

94th Consolidated Monthly EM&A Report (August 2024)

0087/16/ED/1233 [00]

Contact No. KLN/2016/05 - Independent Environmental Checker for Contract No. KL/2015/02 Kai Tak Development- Stage 5A Infrastructure at Former North Apron Area

Document Control

Document Information

Project Title	Contact No. KLN/2016/05 - Independent Environmental Checker for Contract No. KL/2015/02 Kai Tak Development- Stage 5A Infrastructure at Former North Apron Area		
Document Title	94th Consolidated Monthly EM&A Report (August 2024)		
Fugro Project No.	0087/16		
Fugro Document No.	0087/16/ED/1233		
Issue Number	[00]		

Client Information

Client	Civil Engineering and Development Department	
Client Address	East Development Office, East Division 4,	
Client Address	8/F, South Tower, West Kowloon Government Offices, 11 Hoi Ting Road, Yau Ma Tei, Kowloon	

Project Team

Initials	Name	Role	Signature
CL	Calvin M.P. Leung	Independent Environmental Checker	Cabin Leuns
WS	Wingo H.W. So	Environmental Consultant	Wing
EC	Eric T. Chan	Assistant Environmental Consultant	7

Contents

Ex	recutive Summary	2
1.	Introduction	5
2.	Environmental Monitoring and Audit	9
3.	Site Inspection	11
4.	Environmental Complaint and Non-Compliance	12
5.	Implementation Status of Environmental Mitigation Measures	13
6.	Future Key Issues	14
7.	Conclusions	16

Appendices

Appendix A Monthly EM&A Report For Contract No. KL/2015/02 Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area

Appendix B Monthly EM&A Report For Contract No. ED/2018/01 Kai Tak Development - Stage 4 infrastructure at the former runway and south apron

Executive Summary

- i. This is the 94th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 August and 31 August 2024.
- ii. The construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2015/02:

- Construction of Subway SW6 Lift LT2
- Trial Pit works at Road D1 Layby
- Construction of Road D1 footway

Contract No. ED/2018/01:

- Construction of pillar box and laying cable ducting by UU at LT-2
- Installation of lift cart and E&M works for Lift LT-4
- Junction realignment and modification works at Shing Kai Road
- Laying of stormwater drainage pipes/ sewer pipes/ watermains
- Waterproof work for Box Culvert under section 8 (confined space)
- Construction of Seawater Intake Box Culvert
- Construction of Pumping Stations
- Construction of Harbour Steps and Outfalls
- Construction of Observation Deck
- Construction of Toilet Cum Changing Room

Breaches of the Action and Limit Levels

- iii. No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- iv. No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- v. No Limit Level exceedance was recorded for noise monitoring in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

vi. No complaint, notification of summons or prosecution was received for Contract No. Contract No. KL/2015/02 and Contract No. ED/2018/01 in this reporting month.

Reporting Changes

vii. There was no reporting change in the reporting month.

Future Key Issues

viii. The potential environmental impacts for the coming month and the control measures are shown in Table I:

Major Environmental Impact	Control Measures
Contract No. KL/2015/02:	
	 Air quality impact (dust) Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with impervious materials or maintained wet; and Watering of any earth moving activities.
Noise, dust impact, water quality and waste generation	 Water quality impact (surface runoff) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing or hoarding footings to avoid run-off from entering the existing storm water drainage system via public road and
	 Noise Impact Machines and Plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Regular maintenance of machines; and Use of movable noise barriers if necessary.
Compared No. ED/2019/01	 Waste /Chemical Management Avoided oil leakage from PME Provided drip tray with adequate capacity and wel maintained to chemical and oil containers
Contract No. ED/2018/01:	- Cufficient watering of the works site with the active due
The mitigation measures environmental impact including Quality, Construction Noise, Water Quality, Chemical and Wa Management, Landscape and Vis shall be implemented:	Properly cover the stockpiles, Good maintenance to the plant and equipment, Itse of quieter plant and Quality Powered Mechanica

• Provide movable noise barriers,

on site for treatment before discharge,

• Appropriate desilting/ sedimentation devices provided

shall be implemented:

Major Environmental Impact	Control Measures	
	 Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall, 	
	 Onsite waste sorting and implementation of trip ticke system, Good management and control on construction wast 	
	 Good management and control on construction was reduction, 	
	 Erection of decorative screen hoarding, 	
	• Strictly following the Environmental Permits and Licenses, and	
	 Provide sufficient mitigation measures as recommended in Approved EIA Reports. 	

1. Introduction

1.1 Background

- 1.1.1 The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 March 2009.
- 1.1.3 The EP-337/2009 was issued on 23 April 2009 for the new distributor roads serving the planned Kai Tak Development to the following scale and slope:
 - a. Road D1 a dual 2-lane carriageway of approximately 1.3 km long.
 - b. Road D2 a dual 3-lane carriageway of approximately 1.1 km long.
 - c. Road D3 a dual 2-lane carriageway of approximately 2.3 km long.
 - d. Road D4 a dual 2-lane carriageway of approximately 0.9 km long.
- 1.1.4 The Civil Engineering and Development Department HKSAR has appointed Fugro Technical Services Limited (FTS) to undertake the role of Independent Environmental Checker (IEC) for the Contract No. KL/2015/02.
- 1.1.5 This is the 94th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 August and 31 August 2024.

1.2 Summary of relevant Contract Information of Key Personnel

Party	Position	Name	Telephone	Fax/ E-mail
Contract No. KL/2015/02:				
Project Proponent (CEDD)	Senior Engineer	Mr. Ricky Chan	3579 2452	2739 0076
Engineer's Representative (AECOM)	SRE	Mr. Vincent Lee	2798 0771	2210 6110
IEC (FTS)	IEC	Mr. Calvin Leung	3565 4441	2450 8032
FT (Cinotosh)	ET Leader	Mr. K.S Lee	2151 2091	2107 1200
ET (Cinotech)	Audit Team Leader	Ms. Betty Choy 2151 2072		
Main Contractor (PWHJV)	Deputy Site Agent	Mr. W. M. Chen	9736 4284	2398 8301
Contract No. ED/2018/01:	-			
Drainet Drangment (CEDD)	Senior Engineer	Mr. Jason Wong	3579 2453	2739 0076
Project Proponent (CEDD)	Engineer	Ms. Chan Ka Yan	3579 2458	2739 0076
Engineer's Representative (AECOM)	CRE	Ms. Fanny Lau	3911 4201	3911 4288
IEC (Ramboll)	IEC	Mr. Y H Hui	3465 2850	3465 2899
ET (Ka Shing)	ET Leader	Mr. Chan Pang	6082 2973	2120 7752

Party	Position	Name	Telephone	Fax/ E-mail
Main Contractor (Penta-Ocean)	EO	Mr. Tony Tang	9433 2628	3465 8898

1.3 Summary of Construction Programme and Activities

- 1.3.1 The construction programme of each Contract is summarized in the appendices of the corresponding Monthly EM&A report.
- 1.3.2 The major construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2015/02:

- Construction of Subway SW6 Lift LT2
- Trial Pit works at Road D1 Layby
- Construction of Road D1 footway

Contract No. ED/2018/01:

- Construction of pillar box and laying cable ducting by UU at LT-2
- Installation of lift cart and E&M works for Lift LT-4
- Junction realignment and modification works at Shing Kai Road
- Laying of stormwater drainage pipes/ sewer pipes/ watermains
- Waterproof work for Box Culvert under section 8 (confined space)
- Construction of Seawater Intake Box Culvert
- Construction of Pumping Stations
- Construction of Harbour Steps and Outfalls
- Construction of Observation Deck
- Construction of Toilet Cum Changing Room

1.4 Summary of Inter-relationship with the environmental protection/ mitigation measures with the construction programme

1.4.1 The summary of inter-relationship with environmental protection/mitigation measures are presented as follow:

Major Environmental Impact	Control Measures
Contract No. KL/2015/02:	
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles by impervious materials; On-site waste sorting and implementation of trip ticker system Appropriate desilting/sedimentation devices provided or site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide drip trays with adequate capacity and well maintained to chemicals Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.
Contract No. ED/2018/01:	
environmental impact including A Quality, Construction Noise, Water Quality, Chemical and Was	• Limitation of the speed for vehicles on unpaved site roads

1.5 Summary Status of Environmental Licences, Notifications and Permits

1.5.1 Detailed relevant environmental licenses, permits and/or notifications on environmental protection for this EP are presented in the appendices of the corresponding Monthly EM&A report.

2. Environmental Monitoring and Audit

2.1 Results and Observations

Air Quality

- 2.1.1 The schedule of air quality monitoring in reporting month is provided in the appendices of the corresponding Monthly EM&A report.
- 2.1.2 The weather conditions during the monitoring are provided in the appendices of the corresponding Monthly EM&A report.
- 2.1.3 The monitoring data of 24-hr TSP and 1 hour TSP are summarized in Table 2.1. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A report.

Table 2.1	Summary of 24-hr and 1 hour TSP Monitoring Results
-----------	--

	,		5		
Parameter	Monitoring Station	Average (µg/m³)	Range (µg/ m³)	Action Level (µg/ m³)	Limit Level (µg/ m³)
Contract No.	KL/2015/02:				
1-hr TSP	AM2	37.0	10.8 – 59.4	346	500
24-hr TSP	AM2(A)	36.2	30.9 – 40.2	157	260
Contract No.	ED/2018/01:				
	AM3	50	40 – 61	182	
24-hr TSP	AM4(A)	/	/-/	187	260
_	AM7	55	41 – 63	181	-
	AM3	45	31 – 64	297	
1-hr TSP	AM4(A)	66	44 – 89	326	500
_	AM7	55	39 – 72	315	•

- 2.1.4 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 2.1.5 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- 2.1.6 The monitoring data of 24-hr TSP was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A report.
- 2.1.7 The Event and Action Plan for air quality is given in the appendices of the corresponding Monthly EM&A report.

Noise

- 2.1.8 The schedule of noise monitoring in reporting month is provided in in the appendices of the corresponding Monthly EM&A report.
- 2.1.9 The noise monitoring data are summarized in Table 2.2. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A report.
 - Table 2.2 Summary of Noise Impact Monitoring Results

Monitoring Stations	Construction Noise Level Leq _(30min) dB(A) (Range)	Action Level	Limit Level dB (A)
Contract No. KL/2015/02:			
M3(A)	57.8 – 78.8#	- When one	75
M4	73.6 – 76.5#		70*
M5(C)	57.8 – 77.0#	 documented 	75
Contract No. ED/2018/01:		complaint isreceived.	
M11	73.1 – 74.0	– received.	75
M12	61.5 – 64.8		75

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

- 2.1.10 The noise monitoring data was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A report.
- 2.1.11 No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.
- 2.1.12 The Event and Action Plan for noise is given in in the appendices of the corresponding Monthly EM&A report.

Landscape and Visual

2.1.13 Site audits were carried out on a weekly basis to monitor and audit the landscape and visual mitigation measures within the site boundaries of this Project. Detailed of observations are presented in the appendices of the corresponding Monthly EM&A report.

^(*) Measured noise level ≤ background / baseline noise level, detailed data refer to the corresponding Monthly EM&A report.

3. Site Inspection

3.1 Site Inspection

- 3.1.1 Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project.
- 3.1.2 Detailed of observation, recommendation of site inspections and summary of the mitigation measures implementation schedule is provided in the appendices of the corresponding Monthly EM&A Report.

4. Environmental Complaint and Non-Compliance

4.1 Complaints, Notification of Summons and Prosecution

4.1.1 The summary of complaints, notification of summons and prosecution in the reporting month are shown as Table 4.1.

Table 4.1 Summary of Complaints, Notification of Summons and Prosecution

Event	No. of Event This Month	Remark	
Contract No. KL/2015/02:			
Complaint received	0	NA	
Notifications of any summons & prosecutions received	0	NA	
Contract No. ED/2018/01:			
Complaint received	0	NA	
Notifications of any summons & prosecutions received	0	NA	

4.1.2 Detailed records are presented in the appendices of the corresponding Monthly EM&A report.

5. Implementation Status of Environmental Mitigation Measures

5.1 Implementation Status

5.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month are presented in the appendices of the corresponding Monthly EM&A report.

5.2 Waste Management

5.2.1 The amount of wastes generated of this Project during the reporting month is shown in the appendices of the corresponding Monthly EM&A report.

6. Future Key Issues

6.1 Construction Programme for the Next Two Months

6.1.1 The major site activities undertaken for the coming two months are summarized in follow:

Contract No. KL/2015/02:

- Backfilling works of Subway SW6
- Construction of Road D1 footway
- Reinstatement work of beam barrier and light post near PERE
- Installation of Steel frame of staircase ST2 and Lift LT2

Contract No. ED/2018/01:

- Construction of Back-of- House
- Rising main laying works
- Construction of footpath at Road L12d
- Hard landscaping works for Elevated Landscape Deck
- Construction of Temp office
- 6.1.2 The potential environmental impacts arising from the above construction activities and the control measures are shown in Table 6.1:

Table 6.1 Summary of Key Issues for the Coming Month and Control Measures

Major Environmental Impact	Control Measures
Contract No. KL/2015/02:	
	 Air quality impact (dust) Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with impervious materials or maintained wet; and Watering of any earth moving activities.
Noise, dust impact, water quality and waste generation	 Water quality impact (surface runoff) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and
	Noise Impact

Major Environmental Impact	Control Measures
	 Machines and Plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Regular maintenance of machines; and Use of movable noise barriers if necessary.
Continue No. ED/2019/01	 Waste /Chemical Management Avoided oil leakage from PME Provided drip tray with adequate capacity and well maintained to chemical and oil containers
environmental impact including Quality, Construction Noise, Water Quality, Chemical and Wa	 Sufficient watering of the works site with the active dust emitting activities, Limitation of the speed for vehicles on unpaved site roads, Properly cover the stockpiles, Good maintenance to the plant and equipment, Use of quieter plant and Quality Powered Mechanical Equipment (QPME), foro Provide movable noise barriers, Airo Appropriate desilting/ sedimentation devices provided on site for treatment before discharge, steo Well maintain the drainage system to prevent the ual spillage of wastewater during heavy rainfall, Onsite waste sorting and implementation of trip ticket system, Good management and control on construction waste reduction, Erection of decorative screen hoarding, Strictly following the Environmental Permits and Licenses, and Provide sufficient mitigation measures as recommended

6.2 Monitoring Schedules for the Next Month

6.2.1 The tentative schedules for environmental monitoring in the coming month are provided in the appendices of the corresponding Monthly EM&A.

7. Conclusions

- 7.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 7.1.2 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- 7.1.3 No Limit Level exceedance was recorded for noise monitoring in the reporting month.
- 7.1.4 No complaint, notification of summons or prosecution was received for Contract No. Contract No. KL/2015/02 and Contract No. ED/2018/01 in this reporting month.
- 7.1.5 The potential environmental impacts arising from the coming two months of major construction activities and the control measures are shown in Table 6.1.

Appendix A

Monthly EM&A Report For Contract No. KL/2015/02 Kai Tak Development

- Stage 5A Infrastructure at Former North Apron Area

Civil Engineering and Development Department

EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KLN/2016/04
Environmental Monitoring Works for
Contract No. KL/2015/02
Kai Tak Development – Stage 5A Infrastructure
at Former North Apron Area

Monthly EM&A Report
August 2024

(Version 1.1)

Certified By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

FUGRO TECHNICAL SERVICES LIMITED

19/F, Fugro House – KCC2 1 Kwai On Road, Kwai Chung New Territories, Hong Kong

Date

12 September 2024

Our Ref. MCL/ED/0275/2024/C

Cinotech Consultants Limited Rm 1710, Technology Park, 18 On Lai Street, Shatin, New Territories, Hong Kong

BY EMAIL

Attn.: Mr. K.S Lee

Dear Sir,

Contract No. KL/2015/02 Kai Tak Development -Stage 5A Infrastructure at Former North Apron Verification of Monthly EM&A Report for August 2024

We refer to your emails dated 9 and 12 September 2024 for the captioned report prepared by the ET.

We have no further comment and hereby verify the Report in accordance with Clause 3.3 of Environmental Permit no. EP-337/2009.

Should you require further information, please do not hesitate to contact the undersigned at 3565 4441.

Assuring you of our best attention at all times.

Yours faithfully,

For and on behalf of

FUGRO TECHNICAL SERVICES LIMITED

Calvin Leung

Independent Environmental Checker

CL/ ws/ ec

C.C.

