,

Re: Contract No. CV/2007/03 (Environmental Permit No. EP -140/2002)
Development at Anderson Road
Site Formation and Associated Infrastructure Works
Monthly EM&A Report for July 2018

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report for July 2018 received by e-mail on 24 August 2018 for our review and comment.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.3 of the Environmental Permit No. EP-140/2002.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully,

David Yeung

Independent Environmental Checker

c.c.

AECOM

Attn.: Mr. Y. W. Fung

By Fax: 3922 9797

CSCEC

Attn.: Mr. Holmes Wong

By Email

Q:\Projects\OAPANDSNEM00\Corr\OAPANDSNEM00_0_2062L.18.docx

Table of Content

			Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	4
	1.1	Background	4
	1.2	Scope of Report	
	1.3	Project Organization	
	1.4	Summary of Construction Works	
	1.5	Summary of EM&A Programme Requirements	
2	AIR C	QUALITY MONITORING	7
	2.1	Monitoring Requirements	7
	2.2	Monitoring Equipment	7
	2.3	Monitoring Locations	
	2.4	Monitoring Parameters, Frequency and Duration	8
	2.5	Monitoring Methodology	
	2.6	Monitoring Schedule for the Reporting Month	
	2.7	Monitoring Results	11
3	NOIS	E MONITORING	12
	3.1	Monitoring Requirements	12
	3.2	Monitoring Equipment	
	3.3	Monitoring Locations	12
	3.4	Monitoring Parameters, Frequency and Duration	13
	3.5	Monitoring Methodology	
	3.6	Monitoring Schedule for the Reporting Month	
	3.7	Monitoring Results	14
4	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	15
	4.1	Site Inspection	15
	4.2	Advice on the Solid and Liquid Waste Management Status	16
	4.3	Environmental Licenses and Permits	
	4.4	Implementation Status of Environmental Mitigation Measures	
	4.5	Summary of Exceedances of the Environmental Quality Performance Limit	
	4.6	Summary of Complaints, Notification of Summons and Successful Prosecutions	18
5	FUTU	JRE KEY ISSUES	19
	5.1	Construction Programme for the Coming Two Months	19
	5.2	Key Issues for the Coming Two Months	
	5.3	Monitoring Schedule for the Coming Month	19
6	CON	CLUSIONS AND RECOMMENDATIONS	20
	6.1	Conclusions	20
	6.2	Pacommondations	21

Monthly EM&A Report for July 2018

List of Tables	
Table 1.1	Contact Information of Key Personnel
Table 2.1	Air Quality Monitoring Equipment
Table 2.2	Locations of Air Quality Monitoring Stations
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period
Table 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Table 3.1	Noise Monitoring Equipment
Table 3.2	Locations of Impact Noise Monitoring Stations
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Summary of Impact Noise Monitoring Results in the Reporting Period
Table 4.1	Summary of Environmental Licensing and Permit Status

List of Figures

Figure 1.1	General Layout Plan
Figure 2.1	Monitoring Locations

List of Appendices

Appendix A	Project Organization Structure
Appendix B	Implementation Schedule of Environmental Mitigation Measures
Appendix C	Summary of Action and Limit Levels
Appendix D	Calibration Certificates of Equipment
Appendix E	EM&A Monitoring Schedules
Appendix F	Air Quality Monitoring Results and their Graphical Presentations
Appendix G	Noise Monitoring Results and their Graphical Presentations
Appendix H	Meteorological Data for the Reporting Month
Appendix I	Event Action Plan
Appendix J	Cumulative Statistics on Exceedances, Complaints, Notification of Summons and
	Successful Prosecutions

EXECUTIVE SUMMARY

The Project "Development at Anderson Road – Site Formation and Associated Infrastructure Works" (hereafter called "the Project") is proposed to form platforms for housing development and associated uses in area of about 20 hectares, and to carry out necessary infrastructural upgrading or improvement works to cater for the proposed development.

China State Construction Engineering (Hong Kong) Limited (CSCE) was commissioned as the Contractor of the Project. AECOM Asia Co. Ltd. (AECOM) was employed by CSCE as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project.

The impact EM&A for the Project includes air quality and noise monitoring. The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.

The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road (Schedule 2 DP) project.

The construction for the Widening of Po Lam Road (Schedule 2 DP) project was commenced on 21 September 2011.

This report documents the findings of EM&A works for ID 1A, ID 2, ID 3, ID 4 and ID 5 conducted in the period between 1 and 31 July 2018. According to the Contractor, construction activities in the reporting period were:

- Site clearance works
- Defect rectification works
- Construction of planter
- Construction of handrail
- Sprayed concrete for slope
- Rock mesh installation
- Construction of surface channel

Breaches of Action and Limit Levels for Air Quality

All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.

Breaches of Action and Limit Levels for Noise

According to the information provided by the Contractor, no Action Level exceedance of noise was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
- Collection and segregation of construction waste and general refuse should be carried out properly and regularly;
- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of drainage systems and desilting facilities;
- Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
- Proper mitigation measures should be provided to avoid relocation of treated contaminated soil;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
- Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project site is located in the East Kowloon District. It is bounded by Anderson Road to the north, the realigned Sau Mau Ping Road to the south, Po Lam Road to the east, and Lee On Road and Shun On Road to the west.
- 1.1.2 The objective of the Project "Development at Anderson Road Site Formation and Associated Infrastructure Works" under Contract CV/2007/03 (hereafter called "the Project") is to provide land for constructing public housing and government and public facilities. The development will provide 16,100 public housing units for 48,000 people in phases between 2015 and 2016.
- 1.1.3 The scope of works of this Project includes construction of site formation, roads, drains and upgrading of existing infrastructure to provide usable land of about 20 hectares for housing and associated government, institution or community uses at the site between existing Anderson Road Quarry and Sau Mau Ping Road in Kwun Tong District.
- 1.1.4 The Project was anticipated to be completed in the fourth quarter of 2016.
- 1.1.5 Part of the Project involving widening of existing Po Lam Road is a designated project and is governed by an Environmental Permit (EP) EP-140/2002, while the rest of the Project is non-designated. Baseline monitoring covering the entire Project site was undertaken and baseline monitoring report was prepared prior to commencement of construction of the Project in accordance with Conditions 3.2 and 3.4 of the EP (EP-140/2002) and the Environmental Monitoring and Audit (EM&A) Manual. The construction for the Widening of Po Lam Road was commenced on 21 September 2011.
- 1.1.6 According to the EP and the EM&A Manual of the Project, there is a need of an EM&A programme including air quality and noise monitoring.
- 1.1.7 The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008.
- 1.1.8 The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road. (Schedule 2 DP) project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was employed by the Contractor, China State Construction Engineering (Hong Kong) Limited (CSCE), as the Environmental Team (ET) to undertake the EM&A works for the Project. In accordance with the EM&A Manual of the Project, environmental monitoring of air quality, noise and environmental site inspections would be required for this Project.

1.2 Scope of Report

1.2.1 This is the 131st monthly EM&A Report under the Contract CV/2007/03 - Development at Anderson Road – Site Formation and Associated Infrastructure Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in July 2018 for ID 1A, ID 2, ID 3, ID 4 and ID 5.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Party Position		Name	Telephone	Fax
	Senior Resident Engineer	Cliff Ko	2407 0300	2407 8382
ER (Ove Arup)	Assistant Resident Engineer (Civil)	Brian Wan	2407 0300	2407 8382
IEC (Ramboll) Independent Environmental Checker		David Yeung	3465 2888	3465 2899
Contractor	Site Agent	Holmes Wong	2704 2095	2702 6553
(CSCE)	Safety and Environmental Officer	Raymond Ma	6221 9331	2702 6553
ET (AECOM) ET Leader		Yiu Wah Fung	3922 9366	2317 7609

1.4 Summary of Construction Works

- 1.4.1 According to the Contractor, the Contactor has carried out the following major activities in the reporting month:
 - Site clearance works
 - Defect rectification works
 - Construction of planter
 - Construction of handrail
 - Sprayed concrete for slope
 - Rock mesh installation
 - Construction of surface channel
- 1.4.2 The general layout plan of the Project site showing the contract area is shown in Figure 1.1.
- 1.4.3 The environmental mitigation measures implementation schedule are presented in Appendix B.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise and environmental site inspections for air quality, noise, water quality, chemical and waste management. The EM&A requirements for each parameter described in the following sections include:
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming months;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, 1-hour and 24-hour TSP levels at 5 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix C.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170) & Graseby High Volume TSP Sampler (Model No. GMW 2310)
Calibration Kit for High Volume Sampler	Orifice (Model No. TE-5025A)

2.3 Monitoring Locations

2.3.1 Monitoring stations, ID 2, ID 3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Air Quality Monitoring Stations

ID	Location	Monitoring Station		
1A	Kwun Tong Government Secondary School	Roof top of the premises facing Anderson Road		
2	On Yat House	Roof top of the premises facing Lee On Road		
3	Sau Nga House	Roof top of the premises facing Sau Mau Ping Road		
4	Sau Ming Primary School	Roof top of the premises		
5	Sau Mau Ping Catholic Primary School	Roof top of the premises		

Monthly EM&A Report for July 2018

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
ID 1A, ID 2, ID 3, ID 4 & ID5	1-hour TSP	At least 3 times every 6 days
, , ,	24-hour TSP	At least once every 6 days

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (v) No furnace or incinerator flues nearby.
 - (vi) Airflow around the sampler was unrestricted.
 - (vii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (viii) A secured supply of electricity was obtained to operate the samplers.
 - (ix) The sampler was located more than 20 meters from any dripline.
 - (x) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xi) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half-length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in Appendix D.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix D.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for environmental monitoring in July 2018 is provided in Appendix E.

2.7 Monitoring Results

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.4 and 2.5 respectively. Detailed air quality monitoring results are presented in Appendix F.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	65.4	59.6 – 70.6	201.5	500
ID 2	67.6	60.3 – 73.3	197.0	500
ID 3	66.7	61.9 – 71.4	203.7	500
ID 4	66.5	62.4 – 70.7	264.6	500
ID 5	66.6	60.3 – 71.2	267.4	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ID 1A	23.8	19.2 – 26.7	170.2	260
ID 2	22.3	16.0 – 27.4	200.0	260
ID 3	18.5	10.7 – 27.9	200.0	260
ID 4	27.7	18.8 – 31.8	181.3	260
ID 5	22.8	18.1 – 28.3	180.8	260

- 2.7.2 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.
- 2.7.3 The event action plan is annexed in Appendix I.
- 2.7.4 Major dust sources during the dust monitoring included construction dust from the Project site, construction dust from other construction sites nearby and nearby traffic emission.
- 2.7.5 Weather information including wind speed and wind direction is annexed in Appendix H. The information was obtained from Hong Kong Observatory Tseung Kwan O Automatic Weather Station and Anemometer Station.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, impact noise levels should be obtained at 5 noise monitoring stations. Impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix C.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238 and 2250-L)
Acoustic Calibrator	Rion (Model No. NC-74)

3.3 Monitoring Locations

3.3.1 Monitoring stations, ID 2, ID3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

ID	Location	Monitoring Station
1A	Kwun Tong Government Secondary School	1m from the exterior of the roof top façade of the premises facing Anderson Road
2	On Yat House	1m from the exterior of the roof top façade of the premises facing Lee On Road
3	Sau Nga House	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
4	Sau Ming Primary School	1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road
5	Sau Mau Ping Catholic Primary School	1m from the exterior of the roof top façade of the premises facing Po Lam Road

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Parameter and Duration		Frequency
ID 1A, ID 2, ID 3, ID 4 & ID5	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Façade measurements were made at all monitoring locations.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays; $L_{eq(5-minutes)}$ during restricted hours i.e. 19:00-23:00 and 23:00-07:00 of normal weekdays, whole day of Sundays and Public Holidays
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB (A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix D.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for environmental monitoring in July 2018 is provided in Appendix E.

3.7 Monitoring Results

3.7.1 The monitoring results for noise are summarized in Table 3.4 and the monitoring data is provided in Appendix G.

Table 3.4 Summary of Impact Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq} (30 mins)	L _{eq (30 mins)}	L _{eq (30 mins)}
ID 1A	59.8	55.5 – 62.8	*65/70
ID 2	61.4	57.0 – 62.9	75
ID 3	63.6	61.5 – 65.4	75
ID 4	63.9	63.4 – 64.4	*65/70
ID 5	61.5	48.4 – 63.9	*65/70

Note: *Daytime noise Limit Level of 70dB (A) applies to education institutions while 65dB (A) applies during school examination period.

- 3.7.2 According to the information provided by the Contractor, no Action Level exceedance of noise was recorded since no noise related complaint was received in the reporting month.
- 3.7.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 3.7.4 The event action plan is annexed in Appendix I.
- 3.7.5 Major noise sources during the noise monitoring included construction noise from the Project site, construction noise from other construction sites nearby, nearby traffic noise and noise from school activities and community noise.

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

4.1 Site Inspection

- 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 5, 12, 19 and 26 July2018. Particular observations and status of non-compliance are described below.
- 4.1.2 The Contractor rectified most of the observations as identified during the environmental site inspections in the reporting month within the agreed time frame, excepted one outstanding finding was observed in 26 July 2018. Blockage of drainage system was observed at 19 July 2018, and the Contractor was advised to remove the soil blockage. However, the blockage was still observed in 26 July 2018, so outstanding finding was defined on that site inspection. The follow up action will be taken in August 2018 to make sure mitigation measure is implement.

4.1.3 Air Quality Impact

- Excavated waste is stored without proper cover. The Contractor was advised cover the excavated waste to prevent dust spreading.
- The NRMM label of machine was labelled in unobvious place. The Contractor was advised to relabel the label in obvious place.
- Leaking gas was observed in transporting tube. Recovering of transporting tube is advised to prevent continue leaking gas.

4.1.4 Construction Noise Impact

No specific observation was identified in the reporting month.