CEDD -

Attn.: Mr. Ricky Chan Attn.: Mr. Michael So

AECOM -

Attn.: Mr. Vincent Lee

Attn.: Mr. Teddy Shih

TABLE OF CONTENTS

TA	BLE OF CONTENTS	I
EX	ECUTIVE SUMMARY	1
	Introduction	2 3 3
1	INTRODUCTION	4
	Background	4 5
2	AIR QUALITY	7
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedure Results and Observations	7 7 8 8
3	NOISE	12
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedures Maintenance and Calibration Results and Observations	12 13 13
4	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	16
5	LANDSCAPE AND VISUAL	17
	Monitoring Requirements	
6	ENVIRONMENTAL INSPECTION	18
	Site Inspections Review of Environmental Monitoring Procedures Status of Environmental Licensing and Permitting Status of Waste Management Implementation Status of Environmental Mitigation Measures Summary of Mitigation Measures Implemented Implementation Status of Event Action Plans Summary of Complaint, Warning, Notification of any Summons and Successful Pros	18 19 19 20
7	FUTURE KEY ISSUES	
,	Monitoring Schedule for Next Month	

	sions
LIST OF T	ABLES
Table I	Air Quality and Noise Monitoring Stations for this Project
Table II	Non-compliance Recorded for the Project in the Reporting Month
Table III	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 2.4	Summary Table of Air Quality Monitoring Results during the reporting month
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Major Noise Source identified at the Designated Noise Monitoring Stations
Table 3.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 4.1	Comparison of 1-hr TSP data with EIA predictions
Table 4.2	Comparison of 24-hr TSP data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 6.1	Summary of Environmental Licensing and Permit Status
Table 6.2	Observations and Recommendations of Site Inspections
LIST OF F	IGURES
Figure 1	Sita Layout Dlan
Figure 2	Site Layout Plan Location of Air Quality Monitoring Stations
Figure 3	Location of An Quanty Mointoining Stations Location of Noise Monitoring Stations
Figure 3	Location of Wind Data Monitoring Equipment
riguic 4	Location of wind Data Wointoring Equipment
LIST OF A	PPENDICES
A Actio	on and Limit Levels for Air Quality and Noise
B Copi	es of Calibration Certificates
C Weat	ther Information
D Envi	ronmental Monitoring Schedules
E 1-ho	ur TSP Monitoring Results and Graphical Presentations
F 24-h	our TSP Monitoring Results and Graphical Presentations
	e Monitoring Results and Graphical Presentations
	mary of Exceedance
	Audit Summary
	at Action Plans
	ronmental Mitigation Implementation Schedule (EMIS)
	maries of Environmental Complaint, Warning, Summon and Notification of Successful
	ecution
	mary of Waste Generation and Disposal Records
N Cons	struction Programme

CONCLUSIONS AND RECOMMENDATIONS25

8

EXECUTIVE SUMMARY

Introduction

- 1. This is the 92nd Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2015/02 Kai Tak Development Stage 5A Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises one Schedule 2 designated project (DP), namely the new distributor road D1 serving the planned KTD. The DP is part of the designated project under Environmental Permit (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted during August 2024.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table I** (see **Figure 2 and 3** for their locations).

Table I – Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations			
Air Quality Monitoring Stations					
	Yes (1-hour TSP)	N/A			
AM2 - Lee Kau Yan Memorial School	No (24-hour TSP)	AM2(A) – Ng Wah Catholic Secondary School			
Noise Monitoring Stations	Noise Monitoring Stations				
M3 - Cognitio College	No	M3(A) – The Bridge connecting The Latitude			
M4 - Lee Kau Yan Memorial School	Yes	N/A			
M5 – Nam Yuen	No	M5(C) – Mercy Grace's Home			

- 3. The major site activities undertaken in the reporting month included:
 - Construction of Subway SW6 Lift LT2
 - Trial Pit works at Road D1 Layby
 - Construction of Road D1 footway

Environmental Monitoring Works

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in **Table II**.

Table II Non-compliance Recorded for the Project in the Reporting Month

_	No. of Project-rel		
Parameter	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

1-hour & 24-hour TSP Monitoring

- 6. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 7. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, EP-337/2009 issued on 23 April 2009. All valid Licenses/Permits for this Project are shown in **Table 6.1**.
 - Billing Account for Construction Waste Disposal (A/C# 7026164).
 - Effluent Discharge License (WT00041367-2022).
 - Registration of Chemical Waste Producer (WPN5213-286-P3271-01).

Key Information in the Reporting Month

10. Summary of key information in the reporting month is tabulated in **Table III**.

Table III Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Domonic	
Event	Number	Nature	Action Taken	Status	Remark	
Complaint received			N/A	N/A		
Reporting Changes			N/A	N/A		
Notifications of any summons & prosecutions received			N/A	N/A		

Future Key Issues

11. The future key environmental issues in the coming two months include:

Stagnant water on the unused and damaged water-filled barriers & uncovered containers

- and manhole;
 - Silt, construction materials or debris being washed through manhole into the drainage system
- Dust generation from excavation works, stockpile storage & rock breaking activities;
- -Oil leakage from equipment and mobile plants;

1 INTRODUCTION

Background

- 1.1. The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 5A Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains one Schedule 2 DP including new distributor roads serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2. An Environmental Permit (EP) No. EP-337/2009 was issued on 23 April 2009 for new distributor roads serving the planned KTD to Civil Engineering and Development Department as the Permit Holder.
- 1.3. A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4. Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2015/02 Stage 5A Infrastructure at Former North Apron Area. The construction work under KL/2015/02 comprises the construction of part of the Road D1 under the EP (EP-337/2009).
- 1.5. Cinotech Consultants Limited was commissioned by Civil Engineering and Development Department (CEDD) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The commencement date of construction of Road D1 (part) under this Contract was on 16 January 2017.

Project Organizations

- 1.6. Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM Asia Co. Ltd (AECOM).
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech).
 - Independent Environmental Checker (IEC) Fugro Technical Services Limited (FTS).
 - Contractor Peako Wo Hing Joint Venture (PWHJV).

1.7. The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. CHAN Wai Kit, Ricky	Senior Engineer	3579 2452	2739 0076
AECOM	Engineer's Representative	Mr. Vincent Lee	Senior Resident Engineer	2798 0771	2210 6110
Cinotech	Environmental	Mr. K.S Lee	Environmental Team Leader	2151 2091	3107 1388
Team		Ms. Betty Choi	Audit Team Leader	2151 2072	3107 1300
FTS	Independent Environmental Checker	Mr. Calvin Leung	Independent Environmental Checker	3565 4441	2450 8032
PWHJV	Contractor	Mr. W.M. Chen	Deputy Site Agent	9736 4284	2398 8301

Construction Activities undertaken during the Reporting Month

- 1.8. The site activities undertaken in the reporting month included:
 - Construction of Subway SW6 Lift LT2
 - Trial Pit works at Road D1 Layby
 - Construction of Road D1 footway
- 1.9. The construction programme for the Project is shown in **Appendix N**.
- 1.10. The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 1.2**.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
Refer to Section 1.8	Dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles by impervious materials; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide drip trays with adequate capacity and well maintained to chemicals Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.11. The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.12. The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.13. This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project during the reporting month.

2 AIR QUALITY

Monitoring Requirements

2.1. According to EM&A Manual under the EP, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

- 2.2. 1-hour TSP impact dust monitoring was conducted at the air quality monitoring station, AM2 Lee Kau Yan Memorial School and 24-hour TSP impact dust monitoring were conducted at the air quality monitoring station, AM2(A) Ng Wah Catholic Secondary School in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.3. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	Location of Measurement
AM2 (1-hour TSP)	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM2(A) (24-hour TSP)	Ng Wah Catholic Secondary School	Rooftop (about 8/F) Area

Monitoring Equipment

2.4. **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	• TISCH TE-5025A	1
1-hour TSP Dust Meter	• Sibata Scientific Technology LD-5R	2
HVS Sampler	• TE-5170 c/w of TSP sampling inlet	1
Wind Anemometer	 Davis Instruments 6152 	1

Monitoring Parameters, Frequency and Duration

2.5. **Table 2.3** summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

 Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency	
1-hr TSP	Three times / 6 days	
24-hr TSP	Once / 6 days	

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

2.6. The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:

(Equipment: Sibata Scientific Technology; Model no. LD-5R)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display.
- Finally, push the start/stop switch to stop the measuring after 1 hour sampling.

• Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

2.7. The following maintenance/calibration was required for the direct dust meters:

Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.8. High volume (HVS) samplers (Model TE-5170), completed with appropriate sampling inlets, were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.9. Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.10. Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.

- 2.11. For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3µm diameter were used.
- 2.12. The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.13. The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.14. The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.15. The shelter lid was closed and secured with the aluminium strip.
- 2.16. The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.17. After sampling, the filter was removed and sent to the HOKLAS laboratory (High Precision Chemical Testing Ltd.) for weighing. The elapsed time was also recorded.
- 2.18. Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%.

Maintenance/Calibration

- 2.19. The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained.
 Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using TE-5025A
 Calibration Kit through\hout all stages of the air quality monitoring.

Results and Observations

- 2.20. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21. The weather information for the reporting month is summarized in **Appendix C.**
- 2.22. The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23. The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24. According to our field observations during the monitoring, the major dust source identified at the two designated air quality monitoring stations are road traffic dust, exposed site area and open stockpiles, excavation works and site vehicle movements.
- 2.25. The summary of 1-hour and 24-hour TSP air quality monitoring results during the reporting month are shown in **Appendix E** and **Appendix F** respectively.

3 NOISE

Monitoring Requirements

3.1. According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2. Three designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M3(A), M4, and M5(C)). **Figure 3** shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement	
	The Bridge connecting The	In the middle of the foot	
M3(A)	Latitide	bridge connecting The	
	Latitide	Latitude	
M4	Lee Kau Yan Memorial School	Rooftop (about 7/F) Area	
M5(C)		Ground in front of the	
		building entrance facing	
		Prince Edward	
		Road East (noise monitoring	
	Mercy Grace's Home	is not allowed on the rooftop from 27 February 2020, due	
		to the coronavirus	
		countermeasure in Mercy	
		Grace's Home)	

Monitoring Equipment

3.3. **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 **Noise Monitoring Equipment**

Equipment		Model and Make	Qty.
Integrating Sound Level Meter	•	BSWA Tech. 308 & SVAN 979	3
Calibrator	•	B&K 4231	1

Monitoring Parameters, Frequency and Duration

3.4. **Table 3.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 3.3 **Noise Monitoring Parameters, Frequency and Duration**

Monitoring Stations	Parameter	Period	Frequency	Measurement
M3(A)	$L_{10}(30 \text{ min.}) dB(A)$	0700-1900 hrs on normal weekdays	Once per week	Façade
M4	$L_{90}(30 \text{ min.}) dB(A)$			
M5(C)	$L_{eq}(30 \text{ min.}) dB(A)$			

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting : A time weighting : Fast

time measurement : 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5. The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6. The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.5**.
- 3.10. Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.11. The major noise source identified at the designated noise monitoring stations are shown in **Table 3.4**.

Table 3.4 Major Noise Source identified at the Designated Noise Monitoring Stations

Monitoring Stations	Locations	Major Noise Source
M3(A)	The Bridge connecting The	Traffic Noise
WI3(A)	Latitude	Site vehicle movement
		Traffic Noise
M4	Lee Kau Yan Memorial	Site vehicle movement
1714	School	Excavation works
		Daily school activities
M5(C)	Mercy Grace's Home	Traffic Noise Site vehicle movement

Table 3.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
	N/A ⁽¹⁾	75
M3(A)	(at 0700 – 1900 hrs on normal	(at 0700 – 1900 hrs on
	weekdays)	normal weekdays)
	76.7 ⁽²⁾	70 ^(*)
M4	(at 0700 – 1900 hrs on normal	(at 0700 – 1900 hrs on
	weekdays)	normal weekdays)
	N/A ⁽¹⁾	75
M5(C)	(at 0700 – 1900 hrs on normal	(at 0700 – 1900 hrs on
	weekdays)	normal weekdays)

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

Remarks: MNL = Measured Noise Level, BNL = Baseline Noise Level

Note (1): The background Noise Level was recorded during the Lunch Hour of Construction Site

⁽i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

Note (2): The noise level due to the construction work (CNL) was calculated by the following formula: $\text{CNL} = 10 \log \left(10^{\text{MNL/10}} - 10^{\text{BNL/10}} \right)$

4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1. The EM&A data was compared with the EIA predictions as summarized in **Tables 4.1** to **4.3**.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

	Predicted 1-l	nr TSP conc.	Measured 1-hr TSP conc. Reporting Month (August 2024), µg/m³	
Station	Scenario1 (Mid 2009 to Mid-	Scenario2 (Mid 2013 to Late		
	2013), $\mu g/m^3$	2016), μg/m ³	Average	Range
AM2 – Lee Kau Yan Memorial School	290	312	37.0	10.8 – 59.4

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

	Predicted 24-hi	TSP conc.	Meas 24-hr TS	
Station	Scenario1 (Mid 2009 to Mid-2013),	Scenario2 (Mid 2013 to	Reporting Month (August 2024), μg/m ³	
	μg/m ³	Late 2016), μg/m³	Average	Range
AM2(A) - Ng Wah				
Catholic Secondary School	145	169	36.2	30.9 – 40.2

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	$\begin{array}{c} \textbf{Predicted Mitigated Construction} \\ \textbf{Noise Levels during Normal} \\ \textbf{Working Hour } (L_{eq~(30min)}~dB(A)) \end{array}$	Reporting Month (August 2024), Leq (30min) dB(A)
M3(A) – The Bridge connecting The Latitude	Not predicted in EIA Report	57.8 – 78.8 (2)
M4 – Lee Kau Yan Memorial School	47 – 74	73.6 – 76.5(1)
M5(C) – Mercy Grace's Home	Not predicted in EIA Report	57.8 – 77.0 ⁽²⁾

Remarks:

- (1) Since the baseline noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.
- (2) Since the background noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.
- 4.2. The average 1-hour TSP concentrations at AM2 in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3. The average 24-hour TSP concentrations at AM2(A) in the reporting month were below the prediction in the approved EIA Report.
- 4.4. The noise monitoring results in the reporting month from M4 were slightly higher than the range of the predicted mitigated constriction noise levels in the EIA Report.

4.5. Construction noise levels at M3(A) and M5(C) were not predicted in EIA Report.

5 LANDSCAPE AND VISUAL

Monitoring Requirements

5.1. According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2. Site audits were conducted on a weekly basis to monitor the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3. No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4. Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6 ENVIRONMENTAL INSPECTION

Site Inspections

- 6.1. Site inspections were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site inspections are attached in **Appendix I**.
- 6.2. Site inspections were conducted on 05, 14, 19 & 26 August 2024 in the reporting month. A joint site inspection with the representative of IEC, ER, the Contractor and the ET was conducted on 14 August 2024. The details of the observations during site inspection are summarized in **Table 6.2**.

Review of Environmental Monitoring Procedures

6.3. The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4. All permits/licenses obtained for the Project are summarized in **Table 6.1**.

Table 6.1 Summary of Environmental Licensing and Permit Status

Junitary of Environ	Valid F		
Permit No.	From	То	Status
Environmental Permit (EP)			
EP-337/2009	23 Apr 2009	N/A	Valid
Effluent Discharge License			
WT00027495-2017	28 Mar 2017	31 Mar 2022	Expired
WT00041367-2022	20 Jun 2022	31 Mar 2027	Valid
Billing Account for Construction W	aste Disposal		
A/C# 7026164	20 Oct 2016	N/A	Valid
Registration of Chemical Waste Pro	ducer		
WPN5213-229-P3271-01	14 Aug 2017	N/A	Valid
Construction Noise Permit (CNP)	•		
GW-RE0915-19	08 Nov 2019	04 May 2020	Expired
GW-RE0984-19	15 Dec 2019	24 Feb 2020	Expired
GW-RE0083-20	01 Mar 2020	01 June 2020	Expired
GW-RE0266-20	02 May 2020	31 Jul 2020	Expired
GW-RE0779-21	30 Jul 2021	30 Nov 2021	Expired
GW-RE0858-21	31 Jul 2021	30 Aug 2021	Expired
GW-RE0636-23	06 Jun 2023	30 Jun 2023	Expired
GW-RE0637-23	06 Jun 2023	30 Jun 2023	Expired

Status of Waste Management

6.5. The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.

Implementation Status of Environmental Mitigation Measures

6.6. During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in **Table 6.2**.

Table 6.2 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up/Rectification
Water Quality	05 August 2024	Sandbag bund should be provided to the surrounding area of earthworks for flood protection.	2024/08/14 The item was not fully improved or revised. The contractor is reminded to extend the sandbag bund to cover all the surrounding area of earthworks. 2024/08/19 Sandbag bund was provided to fully cover the surrounding areas of earthworks for flood protection.
Air Quality	29 July 2024	The stockpile of dust material should be covered by impervious sheet.	The stockpile of dust material had been covered by impervious sheet.
Noise	N/A	No environmental deficiency was identified in the reporting period.	N/A
Waste/ Chemical Management	N/A	No environmental deficiency was identified in the reporting period.	N/A
Landscape and Visual	N/A	No environmental deficiency was identified in the reporting period.	N/A
Permits/ Licenses	N/A	No environmental deficiency was identified in the reporting period.	N/A

Summary of Mitigation Measures Implemented

6.7. An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.8. The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.9. No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.10 No Action/Limit Level exceedance was recorded in the reporting month.

Monthly EM&A Report -August 2024

Construction Noise

6.11. No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.12. No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.13. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7 FUTURE KEY ISSUES

- 7.1. Major site activities undertaken for the coming two months include:
 - Backfilling works of Subway SW6
 - Construction of Road D1 footway
 - Reinstatement work of beam barrier and light post near PERE
 - Installation of Steel frame of staircase ST2 and Lift LT2
- 7.2. Key environmental issues in the coming month include:
 - Stagnant water on the unused and damaged water-filled barriers & uncovered containers and manhole
 - Silt, construction materials or debris being washed through manhole into the drainage system
 - Dust generation from excavation works, stockpile and rock breaking activities;
 - Oil leakage from equipment and mobile plants;

7.3. The tentative major site activities is mentioned in Section 7.1 of this report. The impact prediction and control measures for the coming two months are summarized as follows:

Air quality impact (dust)

- Frequent watering of haul road and unpaved/exposed areas;
- Frequent watering or covering stockpiles with impervious materials or maintained wet; and
- Watering of any earth moving activities.

Water quality impact (surface runoff)

- Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains;
- Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge;
- Provision of perimeter protection such as sealing of hoarding footings to avoid runoff from entering the existing storm water drainage system via public road; and

Noise Impact

- Machines and Plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
- Regular maintenance of machines; and
- Use of movable noise barriers if necessary.

Waste /Chemical Management

- Avoided oil leakage from PME
- Provided drip tray with adequate capacity and well maintained to chemical and oil containers

Monitoring Schedule for Next Month

7.4. The tentative environmental monitoring schedules for next month are shown in **Appendix D**.

8 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1. Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2. All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3. All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

8.5. No non-compliance was recorded in the reporting month.

Complaint and Prosecution

8.6. No environmental complaint and environmental prosecution was received in the reporting month.

Recommendations

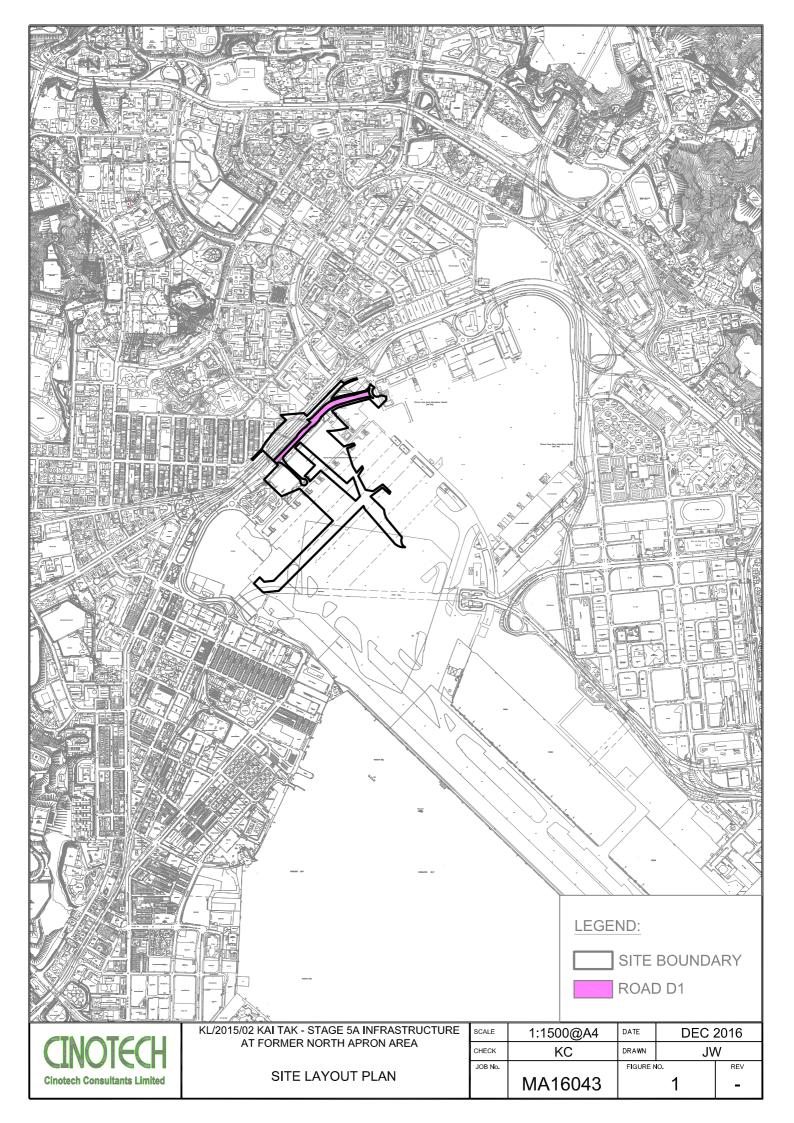
8.7. According to the environmental audit performed in the reporting month, the following recommendations were made:

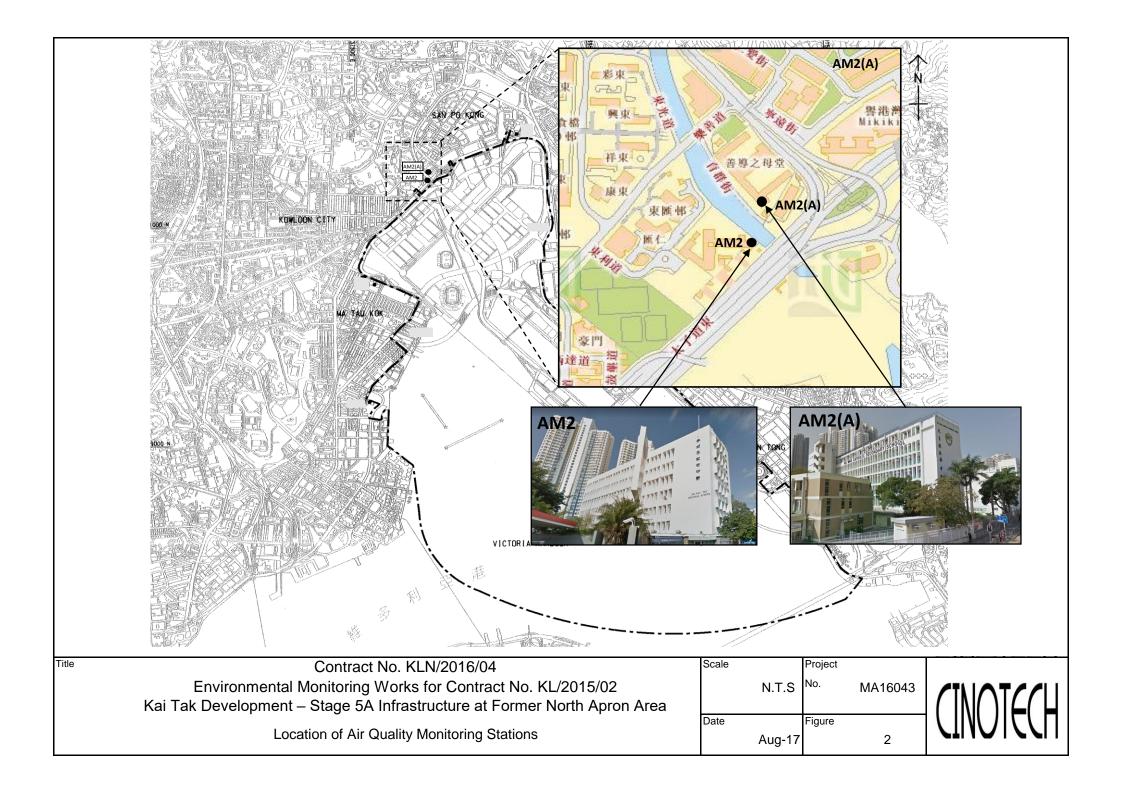
Water Impact

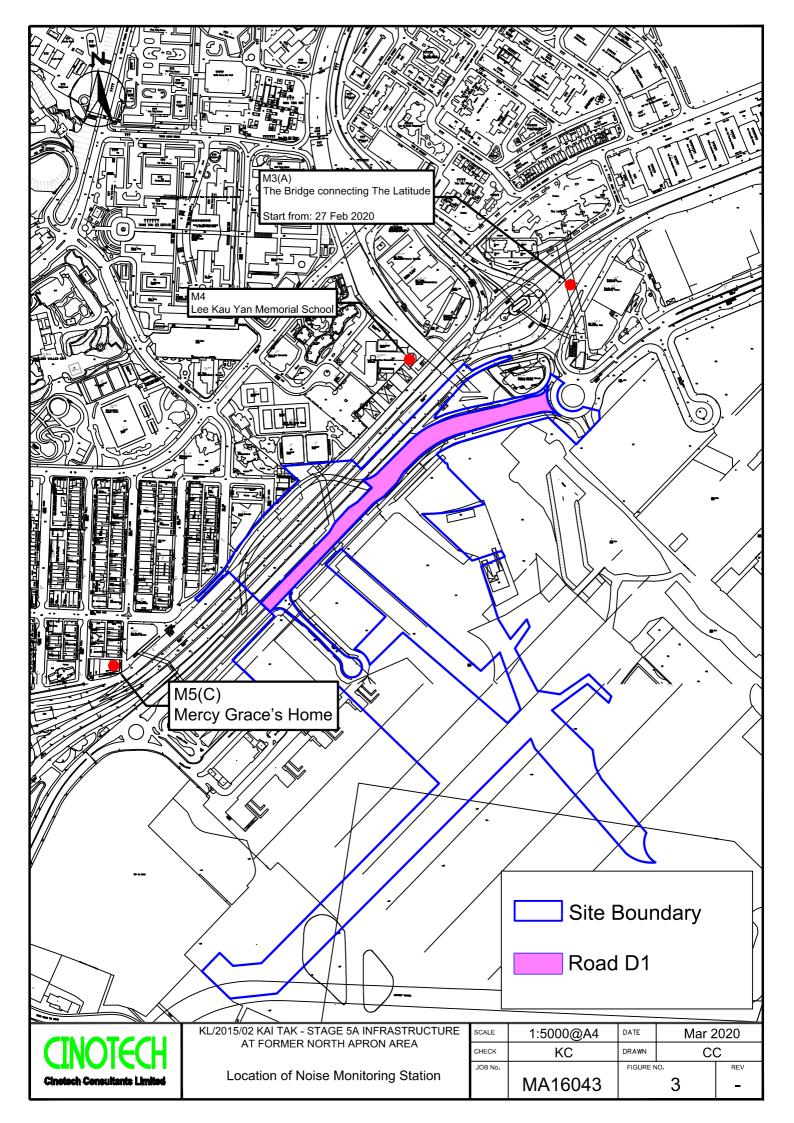
- To avoid accumulation of stagnant and ponding water on site.
- Bunds should be provided to surrounding areas of earthworks for flood protection.
- Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and the temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works
- Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.
- All vehicles and plant should be cleaned of earth, mud and debris before leaving the site.

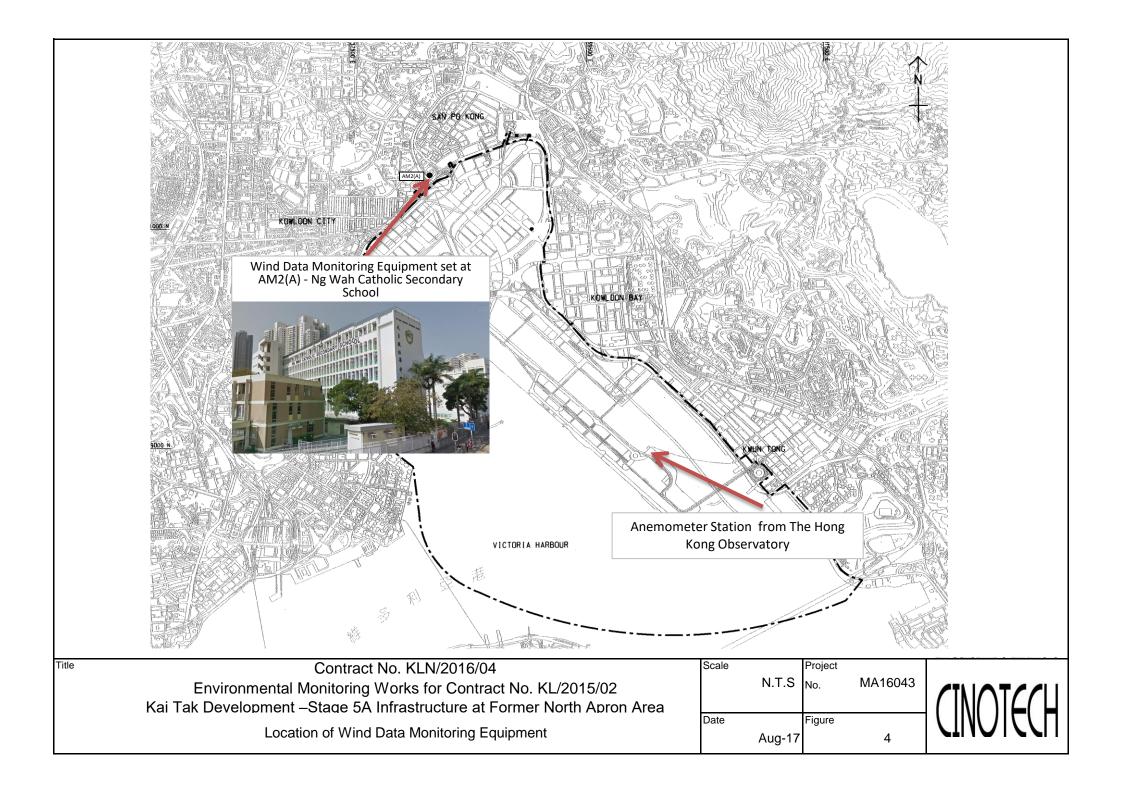
Air Quality

- The stockpile of dusty material should be covered by impervious materials or maintained wet.
- Water spraying should be provided during the rock-breaking activities conducted to minimize the dust generation.


Construction Noise Impact


- Movable noise barriers enclosed with no gaps constantly should be provided to enclose the mobile plant.
- The breaking area should provide noise mitigation measures to screen the noisy plant.


Waste/Chemical Management


- Oil leakage from PME should be avoided.
- Drip tray with adequate capacity and well maintained should be provided to chemical & oil container.
- The construction/chemical material should be stored at the proper place.

FIGURES

APPENDIX A
ACTION AND LIMIT LEVELS FOR AIR
QUALITY AND NOISE

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
AM2	346	500

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
AM2(A)	157	260

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B-1 COPIES OF CALIBRATION CERTIFCATES (AIR)

CINOTECH CONSULTANTS LIMITED

Digital Dust Indicator

Date of Calibration 31-Jul-24

Certificate of Calibration

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scientific	c Technology LTD.	_	Validity of Calibr	ration Record	30-Sep-24
Model No.:	LD-5R					
Serial No.:	8Y2374					
Equipment No.:	SA-01-04		Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.:	A-01-03	Before Sensiti	vity Adjustment	652	
Tisch Calibration	n Orifice No.:	3864	After Sensitivi	ty Adjustment	652	
		Cal	libration of 1 h	r TSP		
Calibration]	Laser Dust Monitor			HVS	
Point	Mas	ss Concentration (µg/1	m3)	Mas	ss concentration (µ	ug/m ³)
		X-axis			Y-axis	
1		76.0			138.0	
2		66.0			121.0	
3 Average		56.0 66.0			102.0 120.3	
Tiverage	<u>I</u>	00.0			120.5	
	ession of Y on X	1				
Slope , mw = Correlation co	1.8000 pefficient* =	0.9995		cept, bw =	1.5333	
		0.9995			1.5333	
Correlation co	oefficient* =	0.9995	t Correlation F		1.5333	
Correlation co	oefficient* =	0.9995 Set	t Correlation F			
Correlation co	centration by Higherntration by Du	0.9995 Set gh Volume Sampler (t Correlation F		120.3	
Particaulate Con Particaulate Con Measureing time Set Correlation F	ncentration by Hig accentration by Du e, (min)	0.9995 Set gh Volume Sampler (t Correlation F μg/m³)		120.3 66.0	
Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High	ncentration by Hig ncentration by Du ncentration by Du ncentration by Du ncentration by Du ncentration by Du ncentration by Hig ncentration by Hig ncentration by Hig ncentration by Hig ncentration by Hig ncentration by Bu	Set gh Volume Sampler (ust Meter (μg/m³)	t Correlation F μg/m³) g/m3)]	actor	120.3 66.0	
Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito Factor (CF) betw	deentration by High elecentration by Dure, (min) Factor, SCF h Volume Sample I in according to the cor was compared eveen the Dust Mo	9.9995 Set gh Volume Sampler (ast Meter (μg/m³) bler / Dust Meter, (μg	t Correlation F μg/m³) g/m3)] ul: gh Volume Samp me Sampler.	1.8 oler and The result	120.3 66.0 60.0	rate the Correlation
Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito Factor (CF) betw Those filter pap	centration by High centration by Dure, (min) Factor, SCF h Volume Sample or was compared eveen the Dust Moders are weighter	Set gh Volume Sampler (st Meter (μg/m³) bler / Dust Meter, (μg the instruction manual with a calibrated High volume and High Volume and HOKLAS laborated by HOKLAS laborated HOKLAS laborate	t Correlation F μg/m³) g/m3)] ul: gh Volume Samp me Sampler.	1.8 pler and The result Litimed) Approved by:	120.3 66.0 60.0	y Xvoy