4.1.5 Water Quality Impact

 U-channel blocked by general refuse and C&D waste was observed. The Contractor was advised to remove the waste in the U-channel as soon as possible.

4.1.6 Chemical and Waste Management

- The Contractor was reminded to remove the chemical containers and disposed as chemical waste. The Contractor was advised to have proper treatment or disposal according to Waste Disposal (Chemical Waste) (General) Regulation.
- U-channel blocked by general refuse and C&D waste was observed. The Contractor was advised to remove the waste in the U-channel as soon as possible.

4.1.7 Landscape and Visual Impact

No specific observation was identified in the reporting month.

4.1.8 Miscellaneous

• Different types of waste is found after rainy. The Contractor was advised to clear up as soon as possible.

4.2 Advice on the Solid and Liquid Waste Management Status

- 4.2.1 The Contractor is registered as a chemical waste producer for this Project. C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 4.2.2 As advised by the Contractor, 0 tonnes of C&D materials were generated on site in the reporting month.
 - For C&D waste, 0 kg of metals was generated and collected by registered recycling collector. 0 kg of paper cardboard packaging and 0 kg of plastics were generated on site and collected by registered recycling collector. No chemical waste was collected by licensed chemical waste collectors. 157.11 tonnes of other types of wastes (e.g. general refuse and tree debris) were generated on site and disposed of at North East New Territories (NENT) Landfill.
- 4.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 4.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

4.3 Environmental Licenses and Permits

4.3.1 The environmental licenses and permits for this Project and valid in the reporting month is summarized in Table 4.1.

Table 4.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	Description	Valid Period Permit No. R		Remarks	
Reference	Docor Iption	T OTTIME TO	From	То	Romano
EIAO	Environment al Permit	EP-140/2002			- Widening of a section of Po Lam Road
APCO	NA notification		16/04/09		- Whole Construction Site
WPCO	Discharge Licence	WT00023593 -2016	20/01/16	19/01/21	- Discharge of Construction Runoff
WDO	Chemical Waste Producer Registration	5213-292- C3249-32	19/03/08		- Whole Construction Site
	Waste Charges Account	7006839	12/03/08		- Whole Construction Site

4.4 Implementation Status of Environmental Mitigation Measures

- 4.4.1 In response to the site audit findings, the Contractor carried out corrective actions promptly for particular items recorded, excepted one outstanding finding was observed in 26 July 2018. Blockage of drainage system was observed at 19 July 2018, and the Contractor was advised to remove the soil blockage. However, the blockage was still observed in 26 July 2018, so outstanding finding was defined on that site inspection.
- 4.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix B. Many necessary mitigation measures were implemented properly.

4.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 4.5.1 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.
- 4.5.2 According to the information provided by the Contractor, no Action Level exceedance of noise was recorded since no noise related complaint was received in the reporting month.
- 4.5.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 4.5.4 Cumulative statistics on exceedances is provided in Appendix J.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 4.6.1 Complaints shall be referred to the ET Leader for action. The ET Leader shall undertake the following procedures upon receipt of any complaint:
 - Log complaint and date of receipt onto the complaint database and inform the IC(E) immediately;
 - Investigate the complaint to determine its validity, and assess whether the source of the problem is due to works activities;
 - Identify mitigation measures in consultation with the IC(E) if a complaint is valid and due to works;
 - Advise the Contractor if additional mitigation measures are required;
 - Review the Contractor's response to identified mitigation measures, and the updated situation;
 - If the complaint is transferred from EPD, submit interim report to EPD on status of the complaint investigation and follow-up action within the time frame assigned by EPD;
 - Undertake additional monitoring and audit to verify the situation if necessary, and review that circumstances leading to the complaint to not recur;
 - Report investigation results and subsequent actions to complainant (if the source of complaint is EPD, the results should be reported within the time frame assigned by EPD); and
 - Record the complaint, investigation, the subsequent actions and the results in the monthly EM&A reports.
- 4.6.2 During any complaint investigation work, the Contractor and the ER shall cooperate with the ET Leader in providing all necessary information and assistance for completion of the investigation. If mitigation measures are identified in the investigation, the Contractor shall promptly carry out the mitigation. The ER shall ensure that all necessary measures have been carried out by the Contractor.
- 4.6.3 Referring to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.
- 4.6.4 Cumulative statistics on complaints, notification of summons and successful prosecutions is provided in Appendix J.

5 FUTURE KEY ISSUES

5.1 Construction Programme for the Coming Two Months

- 5.1.1 The major construction works in August and September 2018 will be:
 - Site clearance works
 - Defect rectification works
 - Installation of ID tag in Manhole / Chamber / Catchpit
 - Construction of planter
 - Construction of handrail
 - Construction of surface channel
 - Sprayed concrete for slope
 - Rock mesh installation

5.2 Key Issues for the Coming Two Months

- 5.2.1 Key issues to be considered in the coming months included:
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works;
 - Collection and segregation of construction waste and general refuse should be carried out properly and regularly:
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of drainage systems and desilting facilities;
 - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil:
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic;
 - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.

5.3 Monitoring Schedule for the Coming Month

5.3.1 The tentative schedule for environmental monitoring in August 2018 is provided in Appendix E.

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- 6.1.1 The construction phase of the project commenced in May 2008.
- 6.1.2 1-hour TSP, 24-hour TSP and noise monitoring were carried out in the reporting month.
- 6.1.3 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month.
- 6.1.4 No Action Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 6.1.5 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month.
- 6.1.6 Environmental site inspections were carried out 4 times in July 2018. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit. The Contractor rectified most of the observations as identified during the environmental site inspections in the reporting month within the agreed time frame, excepted one outstanding finding was observed in 26 July 2018. Blockage of drainage system was observed at 19 July 2018, and the Contractor was advised to remove the soil blockage. However, the blockage was still observed in 26 July 2018, so outstanding finding was defined on that site inspection. The follow up action will be taken in August 2018 to make sure mitigation measure is implement.
- 6.1.7 According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

6.2 Recommendations

6.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

- The Contractor was advised cover the excavated waste to prevent dust spreading.
- The Contractor was advised to relabel the NRMM label in obvious place.
- Recovering of transporting tube is advised to prevent continue leaking gas.

Construction Noise Impact

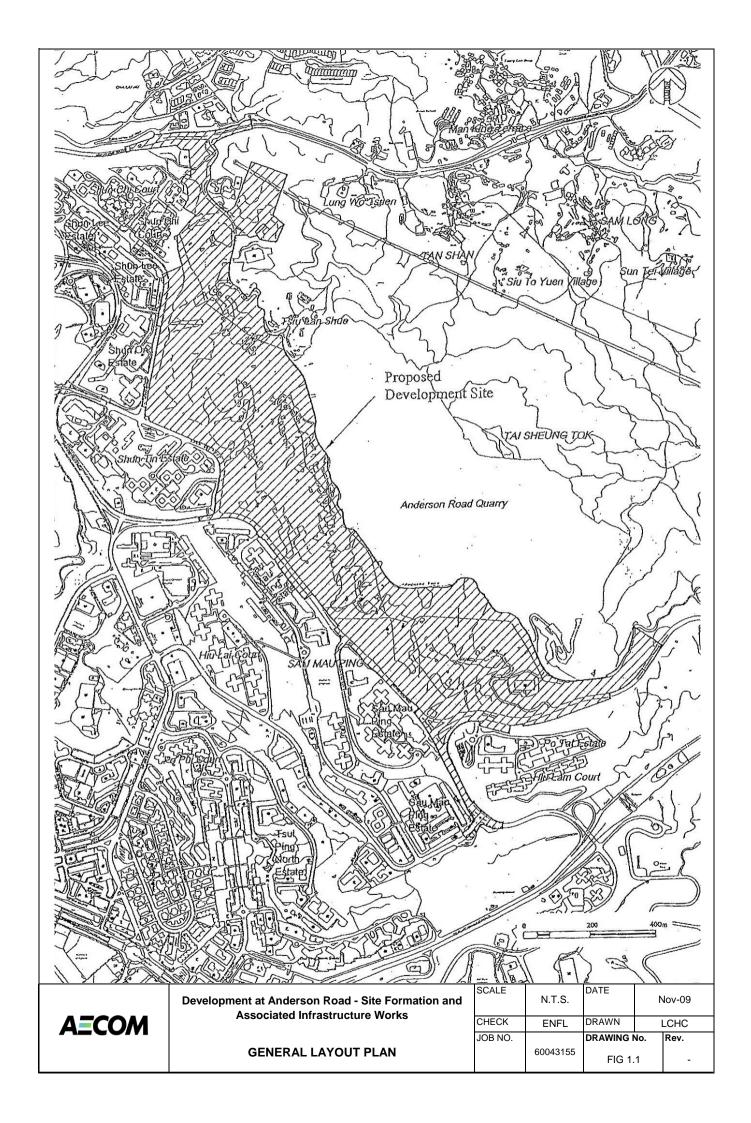
• No specific observation was identified in the reporting month.

Water Quality Impact

The Contractor was advised to remove the waste in the U-channel as soon as possible.

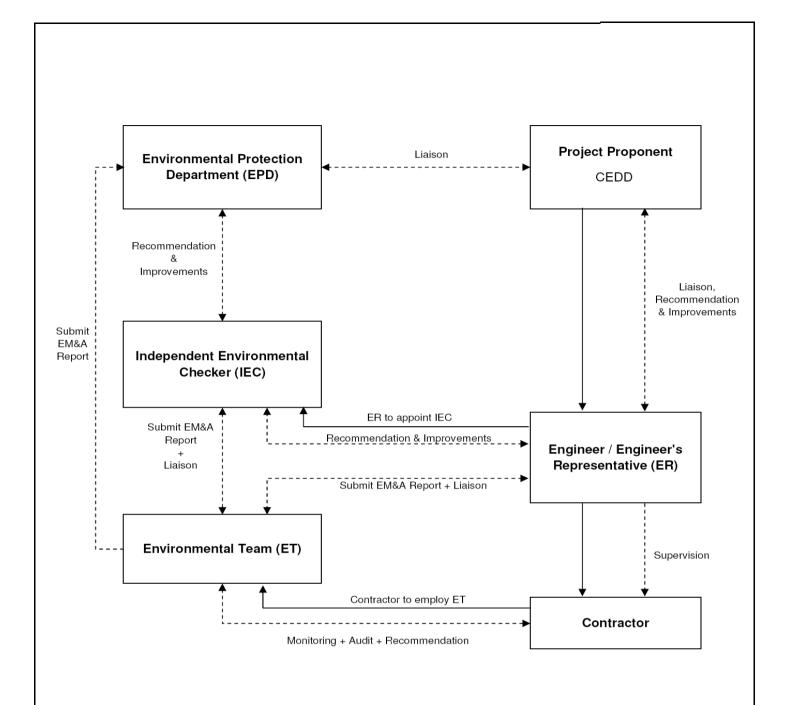
Chemical and Waste Management

- The Contractor was advised to have proper treatment or disposal of chemical waste according to Waste Disposal (Chemical Waste) (General) Regulation.
- The Contractor was advised to remove the waste in the U-channel as soon as possible.


Landscape and Visual Impact

• No specific observation was identified in the reporting month.

Miscellaneous


• Different types of waste is found after rainy. The Contractor was advised to clear up as soon as possible.

APPENDIX A

Project Organization Structure

Employment Relationship
Working Relationship

Contract No. CV/2007/03

Development at Anderson Road – Site Formation and Associated Infrastructure Works

Project C	Organization	Structure
-----------	--------------	-----------

SCALE	N.T.S.	DATE	2009)
CHECK	ENFL	DRAWN	LCH	\sim
JOB NO.		APPEND	OIX	Rev
	60043155		Α	-

APPENDIX B

Implementation Schedule of Environmental Mitigation Measures

Appendix B - Implementation Schedule of Environmental Mitigation Measures

Environmental M	litigation Measures	Location	Implementation Status
Construction N	oise Impact		
Site Formation	Silenced powered mechanical equipment (PME) for most equipment	All construction sites	V
	(including drill rig, backhoe, dump truck, breaker and crane) and the		
	decrease of percentage on time usage of drill rig among the Central Area		
	from 50% to 40% is proposed.		
	Temporary movable noise barrier shall be used to shield the noise	All construction sites	V
	emanating from the drilling rig in order to provide adequate shielding for the		V
	affected NSRs.		
Construction A	ir Quality Impact		
General Site	Mean vehicle speed of haulage trucks at 10km/hr.	All construction sites	V
Practice	Twice daily watering of all open site areas.	All construction sites	V
	Regular watering (once every 1 hour) of all site roads and access roads with	All construction sites	V
	frequent truck movement.	7 til Gorioti dottori Gitoc	
	During road transportation of excavated spoil, vehicles should be covered to	All construction sites	V
	avoid dust impact. Wheel washing facilities should be installed at all site		
	exits together with regular watering of the site access roads.		
	Tarpaulin covering of all dusty vehicle loads transported to, from and	All construction sites	V
	between site locations.	All construction sites	
	Establishment and use of vehicle wheel and body washing facilities at the	Site exits	V
	exit points of the site, combined with cleaning of public roads were		
	necessary.		