CINOTECH CONSULTANTS LIMITED

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust I	ndicator		Date	of Calibration	31-Jul-24
Manufacturer:	Sibata Scienti	fic Technology LTD.	_	Validity of Calibr	ation Record	30-Sep-24
Model No.:	LD-5R					
Serial No.:	972777					
Equipment No.:	SA-01-06		Sensitivity	0.001 mg/m3		
High Volume Sa	mpler No.:	A-01-03	Before Sensiti	vity Adjustment	645	
Tisch Calibration	n Orifice No.:	3864	After Sensitivi	ty Adjustment	645	
		Cal	libration of 1 h	r TSP		
Calibration		Laser Dust Monitor			HVS	
Point	M	ass Concentration (μg/ι X-axis	m3)	Mas	s concentration (µ Y-axis	ıg/m³)
1		76.0			137.0	
2		66.0			118.0	
3		56.0			100.0	
Average		66.0			118.3	
	ession of Y on					
Slope , mw = Correlation co	1.850		Intere	cept, bw =	-3.7667	
- '	1.850	0.9999	Interd		-3.7667	_
Correlation co	1.850 pefficient* =	0.9999	t Correlation F		-3.7667 118.3	
Correlation co	1.850 pefficient* = centration by H centration by E	0.9999 Set	t Correlation F		118.3 66.0	
Particaulate Con Particaulate Con Measureing time	1.850 pefficient* = centration by E centration by E c, (min)	0.9999 Set High Volume Sampler (t Correlation F		118.3	
Particaulate Con Particaulate Con Measureing time Set Correlation F	centration by Ecentration by Ecentra	0.9999 Set High Volume Sampler (t Correlation F μg/m³)		118.3 66.0	
Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High	1.850 pefficient* = centration by Experiments of the central centra	0.9999 Set High Volume Sampler (Oust Meter (μg/m³)	t Correlation F μg/m³) g/m3)]	actor	118.3 66.0	
Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito Factor (CF) betw	centration by Ecentration by Ecentra	0.9999 Set High Volume Sampler (Dust Meter (μg/m³) apler / Dust Meter, (μg	t Correlation F μg/m³) g/m3)] tl: th Volume Sampler.	1.8 oler and The result	118.3 66.0 60.0	rate the Correlation
Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito Factor (CF) betw	centration by Ecentration SCF in Volume Samular according to the Science of the Ecentration by E	Set High Volume Sampler (Dust Meter (μg/m³) Appler / Dust Meter, (μg o the instruction manual and with a calibrated High Monitor and High Volume	t Correlation F μg/m³) g/m3)] tl: th Volume Sampler.	1.8 oler and The result	118.3 66.0 60.0	rate the Correlation

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA16043/13/0043

Project No.	AM2(A) - Ng V	Wah Catholic Sec	ondary School				
Date:	6-Jul-24		Next Due Date:	6-5	Sep-24	Operator:	SK
Equipment No.:	A-(01-13	-13 Model No.: TE-5170		E-5170	Serial No.	1352
			•			•	
			Ambient C	ondition	1		
Temperatur	re, Ta (K)	303.8	Pressure, Pa	(mmHg)		756.2	
Cominal	No	3864	ifice Transfer Star		Intercept	. ha	-0.05018
Serial Last Calibra		15-Jan-24	Slope, mc	0.05976 nc x Ostd + bo	$c = [\Delta H \times (Pa/760)]$		
Next Calibra		13-Jan-24 14-Jan-25			$(Pa/760) \times (298/7)$		
TVCAT Carrott	ition Date.		<u> </u>	<u> </u>	(14,700) 1 (2)07	(Dej / III	
		•	Calibration of	ΓSP Sampler			
Calibration		Oı	fice			HVS	
Point	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	DW (HVS), in. of water		60) x (298/Ta)] ^{1/2} '-axis
1	13.5		3.63	61.58	9.8		3.09
2	11.0		3.28	55.67	7.5		2.71
3	8.8		2.93	49.88	5.3	<u>'</u>	2.27
4	5.5		2.32	39.61	3.2		1.77
5	3.3		1.79	30.87	1.8		1.33
By Linear Regro	ossion of V on '	v					
Slope, mw =		A	1	Intercent hw	-0.482	Q	
	coefficient* =		.9965	intercept, bw	-0.402		
*If Correlation C		-		•			
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration	Curve, take Qstd	= 43 CFM				
From the Regress	sion Equation, t	the "Y" value acc	ording to				
		mw v C	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Po/760) v (20	08/Ta)1 ^{1/2}		
		IIIw X (zstu + υw – <u>[Δ</u> νν x	. (Fa/700) X (2)	90/14)]		
Therefore, Se	t Point; W = (r	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	4.00		
						_	
Remarks:							
-							
•							
Conducted by:	Wong S	hing Kwai	Signature:	X	<u> </u>	Date:	6-Jul-24
				1 0	·····		
Checked by:	Henry	y Leung	Signature:	- Lem	J Oran	Date:	6-Jul-24

RECALIBRATION DUE DATE:

January 15, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 15, 2024

Rootsmeter S/N: 438320

Ta: 294
Pa: 755.4

°K

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 3864

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4380	3.3	2.00
2	3	4	1	1.0270	6.4	4.00
3	5	6	1	0.9180	8.0	5.00
4	7	8	1	0.8750	8.9	5.50
5	9	10	1	0.7230	12.9	8.00

		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0031	0.6975	1.4195	0.9956	0.6924	0.8823
0.9989	0.9727	2.0075	0.9915	0.9655	1.2477
0.9968	1.0858	2.2444	0.9894	1.0778	1.3950
0.9956	1.1378	2.3539	0.9882	1.1294	1.4631
0.9903	1.3697	2.8390	0.9829	1.3595	1.7645
	m=	2.11196		m=	1.32248
QSTD[b=	-0.05043	QA	b=	-0.03134
•	r=	0.99998		r=	0.99998

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd= Vstd/ΔTime Qa= Va/ΔTime		Va/ΔTime	
For subsequent flow rate calculations:			
Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{P_a}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ Qa= $1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$			

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
ΔP: rootsmet	er manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

Certificate of Calibration - Wind Monitoring Station

Description: Ng Wah Catholic Seconday School - Weather Stations

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis 6152, Vantage Pro2</u>

Serial No.: <u>BC180522050</u>

Equipment No.: SA-03-03

Date of Calibration 5-Apr-2024

Next Due Date 5-Oct-2024

1. Performance check of Wind Speed

Wind Sp	peed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V1)	D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.6	-0.1
4.0	4.1	-0.1

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (V1)	Marine Compass Value (V1)	D = W1 - W2
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:

Wong Shing Kwai

Approved by:

Henry Leung

APPENDIX B-2 COPIES OF CALIBRATION CERTIFCATES (NOISE)

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00568 | Issue Date : 14 Feb 2024

Application No. : HP00436

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-03

Manufacturer: : BSWA Technology

Other information : | N

Model No.	BSWA 308
Serial No.	570188
Microphone No.	570608

Date Received : 05 Feb 2024

Test Period : 07 Feb 2024 to 07 Feb 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00568 | Issue Date : 14 Feb 2024

Application No. : HP00436

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.0	± 0.0	± 1.5
114.0	113.9	- 0.1	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-05

Manufacturer: : BSWA Technology

Other information :

Model No.	BSWA 308
Serial No.	580287
Microphone No.	570610

Date Received : 09 Apr 2024

Test Period : 09 Apr 2024 to 09 Apr 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result :

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+ 0.1	± 1.5
114.0	114.1	+ 0.1	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00676 Issue Date : 03 May 2024

Application No. : HP00537

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : SN-01-01

Manufacturer: : SVANTEK

Other information : | Model No. | SVAN 979

Serial No. 27189
Microphone No. 25202

Date Received : 02 May 2024

Test Period : 02 May 2024 to 02 May 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00676 | Issue Date : 03 May 2024

Application No. : HP00537

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator	
Manufacturer	Brüel & Kjær	
Model No.	TYPE 4231	
Serial No.	2326353	
Equipment No.	N-02-01	

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.0	± 0.0	± 1.5
114.0	114.1	+ 0.1	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C241168

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC24-0305)

Date of Receipt / 收件日期: 21 February 2024

Description / 儀器名稱

Acoustical Calibrator

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

4231

Serial No. / 編號

2326353

Supplied By / 委託者

Cinotech Consultants Limited

Room 1710, Technology Park, 18 On Lai Street,

Shatin, N.T. Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

3 March 2024

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed specified limits.

These limits refer to manufacturer's published tolerances as requested by the customer.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Hottinger Brüel & Kjær Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies

- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Assistant Engineer

Certified By 核證

K/C Lee Engineer Date of Issue 簽發日期

4 March 2024

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C241168

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

CL130 CL281

CL281 TST150A Description

Universal Counter

Multifunction Acoustic Calibrator

Measuring Amplifier

Certificate No.

C233799

CDK2302738 C221750

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Limit	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.90	± 0.2	± 0.20
114 dB, 1 kHz	114.00		

5.2 Frequency Accuracy

requestey recuracy			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Limit	(Hz)
1	1 000 0	$1 \text{ kHz} \pm 0.1 \%$	+ 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

APPENDIX C WEATHER INFORMATION

August 2024

		August 2024		
Date	Mean Pressure (hPa)	Air Temperature	Mean Relative Humidity (%)	Precipitation (mm)
		Mean (°C)		
1-Aug-24	1008.2	30.2	79	2.3
2-Aug-24	1007.8	29.8	81	0.4
3-Aug-24	1008.7	30.4	76	0
4-Aug-24	1007.8	30.7	76	0
5-Aug-24	1005.7	31.8	76	0
6-Aug-24	1005.4	30.6	78	10.3
7-Aug-24	1006.5	30.7	79	0
8-Aug-24	1006.7	30.7	77	0
9-Aug-24	1005.6	30.4	76	0
10-Aug-24	1004.1	30.5	79	Trace
11-Aug-24	1003.1	30.3	81	0
12-Aug-24	1004.1	29.2	85	20.9
13-Aug-24	1006.0	29.7	82	5
14-Aug-24	1006.3	29.2	82	0.1
15-Aug-24	1005.2	27.7	88	8
16-Aug-24	1005.1	27.7	84	0.4
17-Aug-24	1006.7	27.3	92	116.2
18-Aug-24	1006.1	28.3	87	32.5
19-Aug-24	1004.5	28.0	88	19.3
20-Aug-24	1006.3	27.5	89	11.4
21-Aug-24	1009.8	27.1	87	3.9
22-Aug-24	1010.4	28.9	83	0
23-Aug-24	1010.5	29.3	82	0
24-Aug-24	1009.3	30.2	77	0
25-Aug-24	1008.0	30.1	75	0
26-Aug-24	1006.7	30.3	75	0
27-Aug-24	1005.4	30.6	74	0
28-Aug-24	1003.5	30.7	75	Trace
29-Aug-24	1004.6	30.5	76	Trace
30-Aug-24	1006.9	30.3	82	23.3
31-Aug-24	1008.2	29.6	84	7.5

August 2024			
Т		nd Speed and Direction	
Date	Time	Wind Speed m/s	Direction
1-Aug-24	0:00	0.0	S
1-Aug-24	1:00	0.2	SSW
1-Aug-24	2:00	0.2	S
1-Aug-24	3:00	0.1	SSW
1-Aug-24	4:00	0.2	S
1-Aug-24	5:00	1.0	W
1-Aug-24	6:00	0.1	S
1-Aug-24	7:00	0.2	SSW
1-Aug-24	8:00	1.9	WNW
1-Aug-24	9:00	2.3	W
1-Aug-24	10:00	1.2	SSW
1-Aug-24	11:00	1.3	SW
1-Aug-24	12:00	1.3	S
1-Aug-24	13:00	1.5	S
1-Aug-24	14:00	1.6	SW
1-Aug-24	15:00	1.6	SSW
1-Aug-24	16:00	1.8	SW
1-Aug-24	17:00	1.8	WSW
1-Aug-24	18:00	1.4	WSW
1-Aug-24	19:00	2.1	WNW
1-Aug-24	20:00	1.5	WSW
1-Aug-24	21:00	0.7	WSW
1-Aug-24	22:00	1.4	W
1-Aug-24	23:00	0.6	SSW
2-Aug-24	0:00	0.8	SSW
2-Aug-24	1:00	0.7	SSW
2-Aug-24	2:00	0.5	SSW
2-Aug-24	3:00	0.8	WSW
2-Aug-24	4:00	1.0	W
2-Aug-24	5:00	0.6	SW
2-Aug-24	6:00	0.7	SW
2-Aug-24	8:00	1.3	SW
2-Aug-24	9:00	1.8	SW
2-Aug-24	10:00	1.9	SW
2-Aug-24	11:00	1.9	WSW
2-Aug-24	12:00	1.5	SSW
2-Aug-24	13:00	1.3	SSE
2-Aug-24	14:00	1.3	SSE
2-Aug-24	15:00	1.6	SSE
2-Aug-24	16:00	1.3	S
2-Aug-24	17:00	1.4	SE
2-Aug-24	18:00	1.3	SE
2-Aug-24	19:00	1.0	SE
2-Aug-24	20:00	1.0	SE
2-Aug-24	21:00	0.9	S
2-Aug-24	22:00	0.9	SSE
2-Aug-24	23:00	0.5	SSE

August 2024					
Table	Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction		
3-Aug-24	0:00	0.4	S		
3-Aug-24	1:00	0.6	SSE		
3-Aug-24	2:00	0.7	S		
3-Aug-24	3:00	0.7	S		
3-Aug-24	4:00	0.5	S		
3-Aug-24	5:00	0.4	S S		
3-Aug-24	6:00	0.3	S		
3-Aug-24	7:00	0.7	SSE		
3-Aug-24	8:00	0.6	S		
3-Aug-24	9:00	0.7	SSE		
3-Aug-24	10:00	1.1	SSE		
3-Aug-24	11:00	1.3	S		
3-Aug-24	12:00	1.2	SSE		
3-Aug-24	13:00	1.2	SSE		
3-Aug-24	14:00	1.3	S		
3-Aug-24	15:00	1.3	SSE		
3-Aug-24	16:00	1.9	ESE		
3-Aug-24	17:00	1.5	SE		
3-Aug-24	18:00	1.5	SE		
3-Aug-24	19:00	1.2	SE		
3-Aug-24	20:00	0.9	SSE		
3-Aug-24	21:00	0.7	S		
3-Aug-24	22:00	1.1	S		
3-Aug-24	23:00	0.9	SSW		
4-Aug-24	0:00	0.7	SSE		
4-Aug-24	1:00	0.9	SSE		
4-Aug-24	2:00	0.8	S		
4-Aug-24	3:00	0.6	SSE		
4-Aug-24	4:00	0.5	SSE		
4-Aug-24	5:00	0.7	SSE		
4-Aug-24	6:00	0.5	S		
4-Aug-24	8:00	1.0	SSE		
4-Aug-24	9:00	1.5	SE		
4-Aug-24	10:00	1.4	SSE		
4-Aug-24	11:00	2.2	SSE		
4-Aug-24	12:00	1.4	SSE		
4-Aug-24	13:00	1.2	SE		
4-Aug-24	14:00	1.3	SSE		
4-Aug-24	15:00	1.3	SSE		
4-Aug-24	16:00	1.2	SE		
4-Aug-24	17:00	0.8	SE		
4-Aug-24	18:00	0.8	SSE		
4-Aug-24	19:00	0.7	SSE		
4-Aug-24	20:00	0.7	SSE		
4-Aug-24	21:00	0.9	SSE		
4-Aug-24	22:00	0.8	SSE		
4-Aug-24	23:00	1.4	SW		

August 2024			
Т		nd Speed and Direction	ns
Date	Time	Wind Speed m/s	Direction
5-Aug-24	0:00	1.0	SSW
5-Aug-24 5-Aug-24	1:00	0.8	SSW
5-Aug-24 5-Aug-24	2:00	0.6	S
5-Aug-24	3:00	0.6	S
5-Aug-24	4:00	0.5	S
5-Aug-24	5:00	0.3	SSE
5-Aug-24	6:00	0.5	SSE
5-Aug-24	7:00	0.8	S
5-Aug-24	8:00	1.4	S
5-Aug-24	9:00	1.6	SSE
5-Aug-24	10:00	1.2	SSE
5-Aug-24	11:00	1.4	SSE
5-Aug-24	12:00	1.2	SE
5-Aug-24	13:00	1.4	SE
5-Aug-24	14:00	1.4	SSE
5-Aug-24	15:00	1.6	SSE
5-Aug-24	16:00	0.9	SSE
5-Aug-24	17:00	0.9	SSW
5-Aug-24	18:00	1.6	S
5-Aug-24	19:00	1.5	SSE
5-Aug-24	20:00	0.9	S
5-Aug-24	21:00	0.9	SSE
5-Aug-24	22:00	0.9	S
5-Aug-24	23:00	0.6	S
6-Aug-24	0:00	0.7	S
6-Aug-24	1:00	0.6	SSE
6-Aug-24	2:00	0.7	SSW
6-Aug-24	3:00	0.7	SSW
6-Aug-24	4:00	0.7	S
6-Aug-24	5:00	1.0	SSE
6-Aug-24	6:00	0.7	S
6-Aug-24	7:00	0.8	SSE
6-Aug-24	8:00	0.9	S
6-Aug-24	9:00	1.1	S
6-Aug-24	10:00	1.0	SSE
6-Aug-24	11:00	1.0	SSW
6-Aug-24	12:00	1.8	S
6-Aug-24	13:00	1.5	S
6-Aug-24	14:00	0.9	SSE
6-Aug-24	15:00	1.0	SSW
6-Aug-24	16:00	1.2	S
6-Aug-24	17:00	1.3	S
6-Aug-24	18:00	1.8	S
6-Aug-24	19:00	0.9	S
6-Aug-24	20:00	0.8	SSE
6-Aug-24	21:00	0.6	S
6-Aug-24	22:00	0.9	SSW
6-Aug-24	23:00	1.0	S