	3 1 3 1 3 1 3		. ,
General Site	Suitable side and tailboards on haulage vehicles.	All construction sites	V
Practice	Watering of temporary stockpiles.	All construction sites	@
Blasting	Use of select aggregate and fines to stem the charge with drill holes and watering of blast face.	All construction sites	N/A
	Use of vacuum extraction drilling methods.	All construction sites	N/A
	Carefully sequenced blasting.	All construction sites	N/A
Crushing	Fabric filters installed for the crushing plant.	All construction sites	N/A
	Water sprays on the crusher.	All construction sites	N/A
Loading and Unloading	Water sprays at all fixed loading and unloading points (at the crusher and conveyor belts).	All construction sites	N/A
Points, and conveyor Belt	The loading point at the crusher is enclosed with dust collection system installed.	All construction sites	N/A
System	When transferring materials from conveyor belt or crusher to the dump trucks or chutes, dust curtains are used for controlling dust.	All construction sites	N/A
	Cover the conveyor belts with steel roof and canvas sides.	All construction sites	N/A
Construction W	/ater Quality Impact		
Construction	All active working areas should be bounded to retain storm water with	Site drainage system	X
Phase	sufficient retention time to ensure that suspended solids are not discharged		
	from the site in concentrations above those specified in the TM for the		
	Victoria Harbour (Phase I) WCZ. All fuel storage areas should be bounded		
	with drainage directed to an oil interceptor.		

struction Engineering (Hong Kong) Lta.		ithly Elvi&A Report for July 2018
Separate treatment facilities may be required for effluent from site offices, toilets (unless chemical toilets are used) and canteens.	Site drainage system	V
Discharged wastewater from the construction sites to surface water and/or public drainage systems should be controlled through licensing. Discharge should follow fully the terms and conditions in the licenses.	All works area	V
Relevant practice for dealing with various type of construction discharges provided in EPD's ProPECC Note PN 1/94 should be adopted.	All works area	V
nent		
Different types of wastes should be segregated, stored, transported and disposed of separately in accordance with the relevant legislative requirements and guidelines as proper practice of waste management.	All construction sites	Х
Sorting of wastes should be done on-site. Different types of wastes should be segregated and stored in different stockpiles, containers or skips to enhance recycling of materials and proper disposal of spoil.	All construction sites	V
Excavated spoil should be used as much as possible to minimize off-side fill material requirements and disposal of spoil.	All construction sites	V
Chemical waste should be recycled on-site or removed by licenced companies. It should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical wastes. When off-site	All construction sites	V
	Separate treatment facilities may be required for effluent from site offices, toilets (unless chemical toilets are used) and canteens. Discharged wastewater from the construction sites to surface water and/or public drainage systems should be controlled through licensing. Discharge should follow fully the terms and conditions in the licenses. Relevant practice for dealing with various type of construction discharges provided in EPD's ProPECC Note PN 1/94 should be adopted. Thent Different types of wastes should be segregated, stored, transported and disposed of separately in accordance with the relevant legislative requirements and guidelines as proper practice of waste management. Sorting of wastes should be done on-site. Different types of wastes should be segregated and stored in different stockpiles, containers or skips to enhance recycling of materials and proper disposal of spoil. Excavated spoil should be used as much as possible to minimize off-side fill material requirements and disposal of spoil. Chemical waste should be recycled on-site or removed by licenced companies. It should be handled according to the Code of Practice on the	Separate treatment facilities may be required for effluent from site offices, toilets (unless chemical toilets are used) and canteens. Discharged wastewater from the construction sites to surface water and/or public drainage systems should be controlled through licensing. Discharge should follow fully the terms and conditions in the licenses. Relevant practice for dealing with various type of construction discharges provided in EPD's ProPECC Note PN 1/94 should be adopted. Different types of wastes should be segregated, stored, transported and disposed of separately in accordance with the relevant legislative requirements and guidelines as proper practice of waste management. Sorting of wastes should be done on-site. Different types of wastes should be segregated and stored in different stockpiles, containers or skips to enhance recycling of materials and proper disposal of spoil. Excavated spoil should be used as much as possible to minimize off-side fill material requirements and disposal of spoil. Chemical waste should be recycled on-site or removed by licenced companies. It should be handled according to the Code of Practice on the

	8 8 8 8		, ,
	disposal is required, it should be collected and delivered by licenced		
	contractors to Tsing Yi Chemical Waste Treatment Facility and disposed of		
	in accordance with the Chemical Waste (General) Regulation.		
	Necessary mitigation measures should be adopted to prevent the	All construction sites	V
	uncontrolled disposal of chemical and hazardous waste into air, soil, surface		
	waters and ground waters.		
Waste Storage	Chemical material storage areas should be bounded, constructed of	All construction sites	V
	impervious materials and have the capacity to contain 120 percent of the		
	total volume of the containers. Indoor storage areas must have sufficient		
	ventilation to prevent the build-up of fumes, and must be capable of		
	evacuating the space in the event of an accidental release. Outdoor storage		
	areas must be covered with a canopy or contain provisions for the safe		
	removal of rainwater. In both cases, storage areas must not be connected to		
	the foul or stormwater sewer system.		
	Dangerous materials as defined under the DGO, including fuel, oil and	All construction sites	@
	lubricants, should be stored and properly labelled on site in accordance with		
	the requirements in the DGO. If transportation of hazardous materials is		
	necessary, hazardous materials, chemical wastes and fuel should be		
	packed or stored in containers or vessels of suitable design and construction		
	to prevent leakage, spillage or escape.		
	Human waste should be discharged into septic tanks provided by the	All construction sites	V
	contractors and removed regularly by a hygiene services company. Refuse		
	containers such as open skips should be provided at every work site for use		

	<u> </u>		<u>.</u>
	by the workforce. On-site refuse collection points must also be provided.		
Landscape ar	nd Visual		·
Additional	Planting and vegetation restoration (including transplanted trees) on soil	Whole development	V
Measures	slopes including restoration of grassland, scrub and woodland on slopes		
	around the development platforms and access road. Restoration would be		
	undertaken using predominantly native species.		
Additional	Screen planting along the access roads, to limit impacts of elevated	Whole development	V
Measures	structures and rock slopes.		
	Colouring of shotcrete slopes.	Whole development	V
	Limited planting on shotcrete slopes.	Whole development	V
	Landscape buffers and planting in and around the development itself to	Whole development	V
	screen partially close views of the site.		
	Screen planting in front of retaining walls / granite cladding to those walls to	Whole development	V
	reduce glare and visual impacts.		
	Careful design of road elevated structure and abutments, to limit visual	Whole development	V
	impacts.		
	Roadside landscape features / hardworks to limit visual impacts.	Whole development	V
	Conservation of CDG or CDV recovered from the site for re-use in the	Whole development	V
	landscape restoration.		
	Preservation (by transplanting if necessary) of any trees identified as being	Whole development	V
	of particular landscape value.		

Offina Otato Col	cardeners Engineering (Fierig Reing) Etc.	111011	any Emart Report for July 2010
	Woodland planting on soft cut slopes available (about 13.4ha) within the	Soft cut slopes	V
	development site. Native species, preferably with documented ecological		
	utility, should be used.		
	Seeds of the native species when possible should be added into the	Soft cut slopes	N/A
	hydroseeding mix. Seedings should be pit planted with placement of slow		
	release fertilizer.		
	Maintenance and service, including weeding, fertilizing, replacement of	Soft cut slopes	N/A
	dead plants, etc. should be performed during the first 1 years of planting to		
	enhance the survival rate of the plants.		
Contaminated	_and		
	In accordance with the approved Contamination Assessment Report (CAR)	Locations specified in CAR	@
	and Remediation Action Plan (RAP) in Nov 2006, it is recommended that		
	cement solidification / stabilization prior to on-site backfill for heavy metal		
	contaminated soil and excavation followed by disposal at designated landfill		
	for organic contaminated soil. Upon the completion of the proposed		
	remediation exercise as outlined in CAR & RAP, a Remediation Report will		
	be complied for submission to EPD to demonstrate that the proposed soil		
	remediation has been carried out properly and satisfactorily. Results from		
	the confirmation tests will also be included in the Remediation Report.		
	Photos showing the area of excavation, the solidification process, and		
	remediated soil and site shall also be included in the report for reference.		
Landfill Gas Ha	zard		
	Further site investigation should be carried out during the detailed design	The whole development site	V

Appendix B EMIS 6 August 2018

Contract No. CV/2007/03

Development at Anderson Road –
Site Formation and Associated Infrastructure Works

Monthly EM&A Report for July 2018

China State Construction Engineering (Hong Kong) Ltd.

stage in order to measure landfill gas around the perimeter of the site, to	
re-confirm that there is no preferential pathway for landfill gas migration and	
to assess the potential for landfill gas hazards on the future development. If	
a landfill gas hazard is identified, mitigation measures should be proposed	
and implemented to address the hazard.	

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX C

Summary of Action and Limit Levels

Appendix C - Summary of Action and Limit Levels

Table 1 – Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
ID 1A	201.5	500
ID 2	197.0	500
ID 3	203.7	500
ID 4	264.6	500
ID 5	267.4	500

Table 2 – Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
ID 1A	170.2	260
ID 2	200.0	260
ID 3	200.0	260
ID 4	181.3	260
ID 5	180.8	260

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
ID 1A	When one documented	*65 / 70 dB(A)
ID 2	complaint is received	75 dB(A)
ID 3		75 dB(A)
ID 4	from any one of the sensitive	*65 / 70 dB(A)
ID 5	receivers	*65 / 70 dB(A)

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period

APPENDIX D

Calibration Certificates of Equipments

RECALIBRATION DUE DATE:

December 26, 2018

Certificate of Calibration

Calibration Certification Information

Cal. Date:

December 26, 2017

Rootsmeter S/N: 438320

Ta: 291

°K

Operator:

Jim Tisch

Pa: 763.3

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 0843

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4140	3.2	2.00
2	3	4	1	1.0010	6.4	4.00
3	5	6	1	0.8910	7.9	5.00
4	7	8	1	0.8480	8.8	5.50
5	9	10	1	0.7030	12.7	8.00

		Data Tabula	tion		
Vstd (m3)	Qstd (v. ovis)	$\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}$.,	Qa	√∆H(Ta/Pa)
	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0241	0.7243	1.4342	0.9958	0.7042	0.8732
1.0198	1.0188	2.0283	0.9916	0.9906	1.2349
1.0178	1.1423	2.2677	0.9896	1.1107	1.3807
1.0166	1.1988	2.3783	0.9885	1.1656	1.4481
1.0113	1.4386	2.8684	0.9834	1.3988	1.7464
	m=	2.00314		m=	1.25433
QSTD[b=	-0.01725	QA	b=	-0.01050
	r=	0.99996		r=	0.99996

	Calculation	ış		
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime		
	For subsequent flow rat	e calculatio	ns:	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$	

	Standard Conditions
Tstd:	298.15 °K
Pstd.	760 mm Hg
	Key
	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

<u>Tisch TSP Mass Flow Controlled High Volume Air Sampler</u> <u>Field Calibration Report</u>

Station	Kwun Tong Go	vernment Seco	ondary School (ID1	A)	Operator:	Shum Kam	Yuen
Date:	8-May-18				Next Due Date:	8-Jul-1	8
Pump No.:	846	ï		V	erified Against:	O.T.S	988
Equipment No.:	A-001-64T			Е	Expiration Date:	22-May-2	2018
Model:	TE-5170						auju.
-							
			Ambient C	ondition			
Temperat	ure, Ta	300	Kelvin	Pressu	re, Pa	757.0	mmHg
	,	·					
		Or	ifice Transfer Sta	ndard Informat	ion	50, 2000	
Equipme	nt No.:	988	Slope, mc	1.984	425	Intercept, bc	-0.0093
Last Calibra	tion Date:	22-May-17	outerthisting out the	0.41.1	III (D. /5(0)	(200/F) \1/2	(1000)
Next Calibra	tion Date:	22-May-18	n	nc x Qstd + bc =	= [H X (Pa//60)	x (298/1a)]	
10		752		501			
			Calibration of	TSP Sampler	100 T	10 Lat. 10 -	
Calibration	Н			Qstd	W	[ΔW x (Pa/760) x	(208/Ta)] ^{1/2}
Point	in. of water	[H x (Pa/76	50) x (298/Ta)] ^{1/2}	(m ³ /min)	in. of oil	Y-axi	
				X - axis			
1	7.0		2.63	1.33	5.5	2.33	
2	6.4		2.52	1.27	4.7	2.16	
3	5.4		2.31	1.17	3.9	1.96	
4	4.2		2.04	1.03	2.5	1.57	
5	3.5		1.86	0.94	1.8	1.33	
By Linear Regro	ession of Y on	X					
Slope, $mw = $	2.5435			Intercept, bw =		-1.050	00
Correlation C	oefficient* =	0	.9988				
			Set Point C	alculation			19
		Value of the same	$td = 1.21 \text{ m}^3/\text{min}$ (4)	43 CFM)			
From the Regress	sion Equation, t	he "Y" value a	ccording to				
			Qstd + b = [W x (]	D-/760) (200/T	2-11/2		
		m x	Qsta + b = [w x]	ra//00) x (298/1	(a)]		
Therefore, S	Set Point W = (m x Ostd + b)	² x (760 / Pa) x (7	Γa / 298) =	4	.16	
Therefore, s	our ome w	m n Qua · o)	n(700714)n(, 250)		.10	
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.				
Remarks:							
					10 5000		
,							
QC Reviewer:	WS CHA	N	Signature:	41	Date:	8/5/18	

<u>Tisch TSP Mass Flow Controlled High Volume Air Sampler</u> <u>Field Calibration Report</u>