August 2024				
Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction	
7-Aug-24	0:00	0.7	SSE	
7-Aug-24	1:00	0.5	S	
7-Aug-24	2:00	0.5	S	
7-Aug-24	3:00	0.6	SSE	
7-Aug-24	4:00	0.6	S	
7-Aug-24	5:00	0.6	S S	
7-Aug-24	6:00	0.5	S	
7-Aug-24	7:00	0.6	S	
7-Aug-24	8:00	0.9	SW	
7-Aug-24	9:00	1.0	S	
7-Aug-24	10:00	1.1	SSW	
7-Aug-24	11:00	1.0	S	
7-Aug-24	12:00	1.1	S	
7-Aug-24	13:00	1.0	S	
7-Aug-24	14:00	1.3	S	
7-Aug-24	15:00	1.7	SSE	
7-Aug-24	16:00	1.0	SSE	
7-Aug-24	17:00	1.0	SSE	
7-Aug-24	18:00	0.9	SSE	
7-Aug-24	19:00	1.0	SE	
7-Aug-24	20:00	0.9	SSE	
7-Aug-24	21:00	0.7	S	
7-Aug-24	22:00	0.9	S	
7-Aug-24	23:00	1.0	SSE	
8-Aug-24	0:00	1.0	S	
8-Aug-24	1:00	0.9	SSE	
8-Aug-24	2:00	1.2	SSE	
8-Aug-24	3:00	1.0	S	
8-Aug-24	4:00	1.1	S	
8-Aug-24	5:00	1.0	S	
8-Aug-24	6:00	0.7	SSE	
8-Aug-24	7:00	1.0	SSE	
8-Aug-24	8:00	1.1	SE	
8-Aug-24	9:00	1.1	SE	
8-Aug-24	10:00	1.0	SSE	
8-Aug-24	11:00		SSE	
8-Aug-24	12:00	1.4	SSE	
8-Aug-24	13:00	1.2	SSE	
8-Aug-24	14:00 15:00	1.3	SSE S	
8-Aug-24 8-Aug-24	16:00	1.1	SSE	
8-Aug-24	17:00	1.1	SSE	
8-Aug-24	18:00	1.0	SE	
8-Aug-24	19:00	1.0	SE	
8-Aug-24	20:00	1.1	SSE	
8-Aug-24	21:00	1.0	SSW	
8-Aug-24	22:00	1.0	SSW	
8-Aug-24	23:00	0.8	S	
0-Aug-24	25.00	0.0	ט	

August 2024					
Т	Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction		
9-Aug-24	0:00	0.8	S		
9-Aug-24 9-Aug-24	1:00	1.2	SSE		
9-Aug-24 9-Aug-24	2:00	1.2	S		
9-Aug-24	3:00	1.4	S		
9-Aug-24	4:00	1.1	S		
9-Aug-24	5:00	1.1	SSE		
9-Aug-24	6:00	1.1	SSE		
9-Aug-24	7:00	1.0	SE		
9-Aug-24	8:00	1.3	SE		
9-Aug-24	9:00	1.0	SSE		
9-Aug-24	10:00	0.9	SSE		
9-Aug-24	11:00	1.1	S		
9-Aug-24	12:00	1.5	S		
9-Aug-24	13:00	1.4	SSE		
9-Aug-24	14:00	1.4	ESE		
9-Aug-24	15:00	1.4	S		
9-Aug-24	16:00	1.6	SSE		
9-Aug-24	17:00	1.8	SE		
9-Aug-24	18:00	1.4	SSE		
9-Aug-24	19:00	1.4	SE		
9-Aug-24	20:00	1.1	SSE		
9-Aug-24	21:00	0.8	SSE		
9-Aug-24	22:00	0.7	S		
9-Aug-24	23:00	1.0	S		
10-Aug-24	0:00	1.1	SSE		
10-Aug-24	1:00	1.3	SE		
10-Aug-24	2:00	1.4	SE		
10-Aug-24	3:00	1.1	SSE		
10-Aug-24	4:00	1.0	SSE		
10-Aug-24	5:00	1.0	SSE		
10-Aug-24	6:00	1.0	SSE		
10-Aug-24	7:00	1.2	SSE		
10-Aug-24	8:00	1.1	SSE		
10-Aug-24	9:00	1.0	SE		
10-Aug-24	10:00	1.3	SSE		
10-Aug-24	11:00	1.7	SE		
10-Aug-24	12:00	1.3	SE		
10-Aug-24	13:00	1.6	SE		
10-Aug-24	14:00	1.5	SSE		
10-Aug-24	15:00	1.4	SSE		
10-Aug-24	16:00	1.3	SE		
10-Aug-24	17:00	1.4	SSE		
10-Aug-24	18:00	1.4	SE		
10-Aug-24	19:00	1.2	SSE		
10-Aug-24	20:00	1.0	S W		
10-Aug-24	21:00	1.4	SW		
10-Aug-24	22:00	0.9	S		
10-Aug-24	23:00	0.9	3		

August 2024				
Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction	
11-Aug-24	0:00	1.2	SE	
11-Aug-24	1:00	1.0	SSE	
11-Aug-24	2:00	0.8	S	
11-Aug-24	3:00	0.8	SSE	
11-Aug-24	4:00	0.9	S	
11-Aug-24	5:00	0.7	S S	
11-Aug-24	6:00	1.0	SSE	
11-Aug-24	7:00	0.9	S	
11-Aug-24	8:00	1.0	S	
11-Aug-24	9:00	1.2	SE	
11-Aug-24	10:00	1.0	SSE	
11-Aug-24	11:00	1.4	S	
11-Aug-24	12:00	1.3	SSW	
11-Aug-24	13:00	1.7	W	
11-Aug-24	14:00	2.0	SW	
11-Aug-24	15:00	0.9	SSE	
11-Aug-24	16:00	1.3	SE	
11-Aug-24	17:00	0.9	SSE	
11-Aug-24	18:00	0.9	SE	
11-Aug-24	19:00	0.9	SE	
11-Aug-24	20:00	0.9	S	
11-Aug-24	21:00	1.0	SSE	
11-Aug-24	22:00	0.7	S	
11-Aug-24	23:00	0.8	SSE	
12-Aug-24	0:00	0.7	SSE	
12-Aug-24	1:00	0.8	S	
12-Aug-24	2:00	0.9	S	
12-Aug-24	3:00	0.5	SW	
12-Aug-24	4:00	0.2	S	
12-Aug-24	5:00	0.5	S	
12-Aug-24	6:00	0.5	S	
12-Aug-24	7:00	0.9	S	
12-Aug-24	8:00	1.3	S	
12-Aug-24	9:00	0.8	WSW	
12-Aug-24	10:00	0.7	S	
12-Aug-24	11:00	0.5	S	
12-Aug-24	12:00	0.9	SE	
12-Aug-24	13:00	1.1	SE	
12-Aug-24	14:00	1.4	SSW	
12-Aug-24	15:00	1.4	SSW	
12-Aug-24	16:00	1.2	SE S	
12-Aug-24	17:00	1.3		
12-Aug-24	18:00	1.0	SSE	
12-Aug-24	19:00	0.8 0.7	SE SSE	
12-Aug-24 12-Aug-24	20:00	0.5	SSE	
12-Aug-24 12-Aug-24	22:00	0.9	S	
12-Aug-24 12-Aug-24	23:00	0.9	SSE	
12-13ug-24	23.00	0.3	SOL	

August 2024					
Table II: Wind Speed and Directions					
Date Time Wind Speed m/s Direction					
13-Aug-24	0:00	0.6	SSE		
13-Aug-24	1:00	0.5	S		
13-Aug-24	2:00	1.4	S		
13-Aug-24	3:00	0.1	SSE		
13-Aug-24	4:00	0.5	SE		
13-Aug-24	5:00	0.3	SSE		
13-Aug-24	6:00	0.4	S		
13-Aug-24	7:00	0.8	SSW		
13-Aug-24	8:00	1.1	SSW		
13-Aug-24	9:00	1.1	SSE		
13-Aug-24	10:00	1.0	S		
13-Aug-24	11:00	0.9	S		
13-Aug-24	12:00	1.0	SSE		
13-Aug-24	13:00	1.0	SE		
13-Aug-24	14:00	1.7	SE		
13-Aug-24	15:00	1.4	SSE		
13-Aug-24	16:00	0.7	S		
13-Aug-24	17:00	0.7	S		
13-Aug-24	18:00	1.0	S		
13-Aug-24	19:00	0.9	SSE		
13-Aug-24	20:00	0.8	S		
13-Aug-24	21:00	0.6	S		
13-Aug-24	22:00	0.7	SSE		
13-Aug-24	23:00	0.7	S		
14-Aug-24	0:00	0.5	S		
14-Aug-24	1:00	0.5	SSE		
14-Aug-24	2:00	0.4	SSE		
14-Aug-24	3:00	0.4	SSW		
14-Aug-24	4:00	0.6	S		
14-Aug-24	5:00	0.5	SSE		
14-Aug-24	6:00	0.5	S		
14-Aug-24	7:00	0.8	SSW		
14-Aug-24	8:00	1.1	S		
14-Aug-24	9:00	1.0	S		
14-Aug-24	10:00	0.7	SSE		
14-Aug-24	11:00	0.6	SSW		
14-Aug-24	12:00	0.9	SSE		
14-Aug-24	13:00	0.7	SSE		
14-Aug-24	14:00	0.9	S		
14-Aug-24	15:00	0.8	SW		
14-Aug-24	16:00	0.3	SW		
14-Aug-24	17:00	0.6	S		
14-Aug-24	18:00	0.4	SSW		
14-Aug-24	19:00	0.7	SSE		
14-Aug-24	20:00	0.6	S		
14-Aug-24	21:00	0.2	S		
14-Aug-24	22:00	0.3	S		
14-Aug-24	23:00	0.5	SSE		

August 2024				
Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction	
15-Aug-24	0:00	0.5	SSE	
15-Aug-24	1:00	0.0	S	
15-Aug-24	2:00	0.1	SSE	
15-Aug-24	3:00	0.6	S	
15-Aug-24	4:00	0.1	S	
15-Aug-24	5:00	0.1	SSE	
15-Aug-24	6:00	0.2	S	
15-Aug-24	7:00	0.0	S	
15-Aug-24	8:00	0.7	S	
15-Aug-24	9:00	0.6	SSE	
15-Aug-24	10:00	0.9	SSW	
15-Aug-24	11:00	1.3	SSE	
15-Aug-24	12:00	0.3	S	
15-Aug-24	13:00	0.5	SSE	
15-Aug-24	14:00	0.2	SSW	
15-Aug-24	15:00	0.3	SSW	
15-Aug-24	16:00	0.7	SSE	
15-Aug-24	17:00	0.5	SSE	
15-Aug-24	18:00	0.4	SE	
15-Aug-24	19:00	0.4	S	
15-Aug-24	20:00	0.5	S	
15-Aug-24	21:00	0.2	SSE	
15-Aug-24	22:00	0.1	S	
15-Aug-24	23:00	0.1	SSE	
16-Aug-24	0:00	0.0	SSE	
16-Aug-24	1:00	0.2	S	
16-Aug-24	2:00	0.3	S	
16-Aug-24	3:00	0.1	S	
16-Aug-24	4:00	0.1	SSE	
16-Aug-24	5:00	0.1	SSE	
16-Aug-24	6:00	0.4	S	
16-Aug-24	7:00	1.1	S	
16-Aug-24	8:00	1.3	S	
16-Aug-24	9:00	0.6	S	
16-Aug-24	10:00	1.0	SSW	
16-Aug-24	11:00	1.0	S	
16-Aug-24	12:00	0.9	S	
16-Aug-24	13:00	1.8	SW	
16-Aug-24	14:00	1.3	SSE	
16-Aug-24	15:00	1.3	S	
16-Aug-24	16:00	1.5	SW	
16-Aug-24	17:00	1.7	WSW	
16-Aug-24	18:00	1.4	SSW	
16-Aug-24	19:00	0.6	SSW	
16-Aug-24	20:00	0.8	S	
16-Aug-24	21:00	0.8	S	
16-Aug-24	22:00	0.6	SSE	
16-Aug-24	23:00	0.6	SSE	

August 2024					
Т	Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction		
17-Aug-24	0:00	0.6	S		
17-Aug-24	1:00	0.5	S		
17-Aug-24	2:00	0.6	SSE		
17-Aug-24	3:00	0.4	SSE		
17-Aug-24	4:00	0.4	S		
17-Aug-24	5:00	0.8	SSW		
17-Aug-24	6:00	0.7	SSE		
17-Aug-24	7:00	0.6	SSW		
17-Aug-24	8:00	0.4	SSW		
17-Aug-24	9:00	0.9	S		
17-Aug-24	10:00	0.2	S		
17-Aug-24	11:00	0.3	S		
17-Aug-24	12:00	0.8	S		
17-Aug-24	13:00	0.4	SSE		
17-Aug-24	14:00	0.3	SSE		
17-Aug-24	15:00	0.4	SE		
17-Aug-24	16:00	0.7	S		
17-Aug-24	17:00	1.0	SE		
17-Aug-24	18:00	0.8	SE		
17-Aug-24	19:00	0.5	S		
17-Aug-24	20:00	0.2	S		
17-Aug-24	21:00	0.6	S		
17-Aug-24	22:00	0.5	SSW		
17-Aug-24	23:00	0.1	SSE		
18-Aug-24	0:00	0.1	S		
18-Aug-24	1:00	0.2	SSW		
18-Aug-24	2:00	0.6	SSE		
18-Aug-24	3:00	0.6	SSE		
18-Aug-24	4:00	0.7	S		
18-Aug-24	5:00	0.9	S		
18-Aug-24	6:00	1.3	SSE		
18-Aug-24	7:00	1.0	SSE		
18-Aug-24	8:00	1.0	S		
18-Aug-24	9:00	0.5	S		
18-Aug-24	10:00	0.8	SE		
18-Aug-24	11:00	0.6	S		
18-Aug-24	12:00	0.5	SSE		
18-Aug-24	13:00	0.7	S		
18-Aug-24	14:00	0.5	SSE		
18-Aug-24	15:00	1.2	S		
18-Aug-24	16:00	1.3	SSE		
18-Aug-24	17:00	0.9	SSE		
18-Aug-24	18:00	0.9	SSE		
18-Aug-24	19:00	0.4	SSW		
18-Aug-24	20:00	0.3	S		
18-Aug-24	21:00	0.5	S		
18-Aug-24	22:00	0.2	S		
18-Aug-24	23:00	0.1	S		

August 2024				
Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction	
19-Aug-24	0:00	0.1	SSE	
19-Aug-24	1:00	0.5	S	
19-Aug-24	2:00	1.6	SSE	
19-Aug-24	3:00	1.2	SSE	
19-Aug-24	4:00	1.4	SSE	
19-Aug-24	5:00	1.6	SE	
19-Aug-24	6:00	1.3	SSE	
19-Aug-24	7:00	1.2	SSE	
19-Aug-24	8:00	1.1	SSE	
19-Aug-24	9:00	1.1	S	
19-Aug-24	10:00	0.7	S	
19-Aug-24	11:00	1.1	W	
19-Aug-24	12:00	0.5	SSE	
19-Aug-24	13:00	0.3	S	
19-Aug-24	14:00	0.3	SW	
19-Aug-24	15:00	1.0	W	
19-Aug-24	16:00	0.7	WNW	
19-Aug-24	17:00	1.3	WNW	
19-Aug-24	18:00	0.7	SSE	
19-Aug-24	19:00	0.1	SSE	
19-Aug-24	20:00	0.5	S	
19-Aug-24	21:00	0.1	SW	
19-Aug-24	22:00	0.4	SSE	
19-Aug-24	23:00	0.7	SSE	
20-Aug-24	0:00	1.5	SSE	
20-Aug-24	1:00	1.3	SSE	
20-Aug-24	2:00	1.2	SSE	
20-Aug-24	3:00	1.2	SSE	
20-Aug-24	4:00	0.9	SSE	
20-Aug-24	5:00	0.7	SSE	
20-Aug-24	6:00	1.2	SSW	
20-Aug-24	7:00	0.2	S	
20-Aug-24	8:00	0.2	SSE SE	
20-Aug-24	9:00 10:00	0.8 0.7	SE SE	
20-Aug-24 20-Aug-24	11:00	0.8	SE	
20-Aug-24 20-Aug-24	12:00	0.8	SSW	
20-Aug-24 20-Aug-24	13:00	0.8	SE	
20-Aug-24 20-Aug-24	14:00	0.8	SSE	
20-Aug-24 20-Aug-24	15:00	1.0	S	
20-Aug-24 20-Aug-24	16:00	2.0	SSE	
20-Aug-24 20-Aug-24	17:00	2.0	SSE	
20-Aug-24 20-Aug-24	18:00	1.6	S	
20-Aug-24 20-Aug-24	19:00	1.5	S	
20-Aug-24 20-Aug-24	20:00	0.8	S	
20-Aug-24 20-Aug-24	21:00	1.1	SSE	
20-Aug-24	22:00	0.8	SSW	
20-Aug-24	23:00	0.7	S	
			•	