Ambient Condition Temperature, Ta 301 Kelvin Pressure, Pa 761. Orifice Transfer Standard Information Equipment No.: 843 Slope, mc 2.00314 Intercept Last Calibration Date: 26-Dec-17 Next Calibration Date: 26-Dec-18 Calibration of TSP Sampler	O.T.S 843 26-Dec-2018
Equipment No.: A-001-64T Model: TE-5170 Ambient Condition	26-Dec-2018
Model: TE-5170Ambient ConditionTemperature, Ta301 Kelvin Pressure, Pa761.Orifice Transfer Standard InformationEquipment No.:843 Slope, mc2.00314 InterceptLast Calibration Date:26-Dec-17 Next Calibration Date:mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]Calibration Point in, of water H [H x (Pa/760) x (298/Ta)]Qstd (m³/min) in of oil	
Ambient ConditionTemperature, Ta301KelvinPressure, Pa761.Orifice Transfer Standard InformationEquipment No.:843Slope, mc 2.00314 InterceptLast Calibration Date:26-Dec-17mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]Next Calibration Date:26-Dec-18 $Qstd$ W[AW x (Pa/760) x (298/Ta)]Calibration In Point in, of water (m^3/min) in of oil (m^3/min) in of oil	5 mmHg
Temperature, Ta 301 Kelvin Pressure, Pa 761. Orifice Transfer Standard Information Equipment No.: 843 Slope, mc 2.00314 Intercept Last Calibration Date: 26-Dec-17 Next Calibration Date: 26-Dec-18 Calibration of TSP Sampler Calibration H Point in, of water [H x (Pa/760) x (298/Ta)] Qstd (m³/min) in of oil [ΔW x (Pa/760)	5 mmHg
Temperature, Ta 301 Kelvin Pressure, Pa 761. Orifice Transfer Standard Information Equipment No.: 843 Slope, mc 2.00314 Intercept Last Calibration Date: 26-Dec-17 Next Calibration Date: 26-Dec-18 Calibration of TSP Sampler Calibration H Point in, of water [H x (Pa/760) x (298/Ta)] Qstd (m³/min) in of oil [ΔW x (Pa/760)	5 mmHg
Orifice Transfer Standard InformationEquipment No.:843Slope, mc 2.00314 InterceptLast Calibration Date:26-Dec-17 $mc \times Qstd + bc = [H \times (Pa/760) \times (298/Ta)]$ Next Calibration Date:26-Dec-18 $mc \times Qstd + bc = [H \times (Pa/760) \times (298/Ta)]$ Calibration Of TSP SamplerCalibration Of TSP Sampler $mc \times Qstd = [H \times (Pa/760) \times (298/Ta)]$ $mc \times Qstd = [H \times (Pa/760) \times (298/Ta)]$	5 mmHg
Equipment No.: 843 Slope, mc 2.00314 Intercept Last Calibration Date: 26-Dec-17 Next Calibration Date: 26-Dec-18 Calibration of TSP Sampler Calibration H Point in, of water [H x (Pa/760) x (298/Ta)] Qstd (m³/min) in of oil [ΔW x (Pa/760) x (ΔW [ΔW x (Pa/760) x (ΔW [ΔW x (Pa/760) x (ΔW	
Equipment No.: 843 Slope, mc 2.00314 Intercept Last Calibration Date: 26-Dec-17 Next Calibration Date: 26-Dec-18 Calibration of TSP Sampler Calibration H Point in, of water [H x (Pa/760) x (298/Ta)] Qstd (m³/min) in of oil [ΔW x (Pa/760) x (ΔW [ΔW x (Pa/760) x (ΔW [ΔW x (Pa/760) x (ΔW	
Last Calibration Date: 26-Dec-17 Next Calibration Date: 26-Dec-18 Calibration of TSP Sampler Calibration H Point in, of water [H x (Pa/760) x (298/Ta)] $\frac{\text{V}}{\text{(m}^3/\text{min)}}$ in of oil	
Next Calibration Date: 26-Dec-18	pt, bc -0.01725
Calibration Date: 26-Dec-18 Calibration of TSP Sampler Calibration H	1/2
Calibration H $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$)]
Calibration H $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$	
Calibration H $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd $W = [\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$	
Point in, of water [If x (Fa/700) x (298/1a)] (m/min) in of oil	a/760) x (298/Ta)] ^{1/2}
X - axis	Y-axis
	I WAIS
1 7.1 2.65 1.33 5.5	2.34
2 6.4 2.52 1.27 4.7	2.16
3 5.5 2.34 1.18 3.8	1.94
4 4.2 2.04 1.03 2.5	1.57
5 3.6 1.89 0.95 1.7	1.30
By Linear Regression of Y on X	
Slope , mw = 2.6605	-1.2029
Correlation Coefficient* = 0.9987	
Set Point Calculation	
From the TSP Field Calibration Curve, take Qstd = 1.21 m ³ /min (43 CFM)	
From the Regression Equation, the "Y" value according to	
1/2	
$m \times Qstd + b = [W \times (Pa/760) \times (298/Ta)]^{1/2}$	
Therefore, Set Point W = $(m \times Qstd + b)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.10	
4.10	
*If Correlation Coefficient < 0.990, check and recalibrate again.	
Remarks:	
QC Reviewer: WS CHAN Signature: Date: 06/	1-1.0

Station	On Yat House ((ID2)			Operator:	Shum Ka	m Yuen
Date:	21-May-18	_			Next Due Date:	21-Ju	I-18
Pump No.:	10373			V	erified Against:	O.T.S -	- 843
Equipment No.:	A-001-12T			E	Expiration Date:	26-Dec	-2018
Model:	GMW 2310						
	=====						- V - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	· · · · · · · · · · · · · · · · · · ·		Ambient C				
Temperat	ture, Ta	306	Kelvin	Pressu	ire, Pa	755.9	mmHg
		0-	rifice Transfer Sta	ndoud Informat	····		
Equipme	nt No ·	843	Slope, mc	2.00		Intercept, bc	-0.01725
							-0.01723
Last Calibra Next Calibra		26-Dec-17 26-Dec-18	1	nc x Qstd + bc =	= [H x (Pa/760)	$x (298/Ta)]^{1/2}$	
Next Callora	ation Date:	20-Dec-18					2011
			Calibration of	TSP Sampler			
Calibration Point	H in. of water	[H x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	W in. of oil	[ΔW x (Pa/760) Y-a	
1	7.0		2.60	1.31	5.3	2.2	7
2	6.2		2.45		4.5	2.09	
3	5.0		2.20	1.11	3.1	1.73	
4	4.1		1.99		2.3	1.49	
5	3.1		1.73	0.87	1.4	1.1	6
By Linear Regr	ession of Y on	X					
Slope, $mw =$	2.5415	_		Intercept, bw =	:	-1.05	578
Correlation C	oefficient* =	0	.9990	•			
	3 7 6 6 7	10-21 VINCE 1	C. I. D. I. I. C				
Emany 4h a TCD E	ald Calibration	Cumus tales O	Set Point C std = $1.21 \text{ m}^3/\text{min}$ (
				43 CFMI)			
From the Regres	sion Equation, t	ne i value	iccording to				
		m x	$\mathbf{Qstd} + \mathbf{b} = [\mathbf{W} \ \mathbf{x} \ ($	Pa/760) x (298/7	$[\Gamma a]^{1/2}$		
m1 0 .			2 (50 (5)	T. (200)		••	
Therefore,	Set Point $W = ($	m x Qstd + b	o ² x (760 / Pa) x (1a/298) =	4	.20	_
*If Correlation (Coefficient < 0.9	990, check and	recalibrate again.	4 4 7 7	*****		
		,	g				
Remarks:							
			2100				
						,	4
QC Reviewer:	WS CHA	V	Signature:	41	Date:	21/05/1	8

	On Tal House	(ID2)			Operator	: Shum Kai	n Yuen
	:20-Jul-18				Next Due Date	:20-Sep	o-18
Pump No.	:10373	•		7		: O.T.S	
Equipment No.	:_ A-001-12T					: 26-Dec-	
Model	: GMW 2310				•		
			Ambient (Condition			
Tempera	ature, Ta	305	Kelvin	Pressi	ıre, Pa	757.1	mmHg
		Oı	rifice Transfer Sta	indard Informa	tion		
Equipme	ent No.:	843	Slope, mc	2.00		Intercept, bc	-0.01725
Last Calibration Date:		26-Dec-17					0.017.20
Next Calibr	ation Date:	26-Dec-18	1	mc x Qstd + bc =	$= [H \times (Pa/760)]$	$x (298/Ta)]^{1/2}$	
							-
			Calibration of	TSP Sampler			
Calibration	Н			Qstd			1/2
Point	in. of water	[H x (Pa/76	50) x (298/Ta)] ^{1/2}	(m ³ /min)	W in. of oil	[ΔW x (Pa/760) x	
				X - axis	111. 01 011	Y-axi	iS
1	7.1		2.63	1.32	5.4	2.29	
2	6.2		2.46		4.5	2.09	
3	5.1		2.23		3.1	1.74	
4	4.1		2.00		2.3	1.50	
5	3.0		1.71	0.86	1.3	1.12	
By Linear Regr	ession of Y on X	X					
Slope, mw =	2.5449		Ĵ	Intercept, bw =		-1.076	19
Correlation C	oefficient* =	0.	9992	•	•		
			Set Point Ca	alculation			
From the TSP Fig	eld Calibration C	Curve, take Qst	$d = 1.21 \text{ m}^3/\text{min } (4)$				
From the Regress			10.50				
			an (1000 111 - 1 4000 - 1				
		m x (Qstd + b = [W x (P)]	² a/760) x (298/T	a)] ^{1/2}		
T1 C C	D' W	2		s as well-amount			
Inerefore, S	set Point W = (n	$n \times Qstd + b$) ²	x (760 / Pa) x (T	(a / 298) =	4.	12	
*If Correlation C	oefficient < 0.00	O abaak and r	agalihmata a sais				
ii correlation c	ocificient < 0.99	o, check and i	ecanorate again.				
Remarks:							
Ciliai KS.				- TAME			
_							
OC P '	10000			21		/ / 0	
QC Keviewer:	WS (HAZ)		Signature:	4	Date.)	0/07/18	

<u>Tisch TSP Mass Flow Controlled High Volume Air Sampler</u> <u>Field Calibration Report</u>

Station	Sau Nga House	(ID3)			Operator:	Shum Kan	ı Yuen
Date:	21-May-18				Next Due Date:	21-Jul-	18
Pump No.:	3261			v	erified Against:	O.T.S	843
Equipment No.:	A-001-77T			E	Expiration Date:	26-Dec-2	2018
Model:	TE-5170				100		000 000000 POOD 00000
						0)	oppg
30.0	1101		Ambient C	Condition		1,50	
Temperat	ture, Ta	306	Kelvin	Pressu	re, Pa	755.9	mmHg
		Oı	ifice Transfer Sta	ndard Informat	tion		
Equipme	ent No.:	843	Slope, mc	2.00	314	Intercept, bc	-0.01725
Last Calibra	tion Date:	26-Dec-17	,	nc x Qstd + bc =	= (H x (Pa/760)	x (298/Ta)1 ^{1/2}	
Next Calibra	ation Date:	26-Dec-18		ne x Qstu + be -	- [II X (I &/ 700)	X (290/14)j	
					1900 1900	1.00	17
		_	Calibration of				
Calibration	Н		(0) (000/= 1-1/2	Qstd	W	[ΔW x (Pa/760) z	x (298/Ta)] ^{1/2}
Point	in. of water	[H x (Pa/7)	60) x (298/Ta)] ^{1/2}	(m³/min) X - axis	in. of oil	Y-ax	
,	1 7.1 2.62				5.0	2.20	<u> </u>
2	6.2		2.45	1.32	4.3	2.04	
3	5.5		2.31	1.16	3.5	1.84	
4	4.1		1.99	1.00	2.4	1.52	
5	2.9		1.68	0.85	1.5	1.21	
By Linear Regr	terror and the second	v	1.08	0.83	1.5	1.21	
	2.1281	A		Intercept, bw =		-0.604	44
Correlation C			.9989	intercept, a			
Correlation							
******			and the same of th		1.00		010 St 10 CO
			Set Point C	alculation	***		
From the TSP Fi	eld Calibration	Curve, take O	$std = 1.21 \text{ m}^3/\text{min } ($				
From the Regres				, ,			
a roma mo region	,,,		a=2				
		m x	$\mathbf{Qstd} + \mathbf{b} = [\mathbf{W} \ \mathbf{x} \ ($	Pa/760) x (298/7	[a)] ^{1/2}		
			2		v2		
Therefore,	Set Point $W = ($	m x Qstd + b) ² x (760 / Pa) x (Ta / 298)=	4	.01	•
*If Correlation (Coefficient < 0.0	000 check and	recalibrate again.				
The Correlation C	Joennelent \ 0.5	790, check and	recambrate again.				
Remarks:							
romano.							
			-				
QC Reviewer:	NS CHIA	J	Signature:	31	Date:	21/05/1	8

<u>Tisch TSP Mass Flow Controlled High Volume Air Sampler</u> <u>Field Calibration Report</u>

	1 Sau Nga House	<u>e (</u> ID3)			Operator	Shum Kam Y	uen
Date	:20-Jul-18				Next Due Date:	20-Sep-18	
Pump No.	:3261	e		7	erified Against:	O.T.S 843	3
Equipment No.	: <u>A-001-77T</u>	ri.			Expiration Date:	26-Dec-2018	8
Model	:TE-5170	el					
			Ambient (Condition			
Tempera	ature, Ta	305	Kelvin	Pressi	ıre, Pa	757.1	mmHg
			ifice Transfer Sta	ndard Informa	tion		V-1
Equipme		843	Slope, mc	2.00	314	Intercept, bc -(0.01725
Last Calibr		26-Dec-17	r	mc x Qstd + bc =	= [H x (Pa/760)	v (298/Ta)] ^{1/2}	
Next Calibr	ration Date:	26-Dec-18		are a Quee - De	[11 x (1 tt/700)	A (296/1a)]	
		•					
			Calibration of				
Calibration	Н	[H v. (Do/74	50) x (298/Ta)] ^{1/2}	Qstd	W	[ΔW x (Pa/760) x (29	98/Ta)1 ^{1/2}
Point	in. of water	[n x (ra//	50) x (298/1a)]	(m³/min) X - axis	in. of oil	Y-axis	/1
1	7.2		2.65	1.33	5.1	2.23	
2	6.2		2.46	1.24	4.3	2.05	
3	5.5		2.31		3.6	1.87	
4	4.2		2.02	1.16	2.4	1.53	
5	3.0		1.71	0.86	1.5	1.21	17
By Linear Regr	ession of Y on 2	X			1.0	1.21	
Slope , mw =	2.2060			Intercept, bw =		-0.6971	
Correlation C	oefficient* =	0.	9993	• /		0.0571	
	_						
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration C	Curve, take Qst	$d = 1.21 \text{ m}^3/\text{min } (4)$	3 CFM)			
From the Regress	sion Equation, th	ne "Y" value ac	cording to				
					1/2		
		m x (Qstd + b = [W x (P)]	^o a/760) x (298/T	a)] ^{1/2}		
Therefore, S	Set Point W = (n	$n \times Ostd + h)^2$	x (760 / Pa) x (T	(a / 208) =	4	00	
1110101010,	oct to the tr	ii x Qsiu + 0)	x(70071a)x(1	a/298)-	4.	00	
*If Correlation C	oefficient < 0.99	0, check and r	ecalibrate again.				
Remarks:							
30-							
			-				
QC Reviewer:	LIS GHAN		Signature:	81	Date:	20/07/18	

Station	Sau Ming Prim	ary School (ID	4)		Operator	: Shum Ka	m Yuen
Date:	21-May-18	_			Next Due Date:	: 21-Ju	l-18
Pump No.:	1275			v	erified Against	: O.T.S -	- 843
Equipment No.:	A-001-28T			F	Expiration Date:	: 26-Dec	-2018
Model:	GMW 2310						
			Ambient C	Condition			
Tempera	ture, Ta	306	Kelvin	Pressu	ire, Pa	755.9	mmHg
		Or	ifice Transfer Sta	ndard Informat	tion	Υ	_
Equipme	ent No.:	843	Slope, mc	2.00	314	Intercept, bc	-0.01725
Last Calibra	ation Date:	26-Dec-17	1	nc x Qstd + bc =	= [H x (Pa/760)	$\times (298/Ta)1^{1/2}$	
Next Calibra	ation Date:	26-Dec-18			[(
7,000,000,000		•		130			
	1	1 -	Calibration of			T	
Calibration	н	[H v (Do/7)	60) x (298/Ta)] ^{1/2}	Qstd (m³/min)	W	[ΔW x (Pa/760)	x (298/Ta)] ^{1/2}
Point	in. of water	[II x (Fa//)	30) x (298/14)]	X - axis	in. of oil	Y-a	kis
1	7.3		2.66	1.34	5.2	2.2	4
2	6.1		2.43	1.22	4.2	2.0	2
3	5.0		2.20	1.11	3.4	1.8	1
4	3.9		1.94	0.98	2.4	1.5	2
5	2.9		1.68	0.85	1.7	1.2	8
By Linear Regr	ression of Y on	X					
Slope, $mw =$	1.9846	<u> </u>		Intercept, bw =	Ü.	-0.40)90
Correlation C	Coefficient* =	0	.9994				
			4 10 10 10 10 10 10 10 10 10 10 10 10 10			0-12	
							<u> Lordon</u>
			Set Point C				
			$std = 1.21 \text{ m}^3/\text{min}$ (43 CFM)			
From the Regres	ssion Equation, t	he "Y" value a	ecording to				
		m v	Qstd + b = [W x (Pa/760) v (208/7	Γα)] ^{1/2}		
		шх	Qata D [W X (1 a. 700) x (250/1	· /)		
Therefore,	Set Point W = (m x Qstd + b)	² x (760 / Pa) x (Ta / 298)=		4.10	
	XX	280 120		392			
*If Correlation (Coefficient < 0.9	90, check and	recalibrate again.				
Remarks:			OC 1			· · · · · · · · · · · · · · · · · · ·	-
	7						
	IC MIN	1		72.		5/-10)
QC Reviewer:	N) UHIA	J	Signature:	41	. Date	: 21/05/18	2

Station	Sau Ming Prim	ary School (II	04)		Operator:	Shum Kan	n Yuen	
Date:	20-Jul-18	_			Next Due Date:	20-Sep	-1 8	
Pump No.:	1275			V	erified Against:	O.T.S	843	
Equipment No .:	A-001-28T			1	Expiration Date:	26-Dec-2	2018	
Model:	GMW 2310							
-								
			Ambient (Condition				
Tempera	ture, Ta	305	Kelvin	Pressu	ıre, Pa	757.1	mmHg	
		Or	ifice Transfer Sta	ndard Informa	tion			
Equipme	ent No.:	843	Slope, mc	2.00	314	Intercept, bc	-0.01725	
Last Calibra	ation Date:	26-Dec-17	$mc x Qstd + bc = [H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibr	ation Date:	26-Dec-18		ne x Qsta + be =	= [H X (Pa//60)	x (298/1a)j		
		•						
			Calibration of	TSP Sampler				
Calibration	Н		1/2	Qstd	W	[ΔW x (Pa/760) x	(208/Ta)1 ^{1/2}	
Point	in. of water	[H x (Pa/76	50) x (298/Ta)] ^{1/2}	(m³/min)	in. of oil	Y-axi		
	7.1		2.62	X - axis				
1	7.1		2.63	1.32	5.2	2.25		
2	6.1	-	2.44	1.23	4.2	2.02		
3	5.0		2.21	1.11	3.4	1.82		
4	3.9		1.95	0.98	2.4	1.53		
5 D. X.: D.	3.0		1.71	0.86	1.6	1.25		
By Linear Regr		X		_ a				
Slope, mw =	2.1266	_		Intercept, bw =		-0.565	3	
Correlation C	oefficient* = _	0.	9985					
Constant of TCD E	-1.1 (2.1%	7 1 . 0	Set Point C					
			$d = 1.21 \text{ m}^3/\text{min}$ (4	13 CFM)				
From the Regress	sion Equation, th	ne "Y" value a	ccording to					
		m x (Qstd + b = [W x (I	Pa/760) x (298/T	$[a]^{1/2}$			
				, (-71			
Therefore, S	Set Point $W = (r$	$n \times Qstd + b)^2$	x (760/Pa)x(7	(a / 298) =	4.	14		
*If Correlation C	oefficient < 0.99	90, check and i	ecalibrate again.					
Remarks:								
005	ec fina	7		21		> 1-10		
QC Reviewer:	W> CHAN	(Signature:	4	Date:	20/07/18		

Station	Sau Mau Ping	Catholic Prima	ry School (ID5)		Operator:	Shum Kan	n Yuen
Date:	21-May-18	_			Next Due Date:	21-Jul-	-18
Pump No.:	10088			V	erified Against:	O.T.S	843
Equipment No.:	A-001-13T			Ι	Expiration Date:	26-Dec-2	2018
Model:	GMW 2310						
			Ambient C	Condition	100		
Temperat	ure, Ta	306	Kelvin	Pressu	ire, Pa	755.9	mmHg
		**************************************	1000				100000
		Or	ifice Transfer Sta	ndard Informat	tion		5100
Equipme	nt No.:	843	Slope, mc	2.00	314	Intercept, bc	-0.01725
Last Calibra	tion Date:	26-Dec-17	_		- III - (D-/7(0)	(200/T-)1/2	
Next Calibra	tion Date:	26-Dec-18	I	nc x Qstd + bc =	= [H X (Pa//60)	x (298/1a)]	
				-537.0	- 10. 2009	3-	
			Calibration of	TSP Sampler			
Calibration	Н	1, 31, -42,		Qstd	W	[ΔW x (Pa/760) x	v (208/Ta)] ^{1/2}
Point	in. of water	[H x (Pa/7)	60) x (298/Ta)] ^{1/2}	(m ³ /min)	in. of oil	Y-axi	
_		4		X - axis			
1	7.0		2.60	1.31	5.5	2.31	
2	6.0	-	2.41	1.21	4.4	2.06	
3	5.1		2.22	1.12	3.4	1.81	
4	4.1	1185	1.99	1.00	2.5	1.56	
5	3.1		1.73	0.87	1.6	1.24	<u> </u>
By Linear Regr		X					
	2.4166	_		Intercept, bw =	•	-0.867	71
Correlation C	oefficient* =	0	.9992	•			
	15.00						
			G. (B.) (G			-	
Enom the TCD Ei	ald Calibration	C 4-1 O-	Set Point C		**	- 131 N	
			$td = 1.21 \text{ m}^3/\text{min}$ (43 CFM)			
From the Regress	sion Equation, t	ne " r " vaiue a	ccording to				
		m x	$\mathbf{Qstd} + \mathbf{b} = [\mathbf{W} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{b} \ \mathbf{x} \ (\mathbf{x} \ (x$	Pa/760) x (298/1	[a]] ^{1/2}		
Therefore, S	Set Point $W = ($	m x Qstd + b)	² x (760 / Pa) x (7	Ta / 298) =	4	.37	
*If Correlation C	Coefficient < 0.9	90, check and	recalibrate again.				
n .							
Remarks:							
007	116 1111	1	~.	PI	<u>~</u>	1/10	
QC Reviewer:	N> (4/17)	J	Signature:	4	. Date:	21/05/18	,

Station	Sau Mau Ping	Catholic Prima	ary School (ID5)		Operator	Shum Kar	n Yuen			
Date	:20-Jul-18				Next Due Date					
Pump No.:	o.: 10088 Verified Against: 0.T.S									
Equipment No.:	A-001-13T				Expiration Date:					
Model:	GMW 2310				**					
			Ambient (Condition						
Tempera	ture, Ta	305	Kelvin	Pressi	ure, Pa	757.1	mmHg			
		01	ifice Transfer Sta	ndard Informa	tion		*			
Equipme	ent No.:	843	Slope, mc	2.00		Intercept, bc	0.01725			
Last Calibra		26-Dec-17					-0.01725			
Next Calibra		26-Dec-18	n	nc x Qstd + bc =	$= [H \times (Pa/760)]$	$x (298/Ta)]^{1/2}$				
			Calibration of	TSP Sampler						
Calibration	Н	FYY /= :-	1/2	Qstd	W	[ΔW x (Pa/760) x	(208/Ta)1 ^{1/2}			
Point	in. of water	[H x (Pa/76	50) x (298/Ta)] ^{1/2}	(m³/min)	in. of oil	Y-axi				
1	7.1		2.63	X - axis						
2	6.0			1.32	5.5	2.31	-			
3	5.2	2.42		1.22	4.5	2.09				
4	4.1		2.25	1.13	3.4	1.82				
5	3.2		2.00 1.76	1.01	2.6	1.59				
By Linear Regr		7	1.70	0.89	1.7	1.29				
Slope, mw =		•	1	Intercept, bw =		0.010				
Correlation C		- 0.	9984	intercept, bw –	9	-0.818	0			
			Set Point Ca	lculation						
From the TSP Fie	eld Calibration C	Curve, take Qst	$d = 1.21 \text{ m}^3/\text{min } (4)$	3 CFM)						
From the Regress	sion Equation, th	e "Y" value ac	cording to							
		m v ($\mathbf{p}(\mathbf{x}) = \mathbf{p}(\mathbf{x}) + \mathbf{p}(\mathbf{x})$	-/760) (300/m	11/2					
		шх	ystu + b – [w x (P	a//00) X (298/1:	a)j					
Therefore, S	et Point W = (m	$(x + b)^2$	x (760 / Pa) x (Ta	a / 298) =	4.	31				
				(-						
If Correlation Co	petficient < 0.99	0, check and r	ecalibrate again.							
Remarks:										
-										
,-										
QC Reviewer:	NS CHAN		Signature:	RI	Date:	20/07/18				

Model Equip	facturer/Brand:	tting:	-	Laser Dust Monitor SIBATA LD-3 A.005.07a 557 CPM					
Opera	ator:			_	Mike She	k (MSKN	<i>м</i>)		
Standa	rd Equipment		-						
				t (Pui) 00AB 140 120	Ving Seco DAB21989 DOC14369	ndary So 99803 59803	K _o : _12500)	
			11 101 11	aruwar	- Calibrai		year		
Calibra	tion Result								
Sensit	ivity Adjustment ivity Adjustment	Scale Se	tting (E tting (A	Before After Ca	Calibratio alibration)	n): :		PM PM	
Hour	Date (dd-mm-yy)	7	Time		Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	05-05-18	09:15	- 1	0:15	27.6	79	0.05367	2151	35.85
2	05-05-18	10:15	- 1	1:15	27.6	80	0.05864	2347	39.12
3	05-05-18	11:15	- 1	2:15	27.7	80	0.06661	2679	44.65
4	05-05-18	12:15		3:15	27.7	79	0.06335	2546	42.43
Slope Correla	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient: y of Calibration F	was logge e was cal Y or X	0.00	aser [d by (T	Oust Moni otal Cour	tor	shnick TEOM®		
Remark	s:								
QC Re	eviewer: YW F	iuna		Signat	ure.	N	Date	e: 07 Mov	. 2019

Type: Manut Model	facturer/Brand:		_	Laser Du SIBATA LD-3	ıst Moni	tor				
	ment No.:				A.005.09	а				
	tivity Adjustment	Scale Se	tting		797 CPI					
Opera	itor:				Mike Shek (MSKM)					
Standa	rd Equipment							***		
Equip Venue) :	Cy	berp	ort (Pui Y	tashnick ′ing Seco		chool)			
Model				1400AB						
Serial	No:		ntrol:		AB21989		1/ 1050			
Last C	Calibration Date*:		nsor: 1ay 2		0C14365	9803	K₀: <u>1250</u>	0		
Laor	andration bate .		lay Z	.070		100				
*Remar	ks: Recommend	ed interva	al for	hardwar	e calibrat	ion is 1 y	ear ear			
Calibra	tion Result						· ·			
	ivity Adjustment ivity Adjustment							PM PM		
Hour	Date	-	Time		Amb	ient	Concentration ¹	Total	Count/	
	(dd-mm-yy)				Cond	lition	(mg/m ³)	Count ²	Minute ³	
					Temp	R.H.	Y-axis		X-axis	
					(°C)	(%)				
1	05-05-18	09:45	-	10:45	27.6	79	0.05483	2176	36.26	
3	05-05-18	10:45	-	11:45	27.7	80	0.05813	2324	38.73	
4	05-05-18 05-05-18	11:45 12:45	=0	12:45 13:45	27.7 27.7	79 79	0.06734	2701	45.02	
Note:						70	0.06375	2545	42.41	
	Total Count Count/minut	was logg e was ca	ed by	y Laser D	Oust Moni	tor	shnick TEOM®			
	ar Regression of (K-factor):	Y or X	0	0045						
	ation coefficient:			.0015 .9977						
	y of Calibration F			May 201	19					
Remark	s:									
QC Re	eviewer: YW F	ung		Signat	ure:	y	Da	te: <u>07 Ma</u>	y 2018	