August 2024			
Т		nd Speed and Direction	ns
Date	Time	Wind Speed m/s	Direction
21-Aug-24	0:00	0.7	SSE
21-Aug-24 21-Aug-24	1:00	0.7	S
21-Aug-24 21-Aug-24	2:00	0.7	S
21-Aug-24 21-Aug-24	3:00	0.4	WSW
21-Aug-24 21-Aug-24	4:00	1.5	WNW
21-Aug-24 21-Aug-24	5:00	0.2	SSW
21-Aug-24	6:00	0.3	S
21-Aug-24	7:00	0.2	S
21-Aug-24	8:00	0.7	SSE
21-Aug-24	9:00	2.2	SSE
21-Aug-24	10:00	1.5	S
21-Aug-24	11:00	1.4	SSE
21-Aug-24	12:00	0.6	SE
21-Aug-24	13:00	0.4	SW
21-Aug-24	14:00	0.5	SSW
21-Aug-24	15:00	0.7	SSW
21-Aug-24	16:00	0.1	SSE
21-Aug-24	17:00	0.0	S
21-Aug-24	18:00	0.0	SSE
21-Aug-24	19:00	0.2	S
21-Aug-24	20:00	0.0	SE
21-Aug-24	21:00	0.0	SSE
21-Aug-24	22:00	0.0	SE
21-Aug-24	23:00	0.0	SSE
22-Aug-24	0:00	0.0	SSW
22-Aug-24	1:00	0.1	SSE
22-Aug-24	2:00	0.0	SSW
22-Aug-24	3:00	0.0	SSW
22-Aug-24	4:00	0.0	SSW
22-Aug-24	5:00	0.0	S
22-Aug-24	6:00	0.0	S
22-Aug-24	7:00	0.0	SSE
22-Aug-24	8:00	0.1	S
22-Aug-24	9:00	0.2	ESE
22-Aug-24	10:00	0.5	SSE
22-Aug-24	11:00	1.3	S
22-Aug-24	12:00	1.3	S
22-Aug-24	13:00	1.7	S
22-Aug-24	14:00	1.7	SW
22-Aug-24	15:00	1.1	SSW
22-Aug-24	16:00	1.1	SSW
22-Aug-24	17:00	0.7	SSW
22-Aug-24	18:00	0.6	S
22-Aug-24	19:00	0.6	SSE
22-Aug-24	20:00	0.5	S
22-Aug-24	21:00	0.8 0.4	SSE S
22-Aug-24	22:00		SSE
22-Aug-24	43.00	0.3	SSE

August 2024									
Table	e II: Wind S	Speed and Directions	S						
Date	Time	Wind Speed m/s	Direction						
23-Aug-24	0:00	0.3	SSW						
23-Aug-24	1:00	0.3	SSE						
23-Aug-24	2:00	0.1	S						
23-Aug-24	3:00	0.3	S						
23-Aug-24	4:00	0.6	S						
23-Aug-24	5:00	0.6	S						
23-Aug-24	6:00	0.3	SSE						
23-Aug-24	7:00	0.6	S						
23-Aug-24	8:00	1.1	SSW						
23-Aug-24	9:00	1.2	SE						
23-Aug-24	10:00	1.1	SSE						
23-Aug-24	11:00	1.3	SSE						
23-Aug-24	12:00	1.2	SSE						
23-Aug-24	13:00	1.2	SSE						
23-Aug-24	14:00	1.1	SSE						
23-Aug-24	15:00	1.2	S						
23-Aug-24	16:00	1.1	SSW						
23-Aug-24	17:00	0.7	SE						
23-Aug-24	18:00	0.7	S						
23-Aug-24	19:00	0.7	SSE						
23-Aug-24	20:00	0.5	SSW						
23-Aug-24	21:00	0.8	SSE						
23-Aug-24	22:00	0.6	S						
23-Aug-24	23:00	0.4	S						
24-Aug-24	0:00	0.5	S						
24-Aug-24	1:00	0.4	SSE						
24-Aug-24	2:00	0.5	S						
24-Aug-24	3:00	0.7	SSW						
24-Aug-24	4:00	0.7	SSE						
24-Aug-24	5:00	0.6	S						
24-Aug-24	6:00	0.8	SSE						
24-Aug-24	7:00	0.9	SSE						
24-Aug-24	8:00	1.2	SSE						
24-Aug-24	9:00	1.2	SSE						
24-Aug-24	10:00	1.5	SSE						
24-Aug-24	11:00	1.1	SE						
24-Aug-24	12:00	1.0	SE						
24-Aug-24	13:00	1.6	S						
24-Aug-24	14:00	1.4	SSE						
24-Aug-24	15:00	1.2	SSE						
24-Aug-24	16:00	1.0	SSE						
24-Aug-24 24-Aug-24	17:00	1.6 1.2	WSW S						
	18:00 19:00		W						
24-Aug-24 24-Aug-24		1.3 0.7	S						
24-Aug-24 24-Aug-24	20:00	0.5	SSE						
24-Aug-24 24-Aug-24	22:00	0.6	S						
24-Aug-24 24-Aug-24	23:00	0.6	S						
∠ + -∩ug-∠+	25.00	0.0	S						

August 2024								
Т		nd Speed and Direction	<u> </u>					
Date	Time	Wind Speed m/s	Direction					
		0.5	SSE					
25-Aug-24	0:00							
25-Aug-24	1:00	0.4	SSW					
25-Aug-24	2:00 3:00	0.7 0.5	S					
25-Aug-24 25-Aug-24		0.4	S					
25-Aug-24 25-Aug-24	4:00 5:00	0.4	SSE					
25-Aug-24 25-Aug-24	6:00	0.1	S					
25-Aug-24 25-Aug-24	7:00	1.1	W					
25-Aug-24 25-Aug-24	8:00	1.0	S					
	9:00	1.0	SSE					
25-Aug-24 25-Aug-24	10:00	0.9	SSE					
25-Aug-24 25-Aug-24		1.2	SE					
25-Aug-24 25-Aug-24	11:00 12:00		SSE					
25-Aug-24 25-Aug-24	13:00	1.4 1.2	SSE					
25-Aug-24 25-Aug-24	14:00	2.1	WSW					
25-Aug-24 25-Aug-24	15:00	1.9	WSW					
25-Aug-24 25-Aug-24	16:00	1.0	SW					
25-Aug-24 25-Aug-24	17:00	0.7	SSE					
25-Aug-24 25-Aug-24	18:00	0.7	SE					
25-Aug-24 25-Aug-24	19:00	1.0	SE					
25-Aug-24 25-Aug-24	20:00	0.8	S					
25-Aug-24 25-Aug-24	21:00	0.7	S					
25-Aug-24 25-Aug-24	22:00	0.8	SSW					
25-Aug-24	23:00	0.9	SSW					
26-Aug-24	0:00	0.9	SSW					
26-Aug-24	1:00	0.4	S					
26-Aug-24	2:00	0.5	S					
26-Aug-24	3:00	0.5	SSE					
26-Aug-24	4:00	0.5	SSE					
26-Aug-24	5:00	0.5	SSE					
26-Aug-24	6:00	0.5	S					
26-Aug-24	7:00	0.7	S					
26-Aug-24	8:00	0.8	SE					
26-Aug-24	9:00	0.9	S					
26-Aug-24	10:00	1.2	SSE					
26-Aug-24	11:00	1.1	SSE					
26-Aug-24	12:00	1.2	SE					
26-Aug-24	13:00	1.5	S					
26-Aug-24	14:00	1.3	SSE					
26-Aug-24	15:00	1.2	SSE					
26-Aug-24	16:00	1.0	SSE					
26-Aug-24	17:00	0.8	SE					
26-Aug-24	18:00	0.7	SSE					
26-Aug-24	19:00	1.4	SSE					
26-Aug-24	20:00	1.2	SSW					
26-Aug-24	21:00	1.3	SE					
26-Aug-24	22:00	0.7	S					
26-Aug-24	23:00	0.6	S					

August 2024								
Table	e II: Wind S	Speed and Directions	3					
Date	Time	Wind Speed m/s	Direction					
27-Aug-24	0:00	1.0	S					
27-Aug-24	1:00	0.7	S					
27-Aug-24	2:00	0.5	SSW					
27-Aug-24	3:00	0.4	S					
27-Aug-24	4:00	0.4	S					
27-Aug-24	5:00	0.4	SSE					
27-Aug-24	6:00	0.6	SSE					
27-Aug-24	7:00	0.8	SE					
27-Aug-24	8:00	0.9	SSE					
27-Aug-24	9:00	1.0	SSE					
27-Aug-24	10:00	1.2	S					
27-Aug-24	11:00	1.3	SSE					
27-Aug-24	12:00	1.7	SSE					
27-Aug-24	13:00	1.9	SSE					
27-Aug-24	14:00	1.5	S					
27-Aug-24	15:00	1.0	S					
27-Aug-24	16:00	1.0	SSE					
27-Aug-24	17:00	0.5	SSE					
27-Aug-24	18:00	1.0	SW					
27-Aug-24	19:00	0.8	S					
27-Aug-24	20:00	0.8	SSW					
27-Aug-24	21:00	0.8	SE					
27-Aug-24	22:00	1.2	SE					
27-Aug-24	23:00	0.9	SSE					
28-Aug-24	0:00	0.5	SSE					
28-Aug-24	1:00	0.9	S					
28-Aug-24	2:00	0.9	SSE					
28-Aug-24	3:00	0.8	S					
28-Aug-24	4:00	0.6	SSW					
28-Aug-24	5:00	0.8	WSW					
28-Aug-24	6:00	0.6	SW					
28-Aug-24	7:00	1.0	W					
28-Aug-24	8:00	0.8	S					
28-Aug-24	9:00	1.1	S					
28-Aug-24	10:00	1.4	SSE					
28-Aug-24	11:00	1.5	SE					
28-Aug-24	12:00	1.4	SSE					
28-Aug-24	13:00	1.3	SE					
28-Aug-24	14:00	1.5	SE					
28-Aug-24	15:00	1.2	S					
28-Aug-24	16:00	1.3	S					
28-Aug-24	17:00	2.2	SSW					
28-Aug-24	18:00	1.6	SSW					
28-Aug-24	19:00	0.8	SSE					
28-Aug-24	20:00	1.0	SSW					
28-Aug-24	21:00	1.0	SSW					
28-Aug-24	22:00	1.0	SSW					
28-Aug-24	23:00	1.1	SSE					

	August 2024								
Т		nd Speed and Directions	<u> </u>						
	Time	_	Direction						
Date		Wind Speed m/s							
29-Aug-24	0:00	0.8	SSE						
29-Aug-24	1:00 2:00	0.5	SSW SW						
29-Aug-24		0.6							
29-Aug-24	3:00	0.3	S						
29-Aug-24	4:00	0.2	S S						
29-Aug-24 29-Aug-24	5:00	0.5	SSE						
29-Aug-24 29-Aug-24	6:00	0.6 0.8							
	7:00 8:00	1.9	SSE						
29-Aug-24	9:00	1.1	SSW						
29-Aug-24		1.1	S S						
29-Aug-24	10:00	1.1							
29-Aug-24	11:00	2.0	SW WNW						
29-Aug-24 29-Aug-24	12:00 13:00	1.7	WNW						
		1.4							
29-Aug-24	14:00 15:00		SSW W						
29-Aug-24 29-Aug-24	16:00	1.9 1.2	SW						
29-Aug-24 29-Aug-24	17:00	1.1	SW						
29-Aug-24 29-Aug-24	18:00	1.3	S						
29-Aug-24 29-Aug-24	19:00	1.4	SSE						
29-Aug-24 29-Aug-24	20:00	0.9	SW						
29-Aug-24 29-Aug-24	21:00	0.9	SSE						
29-Aug-24 29-Aug-24	22:00	0.6	SSW						
29-Aug-24 29-Aug-24	23:00	0.0	SSW						
30-Aug-24	0:00	0.4	S						
30-Aug-24	1:00	0.3	S						
30-Aug-24	2:00	0.4	S						
30-Aug-24	3:00	0.2	S						
30-Aug-24	4:00	0.2	S						
30-Aug-24	5:00	0.0	S						
30-Aug-24	6:00	0.8	S						
30-Aug-24	7:00	0.9	S						
30-Aug-24	8:00	1.0	S						
30-Aug-24	9:00	1.0	SSW						
30-Aug-24	10:00	1.3	SSW						
30-Aug-24	11:00	1.1	SSW						
30-Aug-24	12:00	1.1	S						
30-Aug-24	13:00	1.8	SSE						
30-Aug-24	14:00	1.2	S						
30-Aug-24	15:00	0.4	SSW						
30-Aug-24	16:00	1.7	W						
30-Aug-24	17:00	1.8	WNW						
30-Aug-24	18:00	0.8	SW						
30-Aug-24	19:00	0.9	SSW						
30-Aug-24	20:00	1.2	WSW						
30-Aug-24	21:00	0.9	WSW						
30-Aug-24	22:00	0.7	SW						
30-Aug-24	23:00	0.5	SSW						

August 2024								
Table	II: Wind S	Speed and Directions	s					
Date	Time	Wind Speed m/s	Direction					
31-Aug-24	0:00	1.2	WSW					
31-Aug-24	1:00	1.5	S					
31-Aug-24	2:00	1.4	SSE					
31-Aug-24	3:00	0.8	SSE					
31-Aug-24	4:00	0.9	S					
31-Aug-24	5:00	0.4	S					
31-Aug-24	6:00	0.4	S					
31-Aug-24	7:00	1.1	S					
31-Aug-24	8:00	1.9	S					
31-Aug-24	9:00	2.3	S					
31-Aug-24	10:00	2.0	SSW					
31-Aug-24	11:00	2.6	SW					
31-Aug-24	12:00	2.2	SW					
31-Aug-24	13:00	2.2	SW					
31-Aug-24	14:00	1.5	SW					
31-Aug-24	15:00	2.5	W					
31-Aug-24	16:00	2.5	WSW					
31-Aug-24	17:00	2.3	W					
31-Aug-24	18:00	1.1	WSW					
31-Aug-24	19:00	1.4	NW					
31-Aug-24	20:00	1.0	W					
31-Aug-24	21:00	0.6	SSW					
31-Aug-24	22:00	0.7	S					
31-Aug-24	23:00	0.6	S					

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KLN/2016/04

Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for Aug 2024

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Aug	2-Aug	3-Aug
						24-hr TSP [AM2(A)]
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
	1-hr TSP x 3 [AM2]				1-hr TSP x 3 [AM2]	
	Noise [M3(A), M4 & M5(C)]			24-hr TSP [AM2(A)]		
11-Aug	12-Aug	13-Aug	14-Aug		16-Aug	17-Aug
				1-hr TSP x 3 [AM2] Noise [M3(A), M4 & M5(C)]		
18-Aug	19-Aug	20-Aug		22-Aug	23-Aug	24-Aug
		24-hr TSP [AM2(A)]	1-hr TSP x 3 [AM2] Noise [M3(A), M4 & M5(C)]			
25-Aug	g 26-Aug		28-Aug	29-Aug	30-Aug	31-Aug
	24-hr TSP [AM2(A)]	1-hr TSP x 3 [AM2] Noise [M3(A), M4 & M5(C)]				24-hr TSP [AM2(A)]

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School

Noise Monitoring Station

M3(A) - The Bridge connecting The Latitude M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home

^{*} The noise level limit is 65dB(A) during the exam period

Contract No. KLN/2016/04

Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for Sep 2024

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Sep		3-Sep	4-Sep	5-Sep	6-Sep	
	1-hr TSP x 3 [AM2]					1-hr TSP x 3 [AM2]
	Noise [M3(A), M4 &					
	M5(C)]				24-hr TSP [AM2(A)]	
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep		14-Sep
					1-hr TSP x 3 [AM2]	
					Noise [M3(A), M4 &	
				24-hr TSP [AM2(A)]		
15-Sep	16-Sep	17-Sep	18-Sep		20-Sep	21-Sep
10 Sep	10 20	17 500	10 500	1-hr TSP x 3 [AM2]	20 20	21 500
				Noise [M3(A), M4 &		
		24-hr TSP [AM2(A)]		M5(C)]		
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
		1-hr TSP x 3 [AM2]				
		Noise [M3(A), M4 &				
	24-hr TSP [AM2(A)]					24-hr TSP [AM2(A)]
29-Sep						- L ()1
	1-hr TSP x 3 [AM2]					
	Noise [M3(A), M4 & M5(C)]					

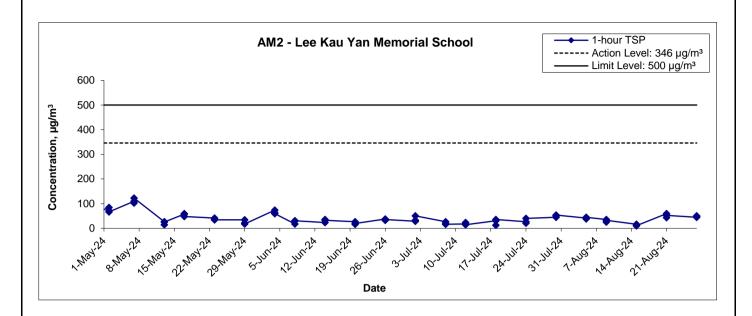
The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School

Noise Monitoring Station

M3(A) - The Bridge connecting The Latitude M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home


^{*} The noise level limit is 65dB(A) during the exam period

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AM2 -	Lee Kau Yaı	n Memorial Schoo	I
Date	Time	Weather	Particulate Concentration (µg/m³)
5-Aug-24	14:55	Sunny	41.6
5-Aug-24	15:55	Sunny	38.4
5-Aug-24	16:55	Sunny	44.8
9-Aug-24	11:30	Sunny	36.0
9-Aug-24	12:30	Sunny	25.2
9-Aug-24	13:30	Sunny	32.4
15-Aug-24	14:00	Cloudy	16.2
15-Aug-24	15:00	Cloudy	10.8
15-Aug-24	16:00	Cloudy	10.8
21-Aug-24	12:00	Fine	59.4
21-Aug-24	13:00	Fine	43.2
21-Aug-24	14:00	Fine	52.2
27-Aug-24	9:00	Sunny	45.0
27-Aug-24	10:00	Sunny	48.6
27-Aug-24	11:00	Sunny	50.4
	_	Average	37.0
		Maximum	59.4
		Minimum	10.8