Type: Manut	facturer/Brand:		-	Laser Du SIBATA	ust Moni	tor		
Model			-	LD-3		-		
Equip	ment No.:			A.005.10	a			
Sensit	ivity Adjustment	Scale Settir		753 CPI				
Opera	tor:		_	Mike She	k (MSKN	1)		
Standa	rd Equipment			-				
					40.1			
Equip			recht & Pa					
Venue			rport (Pui \	ing Seco	ondary Sc	chool)		
Model			s 1400AB					
Serial	No:	Contr		AB21989				
Last C	alibration Date*:	Senso		00C14368	59803	K₀: <u>12500</u>		
Lasi C	alibration Date .	_ S IVIA	/ 2018					
*Remar	ks: Recommend	ed interval f	or hardwar	e calibra	tion is 1 y	ear ear		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment					753 CP 753 CP		
Hour	Date	Tin	ne	Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
1	05.05.40	40.00	44.00	(°C)	(%)			
1	05-05-18	10:00 -		27.7	80	0.05415	2164	36.06
2	05-05-18	11:00 -		27.7	80	0.05973	2375	39.58
4	05-05-18 05-05-18	12:00 - 13:00 -	13:00	27.7	79	0.06718	2693	44.88
Note:			14:00	27.7	80	0.06486 shnick TEOM®	2587	43.11
	Total Count Count/minut	was logged e was calcu	by Laser [Dust Mon	itor	STITICK TEOMS		
	ar Regression of	Y or X	0.0045					
	(K-factor):	-	0.0015					
	ation coefficient:	-	0.9986	y 				
validity	y of Calibration F	Record: _	5 May 201	19				
Remark	s:							
QC Re	eviewer: YW F	- ung	Signat	ure:	W/	Date	e: _07 May	/ 2018

Model Equipr Sensit Opera	ment No.: ivity Adjustment tor:	Scale Setting	: _	Laser Du SIBATA LD-3 A.005.11 799 CPI Mike She	а И			
Standar	rd Equipment							
	: No.:	Series Control Sensor 3 May	: 120 2018	/ing Seco 0AB21989 00C14365	99803 99803	K₀: <u>1250</u>	0	
		*						
Calibra	tion Result							
	ivity Adjustment ivity Adjustment						PM PM	
Hour	Date (dd-mm-yy)	Time)	Amb Cond Temp (°C)		Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	06-05-18	10:00 -	11:00	27.9	80	0.05121	2045	34.08
2	06-05-18	11:00 -	12:00	27.9	81	0.05413	2164	36.06
3	06-05-18	12:00 -	13:00	27.9	80	0.05616	2252	37.53
4	06-05-18	13:00 -	14:00	28.0	80	0.05824	2321	38.68
Slope Correla	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged be was calcular Y or X	y Laser D	Oust Mon otal Cou	itor	ashnick TEOM®		
Remark	s:							
QC Re	eviewer: <u>YW F</u>	ung	Signat	ure:	7	Da	te: <u>07 Ma</u>	y 2018

Type:				Laser Du	ust Moni	tor		
Manuf	facturer/Brand:		_	SIBATA				
Model	No.:		_	LD-3B				
	ment No.:			A.005.13	a			
Sensit	tivity Adjustment	Scale Sett	ing:	643 CPI	И			
Opera	ator:		_	Mike She	ek (MSKN	М)		
Standa	rd Equipment							
					_			
Equip			precht & Pa					
Venue			erport (Pui \	ring Seco	ondary So	chool)		
Model			es 1400AB	150/00				
Serial	NO:	Conf		DAB21989	9205-014 IF (U.C. 6860, V.	16 (0500		
Last C	Calibration Date*:	Sens	sor: <u>120</u> ay 2018	00C1436	59803	K₀: <u>12500</u>	8	
Last	andration bate .	_ O IVIC	ay 2010					
*Remar	ks: Recommend	ed interval	for hardwar	re calibra	tion is 1 y	year		
Calibra	tion Result							
o								
	tivity Adjustment					643 CP		
Sensit	tivity Adjustment	Scale Sett	ing (After Ca	alibration):	_643 CP	'M	
Hour	Date	Ti	me	Δmł	pient	Concentration ¹	Total	Count/
rioui	(dd-mm-yy)	1.1	inc	ACT AND CONTRACTOR	dition	(mg/m³)	Count ²	Minute ³
	(44 11111 33)			Temp	R.H.	Y-axis	Count	X-axis
				(°C)	(%)	I -axis		A-axis
1	06-05-18	10:15	- 11:15	27.9	80	0.05124	2057	34.28
2	06-05-18	11:15	- 12:15	27.9	81	0.05453	2179	36.32
3	06-05-18	12:15	- 13:15	28.0	81	0.05658	2273	37.88
4	06-05-18	13:15	- 14:15	28.0	80	0.05736	2307	38.45
Note:	1. Monitoring of	lata was m	easured by	Rupprec	ht & Pata	shnick TEOM®	-	
	Total Count							
	Count/minut	e was calc	culated by (T	otal Cou	nt/60)			
De Liere	Di <i>f</i>	V V						
	ar Regression of	Y or X	0.0045					
	(K-factor): ation coefficient:		0.0015		-			
Correi	ation coefficient.		0.9968					
Validit	y of Calibration F	Record:	6 May 20	19				
Remark	re.							
Coman		W-95						
	1							
						/		
QC R4	eviewer: YW F	-una	Signat	hire.	11/	/ Date	e: 07 Ma	v 2019
GO IN	177	arig	_ Olyriai	.u.e.	V	Date	. <u>Ur ivia</u>	y 2010

Mode Equip	:	t Scale Setting:	Laser D SIBATA LD-3B A.005.1 521 CP	6a	itor		
Opera	ator:		Mike Sh	ek (MSK	М)		
Standa	ard Equipment						
Venue Mode Serial Last 0	I No.: No: Calibration Date*	Sensor: 1.	Ying Seco 3 40AB2198 200C1436	ondary S 99803 59803	K _o : _12500)	
	tion Result						
Sensit	tivity Adjustment tivity Adjustment	Scale Setting (Before Scale Setting (After (e Calibration	on):):	CF		
Hour	Date (dd-mm-yy)	Time		dition R.H. (%)	Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	15-07-17	10:30 - 11:30	28.7	81	0.04886	1956	32.60
3	15-07-17	11:30 - 12:30	28.8	81	0.05237	2091	34.85
4	15-07-17 15-07-17	12:30 - 13:30 13:30 - 14:30	28.9	82	0.05754	2295	38.25
Note:	Monitoring of 2. Total Count	13:30 - 14:30 lata was measured by was logged by Laser e was calculated by (Dust Mon	itor	0.05612 shnick TEOM®	2250	37.50
Slope	ar Regression of (K-factor): ation coefficient:	Y or X <u>0.0015</u> 0.9989					
Validity	of Calibration R	Record: 15 July 2	018				
Remarks	5:						
QC Re	viewer: <u>YW F</u> i	<i>ung</i> Signa	ture:	1/	Date:	: _17 July	2017

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0901 01

Page

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

B&K

2238

B&K

2800927

4188 2791211

Microphone

Adaptors used:

Type/Model No.

Item submitted by

Serial/Equipment No.:

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer: Request No .:

Date of receipt:

01-Sep-2017

Date of test:

09-Sep-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator

Model: B&K 4226

DS 360

DS 360

Serial No.

2288444 33873

61227

Expiry Date:

08-Sep-2018 25-Apr-2018

01-Apr-2018

Traceable to:

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity:

21 ± 1 °C 50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jia Min/Feng Jun Qi Date:

09-Sep-2017

Company Chop:

The results reported hothis certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co. Ltd

Form No CARP152-1/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0901 01

Page

1 **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	1.0	2.1
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz		2.0	2.2
and the second	Reference SPL on all other ranges	Pass	0.3	
		Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
Linearity range for SPL	2 dB above lower limit of each range	Pass	0.3	
Frequency weightings	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
requericy weightings	A	Pass	0.3	
	С	Pass	0.3	
Ti	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
D	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
-	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Lai Sheng Jie

Checked by:

Fung Chi Yip

Date: 09-Sep-2017

Date:

09-Sep-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0321 01-02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Preamp

Manufacturer: Type/Model No.: **B&K** 2250-L

B&K 4950

B&K ZC0032

Serial/Equipment No.: Adaptors used:

2681366

2665582

17190

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.

Date of receipt:

21-Mar-2018

Date of test:

23-Mar-2018

Reference equipment used in the calibration

Description:

Model:

Serial No.

(N.011.01)

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444 33873

08-Sep-2018 25-Apr-2018

CIGISMEC CEPREI

Signal generator

DS 360

61227

01-Apr-2018

CEPREI

Ambient conditions

Temperature:

Air pressure:

21 ± 1 °C

Relative humidity:

50 ± 10 % 1000 ± 5 hPa

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1; 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Feng Jun Qi

Actual Measurement data are documented on worksheets

Approved Signatory:

Date:

24-Mar-2018

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0321 01-02

2

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
and generalize money	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range, Step 5 dB at 4 kHz	Pass	-0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
, , , ,	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
3 3	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip Date:

End

Checked by

Lam Tze Wai

23-Mar-2018

Date:

24-Mar-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co. Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港 黄竹坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0922 03-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.:

NC-74

Serial/Equipment No.:

34246490 / N.004.10

Adaptors used:

_

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer: Request No.:

-

Date of receipt:

22-Sep-2017

Date of test:

28-Sep-2017

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-Apr-2018	SCL
Preamplifier	B&K 2673	2743150	05-May-2018	CEPREI
Measuring amplifier	B&K 2610	2346941	03-May-2018	CEPREI
Signal generator	DS 360	61227	01-Apr-2018	CEPREI
Digital multi-meter	34401A	US36087050	25-Apr-2018	CEPREI
Audio analyzer	8903B	GB41300350	21-Apr-2018	CEPREI
Universal counter	53132A	MY40003662	22-Apr-2018	CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1000 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Ain/Feng Jun Qi

Approved Signatory:

Date:

28-Sep-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0922 03-02

Page:

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	(Output level in dB re 20 µPa) Estimated Expanded Uncertainty dB
Shown	Level Setting	Sound Pressure Level	
Hz	dB	dB	
1000	94.00	94.07	0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.011 dB

Estimated expanded uncertainty

0.005 dB

Actual Output Frequency 3.

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1002.1 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4.

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 2.8 %

Estimated expanded uncertainty

07%

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Checked by:

Fung Chi Yip

Date:

28-Sep-2017

Date:

28-Sep-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

APPENDIX E

EM&A Monitoring Schedules

CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for July 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jul	2-Jul	3-Jul		5-Jul	6-Jul	7-Jul
			24-hour TSP 1-hour TSP Noise (ID1-5)			
8-Jul	9-Jul		11-Jul	12-Jul	13-Jul	14-Jul
		24-hour TSP 1-hour TSP Noise (ID1-5)				24-hour TSP 1-hour TSP (ID1-5)
15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul	21-Jul
					24-hour TSP 1-hour TSP Noise (ID1-5)	
22-Jul	23-Jul	24-Jul	25-Jul		27-Jul	28-Jul
				24-hour TSP 1-hour TSP Noise (ID1-5)		
29-Jul	30-Jul	31-Jul				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for August 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Aug	2-Aug	3-Aug	4-Aug
			24-hour TSP			
			1-hour TSP			
			Noise			
			(ID1-5)			
5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug
		24-hour TSP				
		1-hour TSP				
		Noise				
		(ID1-5)				
12-Aug		14-Aug	15-Aug	16-Aug	17-Aug	18-Aug
	24-hour TSP					24-hour TSP
	1-hour TSP					1-hour TSP
	Noise					
	(ID1-5)					(ID1-5)
19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug
					24-hour TSP	
					1-hour TSP	
					Noise	
					(ID1-5)	
26-Aug	27-Aug	28-Aug	29-Aug		31-Aug	
				24-hour TSP		
				1-hour TSP		
				Noise		
				(ID1-5)	_	

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX F

Air Quality Monitoring Results and their Graphical Presentations

Appendix F Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Jul-18	13:00	59.6	60.7	61.8
10-Jul-18	9:20	67.7	69.5	66.4
14-Jul-18	10:30	65.1	66.8	63.9
20-Jul-18	11:05	64.8	65.2	65.0
26-Jul-18	11:35	70.6	67.6	66.8
			Average	65.4
			Min	59.6
			Max	70.6

1-hour TSP Monitoring Results at Station ID 2 (On Yat House)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Jul-18	13:15	61.3	60.3	62.7
10-Jul-18	9:33	68.8	70.9	71.4
14-Jul-18	10:48	71.6	73.3	68.5
20-Jul-18	10:29	65.1	64.8	65.4
26-Jul-18	11:20	69.2	71.8	68.6
			Average	67.6
			Min	60.3
			Max	73.3

1-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Jul-18	13:55	61.9	63.8	62.6
10-Jul-18	9:46	67.5	66.2	65.4
14-Jul-18	11:08	71.2	67.7	69.3
20-Jul-18	10:14	66.3	65.8	65.2
26-Jul-18	13:00	69.9	67.0	71.4
			Average	66.7
			Min	61.9
			Max	71.4

1-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Jul-18	14:05	62.4	63.5	64.4
10-Jul-18	9:58	63.8	69.2	64.2
14-Jul-18	11:23	69.6	70.5	69.0
20-Jul-18	9:52	64.8	64.9	65.4
26-Jul-18	10:46	65.7	68.8	70.7
			Average	66.5
			Min	62.4
			Max	70.7

1-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Jul-18	15:00	61.7	62.8	60.3
10-Jul-18	10:10	70.6	67.2	65.9
14-Jul-18	11:50	67.0	71.0	68.8
20-Jul-18	9:30	64.7	65.0	65.2
26-Jul-18	10:35	71.2	69.3	67.8
			Average	66.6
			Min	60.3
			Max	71.2