1-hr TSP Concentration Levels

Title Contract No. KLN/2016/04
Environmental Monitoring Works for Contract No. KL/2015/02
Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area

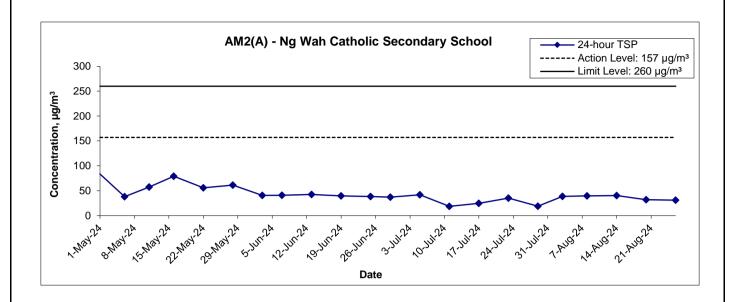
Graphical Presentation of 1-hour TSP Monitoring Results

Aug 24

Е

CINOTECH

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix F - 24-hour TSP Monitoring Results

Location AM2(A) - Ng Wah Catholic Secondary School

Start Date	Weather	Air Temp.	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. Flow	Total vol.	Conc.
Start Date	Condition	(K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time (hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
3-Aug-24	Sunny	303.6	757.2	3.3117	3.3794	0.0677	12715.6	12739.6	24.0	1.22	1.22	1.22	1753.2	38.6
8-Aug-24	Sunny	303.6	755.6	3.2920	3.3613	0.0693	12739.6	12763.6	24.0	1.22	1.22	1.22	1751.8	39.5
14-Aug-24	Cloudy	301.5	755.3	3.3140	3.3845	0.0706	12763.6	12787.6	24.0	1.22	1.22	1.22	1756.4	40.2
20-Aug-24	Rainy	300.3	757.0	3.3497	3.4060	0.0563	12787.6	12811.6	24.0	1.22	1.22	1.22	1760.7	32.0
26-Aug-24	Sunny	303.5	755.5	3.3278	3.3820	0.0542	12811.6	12835.6	24.0	1.22	1.22	1.22	1751.9	30.9
													Min	30.9
													Max	40.2
													Average	36.2

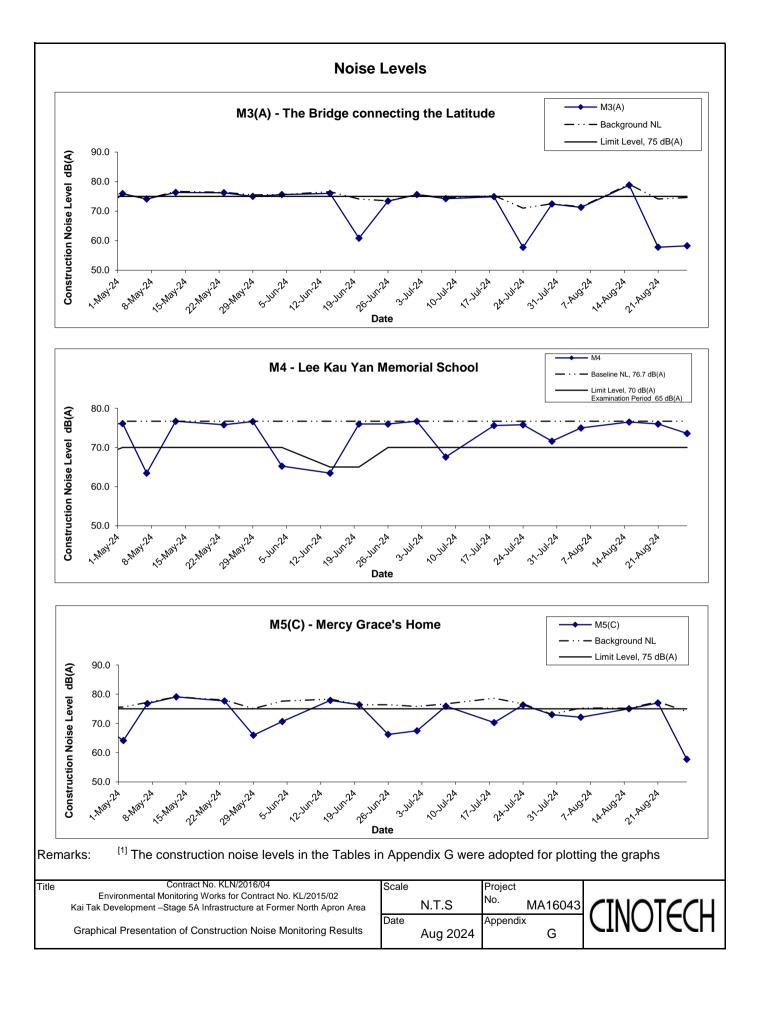
MA16043/App F - 24hr TSP

24-hr TSP Concentration Levels

Title Contract No. KLN/2016/04
Environmental Monitoring Works for Contract No. KL/2015/02
Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area

Graphical Presentation of 24-hour TSP Monitoring Results

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results

Location M3(A) - The Bridge connecting The Latitude										
					l	Jnit: dB (A) (30-min)				
Date	Time	Weather	Measured Noise Level Background Noise Construc					nstruction Noise Level		
			L _{eq}	L ₁₀	L 90	L _{eq}		L _{eq}		
5-Aug-24	12:45	Sunny	71.3	73.1	68.9	71.5	71.3	Measured ≦ Background		
15-Aug-24	11:30	Cloudy	78.8	80.9	74.9	79.1	78.8	Measured ≦ Background		
21-Aug-24	13:29	Cloudy	74.2	75.8	72.0	74.1	57.8	57.8		
27-Aug-24	11:30	Sunny	74.7	76.9	71.2	74.6	58.3			

Location M4 - Lee Kau Yan Memorial School										
Unit: dB (A) (30-min)										
Date	Time	Weather	Mea	ısured Noise I	Coi	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}		L _{eq}		
5-Aug-24	15:43	Sunny	75.0	77.2	72.6		75.0	Measured ≦ Baseline		
15-Aug-24	13:10	Cloudy	76.5	77.2	72.9	76.7	76.5	Measured ≦ Baseline		
21-Aug-24	14:45	Cloudy	76.0	77.3	74.7	10.7	76.0	Measured ≦ Baseline		
27-Aug-24	10:00	Sunny	73.6	75.7	70.3		73.6	Measured ≦ Baseline		

Location M5(C) - Mercy Grace's Home										
Date	Time	Weather	Mea	sured Noise L	evel	Background Noise	Construction Noise Level			
				L ₁₀	L 90	L _{eq}		L _{eq}		
5-Aug-24	14:26	Sunny	77.0	78.5	72.8	75.3	72.1			
15-Aug-24	14:40	Cloudy	75.0	77.8	73.1	75.2	75.0	Measured ≤ Background		
21-Aug-24	15:35	Cloudy	77.0	80.2	74.8	77.4	77.0 Measured ≦ Background			
27-Aug-24	13:00	Sunny	74.2	76.9	71.8	74.1	57.8			

MA16043/App G - Noise Cinotech

APPENDIX H SUMMARY OF EXCEEDANCE

Appendix H – Summary of Exceedance

Exceedance Record for Contract No. KL/2015/02 Reporting Month: August 2024

- (A) Exceedance Record for Air Quality (NIL in the reporting month)
- (B) Exceedance Record for Construction Noise (NIL in the reporting month)
- (C) Exceedance Record for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	240805
Date	05 August 2024 (Monday)
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
240805-R1	• Sand bag bund should be provided to the surrounding area of earthworks for flood protection.	B16
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on the previous session (Ref no. 240729), all items have been improved/rectified by the contractor.	

	Name	Signature	Date
Recorded by	Charles Fung	Mas	05 August 2024
Checked by	Serena Ng	<1	07 August 2024

CINOTECH MA16043 1 Summary_240805

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	240814
Date	14 August 2024 (Wednesday)
Time	09:30 – 11:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Od	
	H. Others	
	• Follow-up on the previous session (Ref no. 240805), the item 240805-R1 was	
	not fully improved/rectified by the contractor. The contractor is reminded to extend the sand bag bund to the surrounding area of the earthwork.	

	Name	Signature	Date
Recorded by	Charles Fung	Mas	14 August 2024
Checked by	Serena Ng		15 August 2024

CINOTECH MA16043 1 Summary_240814

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	240819
Date	19 August 2024 (Monday)
Time	15:00 – 17:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on the previous session (Ref no. 240805), item 240805-R1 was improved/rectified by the contractor.	
	• No major environment deficiency was identified during the previous site inspection (Ref no.240814)	

	Name	Signature	Date
Recorded by	Serena Ng		19 August 2024
Checked by	Charles Fung	-Chan	20 August 2024

CINOTECH MA16043 1 Summary_240819

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	240826
Date	26 August 2024 (Monday)
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• No major environment deficiency was identified during the previous site inspection.	

	Name	Signature	Date
Recorded by	Serena Ng		26 August 2024
Checked by	Charles Fung	-Chan	28 August 2024

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being	Identify source and investigate the	Check monitoring data submitted	1. Notify Contractor.	Rectify any unacceptable practice;	
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if	
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.	
	3. Repeat measurement to confirm finding.	method.			
Action Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;	
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial	
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three	
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;	
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;	
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.	
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of		
	6. If exceedance continues, arrange		remedial measures;		
	meeting with IEC and ER;		5. Conduct meeting with ET and		
	7. If exceedance stops, cease additional		IEC if exceedance continues.		
	monitoring.				
Limit Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;	
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper	
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;	
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial	
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three	

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
	the results.		·	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT	ACTION				
ACTION LEVEL	ET	IEC	ER	CONTRACTOR	
Design Check	1. Check final	1. Check report.	Undertake remedial design if necessary		
	design conforms to	2. Recommend			
	the requirements	remedial design if			
	of EP and prepare	necessary			
	report.				
Non-conformity on one occasion	1. Identify Source	1. Check report	Notify Contractor	Amend working methods	
	2. Inform IEC and	2. Check Contractor's	2. Ensure remedial measures are properly	2. Rectify damage and	
	ER	working method	implemented	undertake any necessary	
	3. Discuss remedial	3. Discuss with ET and		replacement	
	actions with IEC,	Contractor on possible			
	ER and Contractor	remedial measures			
	4. Monitor remedial	4. Advise ER on			
	actions until	effectiveness of			
	rectification has	proposed remedial			
	been completed	measures.			
		5. Check implementation			
		of remedial measures.			
Repeated Non-conformity	1. Identify Source	1. Check monitoring	1. Notify Contractor	Amend working methods	
	Inform IEC and	report	2. Ensure remedial measures are properly	2. Rectify damage and	

ER		2. Check Contractor's	implemented	undertake any necessary
2. Inc	crease	working method		replacement
monit	nitoring	3. Discuss with ET and		
frequ	uency	Contractor on possible		
3. Dis	iscuss remedial	remedial measures		
action	ons with IEC,	4. Advise ER on		
ER a	and Contractor	effectiveness of		
4. Mo	onitor remedial	proposed remedial		
action	ons until	measures		
rectifi	ification has	5. Supervise		
been	n completed	implementation of		
5. If n	non-conformity	remedial measures.		
stops	os, cease			
addit	itional			
monit	nitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

sEIA Ref.	Decommon ded Mitigation Managers	Implementation
SEIA Rei.	Recommended Mitigation Measures	Status
Constructi	ion Air Quality	
S6.5	8 times daily watering of the work site with active dust emitting activities.	۸
S6.8	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation	۸
	measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to	*
	reduce dust emission.	
	Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should	٨
	have properly fitted side and tail boards.	
	Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened	٨
	and covered by a clean tarpaulin.	
	The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should	٨
	also be dampened if necessary before transportation.	
	The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways	٨
	insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	
	Vehicle washing facilities should be provided at every vehicle exit point.	N/A(1)
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	٨
	concrete, bituminous materials or hardcores.	
	• Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road	٨
	surface wet.	
	• Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the	۸
	three sides.	
	Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	۸

S6.8	<u>DWFI compound for JVBC</u> :	N/A
	A DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS by	
	interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the	
	compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the potential odour	
	emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations within the proposed desilting	
	compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the	
	atmosphere.	
	Desilting compound for KTN:	N/A
	Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the KTAC and	
	KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the	
	compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully mitigate the potential odour	
	emissions from the headspace of KTN near the existing discharge locations. The odour generating operations within the proposed desilting	
	compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the	
	atmosphere.	
	Decking or reconstruction of KTN within apron area:	N/A
	It is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1 to the	
	north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with nonodorous	
	fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water surface of not more	
	than 16m.	
	Localised maintenance dredging:	N/A
	Localised maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and KTTS. With	
	reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of KTAC (i.e. to the north of	
	taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of KTAC, and the area near the JVC	
	discharge have water depths shallower than 3.5m. The area involved would be about 40% of the northern KTAC and the dredging depth	
	required would be from about 2.7m to less than 1m. The maintenance dredging to be carried out prior to the occupation of any new	
	development in the immediate vicinity of KTAC to avoid potential localized odour impacts at the future ASRs during the maintenance	

	dredging operation.	
	Improvement of water circulation in KTAC and KTTS:	N/A
	600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be substantially	
	improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased.	
	In-situ sediment treatment by bioremediation:	
	Bioremediation would be applied to the entire KTAC and KTTS.	N/A
Construct	tion Noise	
S7.8	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar	٨
	Bender, Concrete Pump, Generator and Water Pump.	
S7.9	Good Site Practice:	
	Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.	٨
	Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program.	۸
	Mobile plant, if any, should be sited as far away from NSRs as possible.	
	Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down	٨
	to a minimum.	
	Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the	٨
	nearby NSRs.	
	Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction	٨
	activities.	
S7.9	Scheduling of Construction Works during School Examination Period	٨
S7.8	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A
S7.8	(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A

S7.8	(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
	(ii) Setback of building about 5m from site boundary.	N/A
S7.8	Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
S7.8	(i) avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and Avoid the sensitive façade of	N/A
	class room facing Road L2 and L4; and	
	(ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not	N/A
	provide the facades with openable window.	
S7.8	(i) avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or	N/A
	(ii) provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at	N/A
	less than 55m away from To Kwa Wan Road to no more than 25m above ground	
S7.8	(i) avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other	۸
	alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic	
	noise impacts from the slip road	
S7.8	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment.	
	(i) SPS	N/A
	(ii) ESS	N/A
	(iii) Tunnel Ventilation Shaft	N/A
	(iv) EFTS depot	N/A
S7.8	Installation of retractable roof or other equivalent measures	N/A
Construc	tion Water Quality	
S8.8	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:	
	Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;	N/A
	Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps;	N/A
	An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and	N/A
	For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided	N/A
	so that swift actions could be taken in case of malfunction of unmanned facilities	

S8.8	Construction Phase	
	Marine-based Construction	
	Capital and Maintenance Dredging for Cruise Terminal	
	Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT Dredging.	N/A
S8.8	Fireboat Berth, Runway Opening and Road T2	
	Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any dredging and filling	N/A
	activities in open water.	
S8.8	Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a maximum production	N/A
	rate of 1,000m³ per day using one grab dredger.	
S8.8	The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be removed until	N/A
	completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of the dredging works will	
	be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works area. As there is likely some	
	accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after completion of all the demolition works.	
	Dredging alongside the 600m opening should be carried out at a maximum production rate of 2,000m³ per day using one grab dredger.	
8.8	Dredging for Road T2 should be conducted at a maximum rate of 8,000m³ per day (using four grab dredgers) whereas the sand filling should be	N/A
	conducted at a maximum rate of 2,000m3 per day (using two grab dredgers).	
8.8	Silt screens shall be applied to seawater intakes at WSD seawater intake.	N/A

S8.8	Land-based Construction	
	Construction Runoff	
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff	
	related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures	
	which include:	
	use of sediment traps	٨
	adequate maintenance of drainage systems to prevent flooding and overflow	۸
S8.8	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed	٨
	earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of	
	earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely,	
	exposed slope surfaces should be covered by tarpaulin or other means.	
S8.8	Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The	٨
	boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches	
	should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should	
	incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the	
	guidelines in Appendix A1 of ProPECC PN 1/94.	
S8.8	Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are recommended as a	۸
	general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle	
	multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
S8.8	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or	٨
	similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any	
	drainage system.	
S8.8	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction	٨
	materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	
S8.8	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to	۸
	be taken during or after rainstorms are summarized in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty	

	surface runoff during storm events.	
S8.8	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water	N/A(1)
	drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	
S8.8	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on	٨
	roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt	
	settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and	
	exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking	
	of soil and silty water to public roads and drains.	
S8.8	Drainage	
	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps	٨
	should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge	
	of effluent from the site into the sea	
S8.8	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled	٨
	release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all	
	times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction	
	work has finished or the temporary diversion is no longer required.	
S8.8	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the	۸
	storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	
S8.8	Sewage Effluent	
	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The	٨
	construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers	
	of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The	
	Contractor should also be responsible for waste disposal and maintenance practices.	