Appendix F Air Quality Monitoring Results

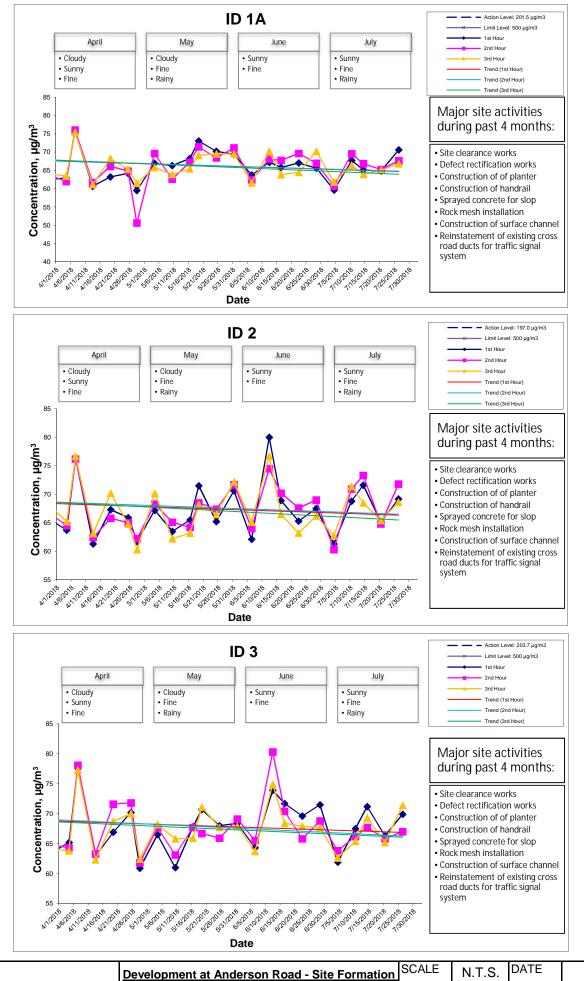
24-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

Date	Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
4-Jul-18	Fine	29.7	1002.5	1.2864	1.2868	1.29	1852.7	2.5795	2.6237	0.0442	21108.39	21132.39	24.00	23.9
10-Jul-18	Sunny	31.8	1005.7	1.2971	1.2958	1.30	1866.9	2.6800	2.7299	0.0499	21132.39	21156.39	24.00	26.7
14-Jul-18	Rainly	28.7	1003.9	1.3381	1.3379	1.34	1926.7	2.6520	2.7033	0.0513	21156.39	21180.39	24.00	26.6
20-Jul-18	Sunny	29.7	1004.6	1.3308	1.3344	1.33	1918.9	2.6629	2.7066	0.0437	21180.39	21204.39	24.00	22.8
26-Jul-18	Fine	31.7	1005.8	1.2956	1.2921	1.29	1863.1	2.6161	2.6519	0.0358	21204.39	21228.39	24.00	19.2
													Average	23.8
													Min	19.2
													Max	26.7

24-hour TSP Monitoring Results at Station ID 2 (On Yat House)

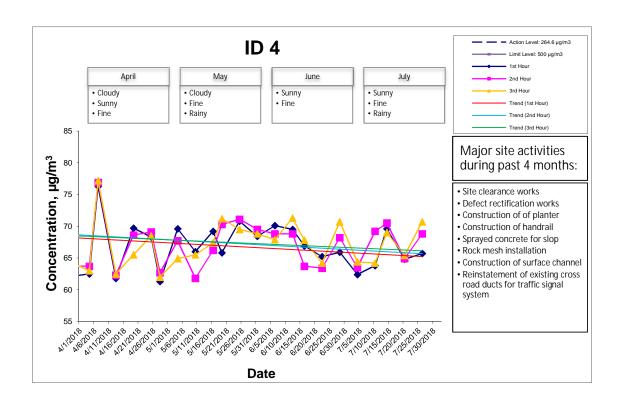
Date	Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)
4-Jul-18	Fine	29.7	1002.5	1.2768	1.2773	1.28	1839.0	2.6709	2.7200	0.0491	23377.12	23401.12	24.00	26.7
10-Jul-18	Sunny	31.8	1005.7	1.2920	1.2917	1.29	1860.3	2.6645	2.7155	0.0510	23401.12	23425.12	24.00	27.4
14-Jul-18	Rainly	28.7	1003.9	1.3318	1.3316	1.33	1917.6	2.6684	2.6990	0.0306	23425.12	23449.12	24.00	16.0
20-Jul-18	Sunny	29.7	1004.6	1.3243	1.3279	1.33	1909.6	2.6747	2.7084	0.0337	23449.12	23473.12	24.00	17.6
26-Jul-18	Fine	31.7	1005.8	1.2863	1.2827	1.28	1849.7	2.5919	2.6358	0.0439	23473.12	23497.12	24.00	23.7
													Average	22.3
													Min	16.0
													Max	27.4

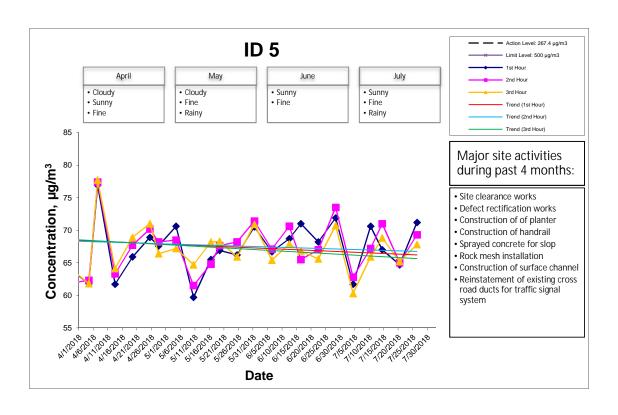
24-hour TSP Monitoring Results at Station ID 3 (Sau Nga House)

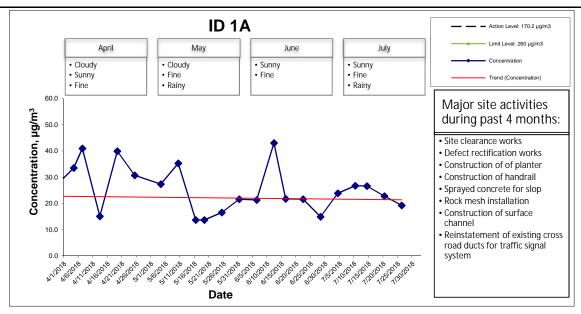

Date	Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Jul-18	Fine	29.7	1002.5	1.2870	1.2750	1.28	1844.6	2.6587	2.6848	0.0261	25691.01	25715.01	24.00	14.1
10-Jul-18	Sunny	31.8	1005.7	1.2980	1.2966	1.30	1868.1	2.6702	2.7157	0.0455	25715.01	25739.01	24.00	24.4
14-Jul-18	Rainly	28.7	1003.9	1.3382	1.3381	1.34	1926.9	2.6511	2.6811	0.0300	25739.01	25763.01	24.00	15.6
20-Jul-18	Sunny	29.7	1004.6	1.3308	1.3344	1.33	1918.9	2.6649	2.6854	0.0205	25763.01	25787.01	24.00	10.7
26-Jul-18	Fine	31.7	1005.8	1.2965	1.2965	1.30	1867.0	2.6013	2.6533	0.0520	25787.01	25811.01	24.00	27.9
													Average	18.5
													Min	10.7
													Mov	27.0

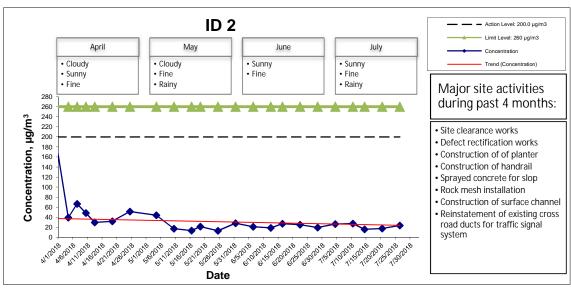
24-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School)

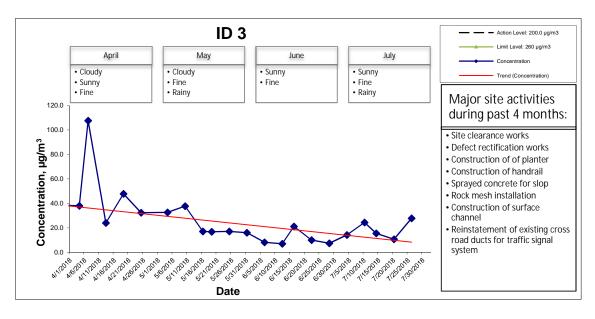
Date	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Jul-18	Fine	29.7	1002.5	1.2835	1.2841	1.28	1848.7	2.6584	2.7150	0.0566	26391.07	26415.07	24.00	30.6
10-Jul-18	Sunny	31.8	1005.7	1.2959	1.2944	1.30	1865.0	2.6656	2.7250	0.0594	26415.07	26439.07	24.00	31.8
14-Jul-18	Rainly	28.7	1003.9	1.3418	1.3416	1.34	1932.0	2.6682	2.7263	0.0581	26439.07	26463.07	24.00	30.1
20-Jul-18	Sunny	29.7	1004.6	1.3335	1.3375	1.34	1923.1	2.6623	2.6984	0.0361	26463.07	26487.07	24.00	18.8
26-Jul-18	Fine	31.7	1005.8	1.2942	1.2901	1.29	1860.7	2.5953	2.6460	0.0507	26487.07	26511.07	24.00	27.2
													Average	27.7
													Min	18.8
													Max	31.8


24-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

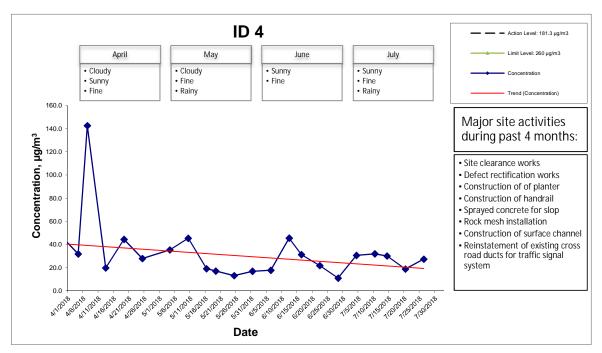

Date	Weather	Air	Atmospheric		e (m³/min.)	Av. flow	Total vol.		eight (g)	Particulate		e Time	Sampling	Conc.
	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m³/min)	(m³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Jul-18	Fine	29.7	1002.5	1.2799	1.2804	1.28	1843.4	2.6623	2.6968	0.0345	23183.57	23207.57	24.00	18.7
10-Jul-18	Sunny	31.8	1005.7	1.2918	1.2904	1.29	1859.2	2.6880	2.7407	0.0527	23207.57	23231.57	24.00	28.3
14-Jul-18	Rainly	28.7	1003.9	1.3414	1.3414	1.34	1931.6	2.6668	2.7180	0.0512	23231.57	23255.57	24.00	26.5
20-Jul-18	Sunny	29.7	1004.6	1.3333	1.3372	1.34	1922.8	2.6620	2.6968	0.0348	23255.57	23279.57	24.00	18.1
26-Jul-18	Fine	31.7	1005.8	1.2902	1.2863	1.29	1855.1	2.5922	2.6381	0.0459	23279.57	23303.57	24.00	24.7
													Average	23.3
													Min	18.1
													Max	28.3

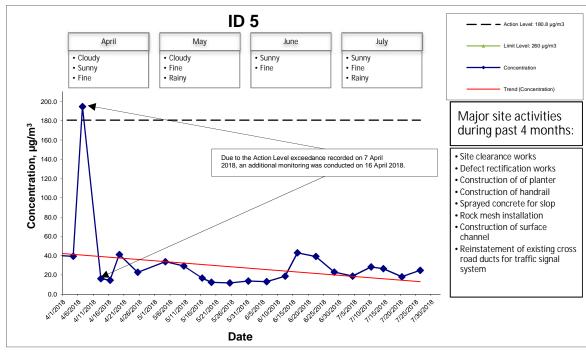

Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Aug-1	18
and Associated Infrastructure Works	CHECK	FYW	DRAWN	DTT\	N
Graphical Presentations of Impact 1-hour TSP	JOB NO.		APPEND	X No.	Rev.
Monitoring Results		60043155	ı	=	-





Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Aug-1	18
	CHECK	FYW	DRAWN	DTT\	N
Graphical Presentations of Impact 1-hour TSP Monitoring Results	JOB NO.	60043155	APPENDI	X No.	Rev.





Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Aug-1	18
and Associated Infrastructure Works	CHECK	FYW	DRAWN	DTT\	N
	JOB NO.		APPEND	IV No	Rev.
Graphical Presentations of Impact 24-hour TSP		60043155		IX NO.	Rev.

А	-0	244
A		JM

Development at Anderson Road - Site Formation	SCALE	N.T.S.	DATE	Aug-1	18
	CHECK		DRAWN	DTT\	N
Graphical Presentations of Impact 24-hour TSP	JOB NO.		APPEND	X No.	Rev.
Monitoring Results		60043155	ı	=	-

Graphical Presentations of Impact 24-hour TSP
Monitoring Results

APPENDIX G

Noise Monitoring Results and their Graphical Presentations

Appendix G Noise Monitoring Results

Daytime Noise Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School)

_	Date Weather Condition		e Level for	30-min, dE	B(A) ⁺	Baseline	Baseline Noise		
Date			L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
4-Jul-18	Cloudy	13:00	56.0	60.5	59.8	55.5	57.8	70	N
10-Jul-18	Fine	13:08	60.6	68.2	64.0	62.8	57.8	70	N
20-Jul-18	Sunny	11:05	60.8	64.2	62.5	60.7	57.8	70	N
26-Jul-18	Sunny	11:35	57.5	61.0	60.0	56.0	57.8	70	N
		Min	56.0	60.5		55.5			
		Max	60.8	68.2		62.8			
		Average				59.8			

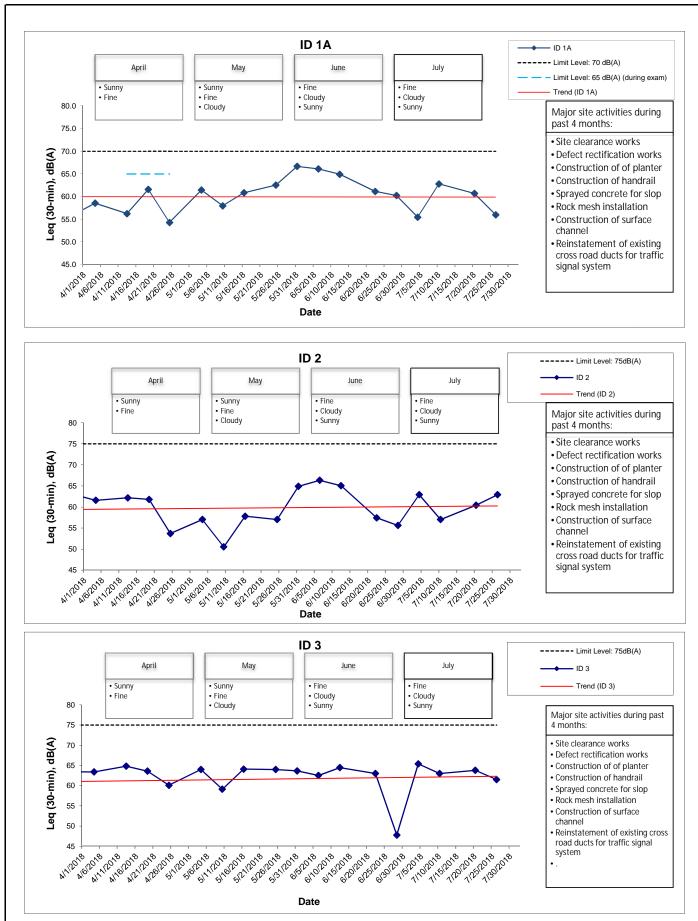
Daytime Noise Monitoring Results at Station ID 2 (On Yat House)

Weather		Nois	e Level for	30-min, dE	3(A) ⁺	Baseline Baseline Noise			
Date	Date Condition		L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
4-Jul-18	Cloudy	13:15	62.0	67.0	65.5	62.9	62.0	75	N
10-Jul-18	Fine	11:18	57.6	66.9	63.2	57.0	62.0	75	N
20-Jul-18	Sunny	13:00	62.8	65.8	64.3	60.4	62.0	75	N
26-Jul-18	Sunny	11:20	61.0	66.5	65.5	62.9	62.0	75	N
	-	Min	57.6	65.8		57.0		=	
		Max	62.8	67.0		62.9			
		Average				61.4			

Daytime Noise Monitoring Results at Station ID 3 (Sau Nga House)

	Weather		e Level for	30-min, dE	3(A) ⁺	Baseline	Baseline Noise		
Date	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
4-Jul-18	Cloudy	13:55	62.5	69.0	67.8	65.4	64.1	75	N
10-Jul-18	Fine	11:10	57.0	66.2	63.0	63.0	64.1	75	N
20-Jul-18	Sunny	13:48	61.9	65.2	63.8	63.8	64.1	75	N
26-Jul-18	Sunny	13:00	62.0	67.5	66.0	61.5	64.1	75	N
		Min	57.0	65.2		61.5			
		Max	62.5	69.0		65.4			
		Average				63.6			

Daytime Noise Monitoring Results at Station ID 4 (Sau Ming Primary School)

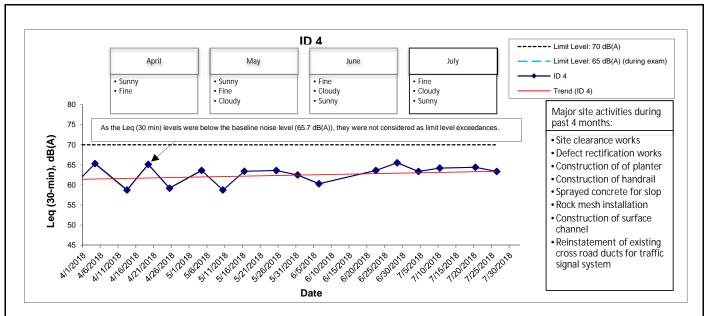

Date	Weather	Nois	e Level for	30-min, dE	B(A) ⁺	Baseline Corrected Baseline No.		1 1 - 1 1 1++	F
Date	Condition		L90	L10	Leq	Level, dB(A)	Level, dB(A)	Limit Level**, dB(A)	Exceedance (Y/N)
4-Jul-18	Cloudy	14:05	63.5	69.5	67.7	63.4	65.7	70	N
10-Jul-18	Fine	9:58	60.6	68.4	64.2	64.2	65.7	70	N
20-Jul-18	Sunny	14:35	62.5	66.3	64.4	64.4	65.7	70	N
26-Jul-18	Sunny	10:45	64.0	69.0	67.7	63.4	65.7	70	N
		Min	60.6	66.3		63.4			
		Max	64.0	69.5		64.4			
		Average				63.9			

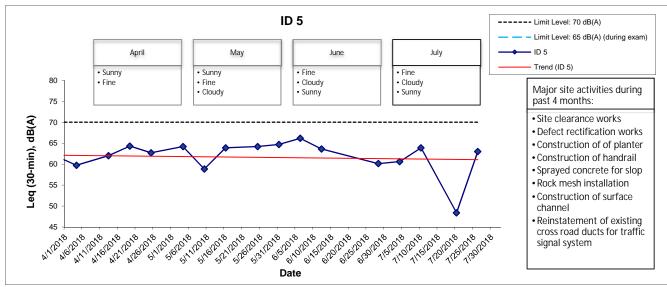
Daytime Noise Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School)

Date	Weather	Condition					Baseline Noise	Limit Level**.	Exceedance
24.0	Condition	Time	L90	L10	Leq	Corrected Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
4-Jul-18	Cloudy	15:00	58.5	61.5	60.6	60.6	64.7	70	N
10-Jul-18	Fine	10:10	60.2	66.8	63.9	63.9	64.7	70	N
20-Jul-18	Sunny	15:25	62.3	66.0	64.8	48.4	64.7	70	N
26-Jul-18	Sunny	10:35	60.5	64.5	63.0	63.0	64.7	70	N
		Min	58.5	61.5		48.4			
		Max	62.3	66.8		63.9			
		Average				61.5			

⁺ - Façade measurement

** - Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.





<u>Development at Anderson Road - Site Formation and</u> <u>Associated Infrastructure Works</u>

Graphical Presentations of Noise Monitoring Results

SCALE	N.T.S.	DATE	Aug-18		
CHECK	FYW	DRAWN	DTTW		
JOB NO.		APPENDI	X	Rev	
	60043155		-		

<u>Development at Anderson Road - Site Formation and</u>
<u>Associated Infrastructure Works</u>

Graphical Presentations of Noise Monitoring Results

SCALE	N.T.S.	DATE	Aug-18		
CHECK	FYW	DRAWN	DTTW		
JOB NO.		APPENDI)	Rev		
	60043155		-		

APPENDIX H

Meteorological Data for the Reporting Month

8/3/2018 **Daily Extract**

GOVHK香港政府一站通 \ 繁體版 简体版

SEARCH Enter search keyword(s)

About us

Imagery

Products MyObservatory Met on Map Tropical Cyclones Aviation Weather

Services

Services

Sports

Communities China Weather World Weather

Services

Computer Forecast

Marine Meteorological

Weather Information for

Weather Information for

Climatological Information

> Climate Watch > Climate Statistics > Climate Prediction > Climate Knowledge

> Need More Information? > Global Climate Services

> Other Useful Links Climate Forecast Climate Change El Nino and La Nina

What's new

HKO Side Lights Our Services Visitors Figures Press releases

Weather Note (Chinese) Today's Weather Warnings Local Weather Observations Weather Forecast Weather Monitoring

Back

Daily Extract of Meteorological Observations, July 2018

Year 2018 ▼ Month 7 ▼ Go

			Но	ng Kong C	bserva	itory			King's Park	Waglan Is	land^
Day	Mean Pressure (hPa)	Air T Absolute Daily Max (deg. C)	empera Mean (deg. C)	Absolute Daily Min (deg. C)	Mean Dew Point (deg. C)	Mean Relative Humidity (%)	Mean Amount of Cloud (%)	Total Rainfall (mm)	Total Bright Sunshine (hours)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
01	1004.1	32.9	30.2	28.0	25.6	77	81	4.1	***	***	***
02	1003.4	30.6	29.5	25.6	25.9	81	88	2.1	***	***	***
03	1002.5	30.5	29.7	27.0	26.1	81	88	15.4	***	***	***
04	1002.2	32.6	30.3	28.4	25.9	78	88	3.4	***	***	***
05	1002.3	31.6	30.0	28.4	25.8	78	88	1.5	***	***	***
06	1002.6	32.1	30.1	27.6	26.1	80	88	5.0	***	***	***
07	1003.3	30.0	29.0	26.4	26.0	84	87	5.2	***	***	***
08	1004.4	30.6	28.2	26.7	26.0	88	87	14.4	***	***	***
09	1005.7	31.8	28.2	25.9	25.3	85	83	11.3	***	***	***
10	1005.1	32.6	29.0	26.8	25.0	80	57	1.3	***	***	***
11	1001.8	32.8	29.6	27.2	24.5	74	56	0.0	***	***	***
12	1003.3	33.4	30.0	28.3	25.5	77	85	Trace	***	***	***
13	1003.9	28.7	26.7	25.9	25.5	93	92	50.4	***	***	***
14	1004.0	29.5	27.0	25.3	25.3	91	90	52.7	***	***	***
15	1004.0	28.3	26.6	25.0	24.7	89	92	67.4	***	***	***
16	1003.8	31.4	28.2	25.7	24.6	81	80	5.8	***	***	***
17	1002.4	34.3	30.0	26.9	25.4	78	83	6.5	***	***	***
18	1003.9	29.5	27.7	26.4	25.5	88	89	29.6	***	***	***
19	1004.6	29.7	27.9	26.6	25.6	87	85	17.3	***	***	***
20	1003.8	31.6	28.2	26.0	25.7	87	71	7.1	***	***	***
21	1002.6	33.1	29.5	27.4	24.5	75	54	0.0	***	***	***
22	1002.3	32.4	29.0	27.9	24.4	76	67	Trace	***	***	***
23	1001.8	31.2	28.4	26.3	26.0	87	81	30.8	***	***	***
24	1003.6	32.0	29.8	28.0	26.0	80	84	0.1	***	***	***
25	1005.8	31.7	29.4	27.0	26.1	83	70	2.7	***	***	***
26	1006.5	32.3	29.6	27.3	26.1	82	82	3.4	***	***	***
27	1006.7	33.0	29.8	27.7	25.5	78	77	0.3	***	***	***
28	1006.7	33.7	30.2	28.2	25.1	75	55	0.0	***	***	***
29	1005.8	34.3	30.2	27.9	24.7	73	41	0.0	***	***	***
30	1005.6	33.7	30.4	28.1	25.0	74	53	0.0	***	***	***
31	1005.5	33.2	30.2	27.1	25.3	76	65	3.3	***	***	***
Mean/Total	1004.0	31.8	29.1	27.0	25.4	81	77	341.1	***	***	***
Normal [§]	1005.7	31.4	28.8	26.8	25.1	81	69	376,5	212.0	230	21.3

*** unavailable

^ Information of wind direction and wind speed for Waglan Island are based on automatic weather station data since January 1989

Trace means rainfall less than 0.05 mm

§ 1981-2010 Climatological Normal, unless otherwise specified

2003 | Important notices | Privacy policy

Last revision date: <17 Jun 2016>

Time and Calendar Radiation Monitoring,

Assessment and

Earthquakes and

Astronomy, Space Weather and

Geomagnetism

Tsunamis

Protection

Educational Resources

Publications

APPENDIX I

Event Action Plan

Appendix I – Event Action Plan

Event and Action Plan for Air Quality

Event		ACTION		
	ET	IC(E)	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Identify source Inform IC(E) and ER. Repeat measurement to confirm finding. Increase monitoring frequency to daily 	Check monitoring data submitted by ET. Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice. Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source. Inform IC(E) and ER. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with IC(E) and Contractor for remedial actions required. If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented.	 Submit proposal for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.

Event and Action Plan for Air Quality

Event	ACTION				
	ET	IC(E)	ER	Contractor	
LIMIT LEVEL					
Exceedance for one sample	 Identify source. Inform ER and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise ER on the effectiveness of proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals Amend proposal if appropriate. 	
Exceedance for two or more consecutive samples	 Identify source. Inform ER and EPD. Repeat measurements to confirm finding. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation to by implemented. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise implementation of remedial measures.	Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with IC(E), agree with Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop the portion of work until the exceedance is abated.	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 	

Event and Action Plan for Noise

Event	Action				
	ET	IC(E)	ER	Contractor	
	 Notify IC(E) and Contractor. Carry out investigation. Report the results of investigation to IC(E) and Contractor. Discuss with Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	Review the analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implementation of remedial measures.	Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented.	 Submit noise mitigation proposals to IC(E). Implement noise mitigation proposals. 	
Limit Level	 Notify IC(E), ER, EPD and Contractor. Identify sources. Repeat measurements to confirm finding. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IC(E), ER and EPD the causes and actions taken for the exceedance. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by ER until the exceedance is abated. 	

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J - Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this	Total no. recorded since
		month	project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	17
	Limit	-	1
Noise	Action	-	32
	Limit	-	1

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. recorded in this month	Total no. recorded since project commencement
Environmental complaints	-	-	-	-	75
Notification of summons	-	-	-	-	6
Successful Prosecutions	-	-	-	-	2