60.0		
S8.8	Stormwater Discharges	
	Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater	۸
	intakes	
S8.8	Debris and Litter	
	In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of	۸
	contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur	
S8.8	Construction Works at or in Close Proximity of Storm Culvert or Seafront	
	The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	۸
S8.8	The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm	۸
	culvert / nullah.	
S8.8	Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be	*
	located well away from any water courses during carrying out of the construction works	
S8.8	Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	*
S8.8	Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	٨
S8.8	Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸
S8.8	Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts.	٨
	Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	
S8.8	Construction effluent, site run-off and sewage should be properly collected and/or treated.	۸
S8.8	Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at	N/A
	bottom and properly supported props to prevent adverse impact on the storm water quality.	
S8.8	Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of	N/A
	construction materials.	
S8.8	Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	N/A

S8.8	Supervisory staff should be assigned to station on site to closely supervise and monitor the works	۸
S8.8	Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	N/A
Construc	ction Waste Management	
S9.5	Good Site Practices	
	It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations	
	for good site practices during the dredging activities include:	
	Nomination of an approved person, such as a site manager, be responsible for good site practices, arrangements for collection and effective	۸
	disposal to an appropriate facility, of all wastes generated at the site.	
	Training of site personnel in proper waste management and chemical waste handling procedures.	۸
	Provision of sufficient waste disposal points and regular collection for disposal.	۸
	Appropriate measure to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting	۸
	wastes in enclosed containers.	
	A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	۸
S9.5	Waste Reduction Measures	
	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and	
	design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	
	Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals	۸
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and	۸
	their proper disposal	
	Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated	۸
	from other general refuse generated by the work force	
	Any unused chemicals or those with remaining functional capacity should be recycled	۸
	Proper storage and site practices to minimise the potential for damage or contamination of construction materials	۸

S9.5	Dredged Marine Sediment	
	The basic requirements and procedures for dredged mud disposal are specified under the ETWB TCW No. 34/2002. The management of the	N/A
	dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is required under the Dumping at Sea	
	Ordinance and is the responsibility of the Director of Environmental Protection (DEP)	
S9.5	The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on	N/A
	their level of contamination. Sediment classified as Category L would be suitable for Type 1 - Open Sea Disposal. Contaminated sediment would	
	require either Type 1 – Open Sea Disposal (Dedicated Sites), Type 2 - Confined Marine Disposal, or Type 3 – Special Treatment / Disposal and must	
	be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by	
	MFC, the dredged contaminated sediment must be effectively isolated from the environment and disposed properly at the designated disposal site	
S9.5	It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged	
	have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report	
	to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply for allocation of marine disposal sites	
	and all necessary permits from relevant authorities for the disposal of dredged sediment. During transportation and disposal of the dredged marine	
	sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures should be taken to minimise potential impacts on water quality:	
	Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the	N/A
	decks and exposed fittings of barges and hopper dredgers before the vessel is moved	
	Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport	N/A
	barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping at Sea Ordinance and as	
	specified by the DEP	
	Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or	N/A
	transportation	
S9.5	Construction and Demolition Material	
	Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling	
	and transportation of C&D material. The mitigation measures include:	
	Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the	۸

	transient stockpiles should be located away from waterfront or storm drains as far as possible	
	• Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric	۸
	Skip hoist for material transport should be totally enclosed by impervious sheeting	۸
	• Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site	۸
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	۸
	concrete, bituminous materials or hardcores	
	The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure	۸
	dust materials do not leak from the vehicle	
	All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials	۸
	wet	
	The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation	۸
	from unloading	
	When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less	۸
	than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material	
	at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket	
	System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an	
	Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for	
	auditing the results of the system.	
S9.5/-	Chemical Waste	
	(i) After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice	۸
	on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the	
	CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	
	(ii) Maintenance of vehicles and equipment involving activities with potential of leakage and spillage should only be undertaken within the areas	۸
	which are appropriately equipped to control these discharges.	

${\bf Appendix} \; K-Summary \; of \; Implementation \; Schedule \; of \; Mitigation \; Measures \; for \; Construction \; Phase$

S9.5	General R	tefuse	
	General re	efuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by	٨
	the contra	ctor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed	
	and covere	ed area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing	
	or leachin	g into the marine environment, or creating odour nuisance or pest and vermin problem	
Constructi	on Lands	cape and Visual	
S13.9	CM1	All existing trees should be carefully protected during construction.	۸
	CM2	Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to	۸
		relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees	
		should be agreed prior to commencement of the work.	
	СМЗ	Control of night-time lighting.	N/A(1)
	CM4	Erection of decorative screen hoarding.	۸

Remarks:

^	Compliance of mitigation measure
*	Recommendations were made during site audits but improved/rectified by the Contractor
#	Recommendations were made during site audits but has not yet been improved/rectified by the Contractor
•	Non-compliance but rectified by the Contractor
X	Non-compliance of mitigation measure
N/A	Not Applicable at this stage
N/A(1)	Not observed

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Complaint Log

EPD Complaint Ref No.	Location	Received Date	Details of Complaint	Investigation/Mitigation Action	Status
17-34438	Dakota Drive and Olympic Avenue	23 October 2017	The complainant concerned about the dust emission when vehicle running on the dry surface outside Dakota Drive and Olympic Avenue. In addition, vehicles were not clear enough before leaving the construction site.	In accordance with the information gathered in the investigation, construction activities were conducted with proper mitigation measures to minimize the dust impact arise from the construction site to the vicinity of this Project. Regular water spraying was provided to haul roads and unpaved areas within the site areas to reduce the dust impact arise from the construction site to the vicinity of this Project. The Contractor had also ensured vehicles and plants were wheel washed to be cleaned of mud and debris before leaving the construction site area. Therefore, the complaint is considered as non-project related. The following recommendations were made to further enhance the mitigation measures: • Where practicable, to provide sheltered area on the top and three sides for stockpiles of dusty materials, or perform frequent water spraying so as to maintain the entire surface wet; • Frequent checking and repair the gaps or broken tarpaulin sheets; and • To provide a hard-surfaced road between any cleaning facility and the public Road	Closed

Remarks: No complaint was received in the reporting month.

MA16043\App L

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Warnings / Summons and Successful Prosecutions received

Log Ref.	Received Date	Details of Warning / Summons and Successful Prosecutions	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A

Remarks: No warning/summon and prosecution was received in the reporting month.

MA16043\App L 2

APPENDIX M SUMMARY OF WASTE GENERATION AND DISPOSAL RECORDS Department: CEDD

Contract No.: KL/2015/02

Project : Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area

Monthly Summary Waste Flow Table for 2024

As at 2 September 2024

		Quantities o	f Inert C & D Ma	aterials Genera	nted Monthly	C	uantities of C	& D Wastes Gei	nerated Month	ly		
Month	Total Quantity Generated	Hard Rock and Large Broken	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse	
	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)	
Jan	0.045	0	0	0	0.045	0	0	0	0	0	0	
Feb	0	0	0	0	0	0	0	0	0	0	0	
Mar	0.081	0	0	0	0.081	0	0	0	0	0	0	
Apr	0.009	0	0	0	0.009	0	0	0	0	0	0	
May	0.036	0	0	0	0.036	0	0	0	0	0	0.007	
June	0.09	0	0	0	0.09	0	0	0	0	0	0	
Sub-total	70.471	0	0	0.406	70.065	0	0	0	0	0	2.954	
July	0.009	0	0	0	0.009	0	0	0	0	0	0.014	
Aug	0.09	0	0	0	0.09	0	0	0	0	0	0.014	
Sept												
Oct												
Nov												
Dec												
Total	70.57	0	0	0.406	70.164	0	0	0	0	0	2.982	

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract*											
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse		
(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)		
72	0	0	1	71	0	0	0	0	0	3		

Notes:

- (1) The performance targets are given in PS clause 6(14).
- (2) The waste flow table shall also include C & D materials that are specified in the Contract to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.
- (4) The Contractor shall also submit the latest forcast of the total amount of C&D materials exected to be generated from the Works, together with a braskdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or excreeding 50,00 m³. (PS Cleuse 25.02A(7) refers).

APPENDIX N CONSTRUCTION PROGRAMME

Kai Tak Development

- Stage 5A Infrastructure At Former North Apron Area

Bar Chart Programme

<u> </u>		2022 2023 2024																									
	Anticipated Completion	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Removal of Traffic Deckings at Prince Edward Road East Outer	00.14 00		*******											-	+		-									-	
Eastbound in front of Shek Ku Lung Road Playground	29-May-23																										
- Reinstatement of Shek Ku Lung Road Playground	26-Oct-23																										
Reinstatement of Footpath of Prince Edward Road East in front of Shek Ku Lung Road Playground	27-Mar-24												### ### ### ### ### ### ### ### ### ##														
- Reinstatement of Stage 2	30-Nov-22																										
- Reinstatement of Stage 1	15-Mar-23																										
- Structural Works for LT2 & ST2	8-Feb-24																										
- Steel Works Erection for LT2 and ST2	8-Apr-24																										
- Finishing and E&M Works for LT2 and ST2	1-Oct-24																	90000									
- Road Works of Road D1 (Olympic Ave)	30-Dec-24																	00000									

Appendix B

Monthly EM&A Report For Contract No. ED/2018/01 Kai Tak Development

- Stage 4 infrastructure at the former runway and south apron

Environmental Monitoring and Audit Report for

Contract No. ED/2018/01 –

Kai Tak Development – Stage 4 infrastructure at the former runway and south apron

Contract No.: EDO 15/2018

August 2024

(Version 1.1)

Certified By: (Environmental Team Leader)

Ref.: CEDKTDS4EM00_0_0376L.24

16 September 2024

By Post and Email

AECOM Asia Company Limited 12/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road

Shatin, Hong Kong

Attention: Ms. Fanny Lau

Dear Madam,

Re: Contract No. ED/2018/01 - Kai Tak Development Stage 4 Infrastructure at the Former Runway and South Apron

Monthly EM&A Report for August 2024

Reference is made to the Environmental Team's submission of the Monthly EM&A Report for August 2024 (Version 1.1) certified by the ET Leader and provided to us via email on 16 September 2024.

Please be advised that we have no further comment on the captioned Monthly EM&A Report in accordance with Condition 3.3 of EP-337/2009 and Condition 3.2 of EP-445/2013/B.

The ET Leader is reminded that it is the ET's responsibility to ensure the report be timely submitted to the Director of Environmental Protection in accordance with the EM&A Manuals and Environmental Permits.

Thank you for your attention. Please do not hesitate to contact the undersigned should you have any queries.

Yours faithfully, For and on behalf of Ramboll Hong Kong Limited

Independent Environmental Checker

CEDD C.C.

Attn.: Mr. Jason Wong

Fax: 2739 0076

Ka Shing

Attn.: Mr. Chan Pang

By Email

Penta-Ocean

Attn.: Mr. Daniel Ho

Fax: 2572 4080

O:\Projects\CEDKTDS4EM00\02 Proj_Mgt\02 Corr\CEDKTDS4EM00_0_0376L.24.doc

Tab	ole of Content	Page
EXE	CUTIVE SUMMARY	1
	Breaches of Action and Limit Levels	1
	Complaint log	1
	Notifications of summons and successful prosecutions	2
	Report changes	2
	Key construction works in the reporting month	3
	Future key issues	3
1.	INTRODUCTION	4
	Project Background	4
	Project Organization	5
	Works Area and Construction Programme	5
	Construction works undertaken during reporting month	6
	Submission Status under the Environmental Permits	6
2.	AIR QUALITY MONITORING	7
	Monitoring Requirements	7
	Monitoring Locations	7
	Monitoring Parameters, Frequency and Duration	9
	Monitoring Equipment	9
	Monitoring Methodology and QA/QC Procedure	10
	Wind Data Monitoring	12
	Action and Limit Levels	13
	Impact Air Quality Monitoring results	13
3.	NOISE MONITORING	15
	Monitoring Requirements	15
	Monitoring Locations	15
	Monitoring Parameters, Frequency and Duration	17

	Monitoring Equipment
	Monitoring Methodology and QA/QC Procedure
	Maintenance and Calibration
	Action and Limit Levels 19
	Impact Noise Monitoring results
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS
5.	LANDSCAPE AND VISUAL MONITORING
	Results and Observations
6.	ENVIRONMENTAL SITE INSPECTION AND AUDIT
	Site Inspection
	Status of Waste Management
	Status of Environmental Licenses, Notification and Permits
	Implementation Status of Environmental Mitigation Measures
	Environmental Complaint and Non-compliance
	Notifications of summons and successful prosecutions
7.	FUTURE KEY ISSUES
	Construction Programme in the coming month
	Environmental Site Inspection and Monitoring Schedule for next month
8.	CONCLUSIONS
List of Ta	ables
Table I	Non-compliance Record in the Reporting Month
Table II	Summary of complaints in the Reporting Month
Table III	Summary of summons and successful prosecutions in the Reporting Month
Table IV	Summary of future key issues and potential impact in the coming month
Table 1.1	Contact Information of Key Personnel
Table 1.2	Major activities of the Project during reporting month
Table 1.3	Summary of Status of Required Submission of EPs

Table 2.1	Locations of Air Quality Monitoring Stations
Table 2.2	Proposed alternative monitoring locations for AM4(A)
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Air Quality Monitoring Equipment
Table 2.5	Action and Limit Levels of 24-hour average TSP for Construction Dust Monitoring
Table 2.6	Action and Limit Levels of 1-hour average TSP for Construction Dust Monitoring
Table 2.7	Summary of 24-hour average TSP Monitoring Data during the reporting month
Table 2.8	Summary of 1-hour average TSP Monitoring Data during the reporting month
Table 3.1	Locations of Noise Monitoring Stations
Table 3.2	Proposed alternative monitoring locations for M11
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Noise Monitoring Equipment
Table 3.5	Baseline Noise Level and Action and Limit Levels for Construction Noise Monitoring
Table 3.6	Summary of Noise Monitoring Data during the reporting month
Table 4.1	Comparison of 24-hour average TSP Monitoring Data with EIA predictions
Table 4.2	Comparison of 1-hour average TSP Monitoring Data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 5.1	Summary of observations of Landscape and Visual impact during the reporting month
Table 6.1	Summary of site inspections observations during the reporting month
Table 6.2	Summary of Environmental Licenses, Notifications and Permits
Table 6.3	Summary of complaints in the Reporting Month
Table 6.4	Summary of summons and successful prosecutions in the Reporting Month
Table 7.1	Summary of future key issues and potential impact in the coming month

List of Figure

- Figure 1 Proposed works of Contract No. ED/2018/01
- Figure 2 Proposed Bus Stop And Associated Noise Barrier At Road D3A
- Figure 3 Future Pedestrian Connection Between Landscaped Deck And Private Developments
- Figure 4 Site Layout Plan
- Figure 5 New Opened Road on 31 December 2022
- Figure 6 Air Quality Monitoring Stations
- Figure 7 Proposed Alternative Monitoring Locations for AM4(A)
- Figure 8 Noise Monitoring Stations
- Figure 9 Proposed Alternative Monitoring Locations for M11

List of Appendices

- Appendix A Organization Chart of EM&A Team
- Appendix B Construction Programme
- Appendix C Apply permission for Environmental Monitoring
- Appendix D Environmental monitoring schedules
- Appendix E Photographic records
- Appendix F Calibration certificates, catalogue of air quality monitoring equipment
- Appendix G Weather information
- Appendix H 24-hr TSP monitoring results and graphical presentation
- Appendix I 1-hr TSP monitoring results and graphical presentation
- Appendix J Event and Action Plan for air quality
- Appendix K Calibration certificates, catalogue of noise monitoring equipment
- Appendix L Noise monitoring results and graphical presentation
- Appendix M Event and Action Plan for noise

Appendix N-Event and Action Plan for Landscape and Visual Impact

Appendix O – Waste Flow Table

Appendix P – Environmental Mitigation Implementation Schedule (EMIS)

Appendix Q – Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution

EXECUTIVE SUMMARY

This is the 56th Monthly Environmental Monitoring & Audit (EM&A) report which summaries the findings of the EM&A Programme during the reporting period from 1 to 31 August 2024.

Breaches of Action and Limit Levels

- 1) 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2) 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3) Construction noise monitoring was conducted as scheduled in the reporting month. No Action Level and Limit Level exceedance was recorded in the reporting month.
- 4) Summary of the non-compliance in the reporting month for the Project is tabulated in Table I.

Table I Non-compliance Record in the Reporting Month

Parameter	No. of Ex	Action Taken	
rarameter	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Construction noise	0	0	N/A

Complaint log

5) No complaint was received in the reporting month. Summary of complaints in the reporting month is tabulated in Table II.

Table II Summary of complaints in the Reporting Month

Date of complaint received	Description of complaint	Investigation / Recommendations / Action taken	Close-out date / Status
NA	NA	NA	NA

Date of complaint received	Description of complaint	Investigation / Recommendations / Action taken	Close-out date / Status

Notifications of summons and successful prosecutions

6) No notification of summons and successful prosecutions was received in the reporting month. Summary of summons and successful prosecutions in the reporting month is tabulated in Table III.

Table III Summary of summons and successful prosecutions in the Reporting Month

Date of receiving notification of summons or prosecutions	Date of event	Description of event	Action take	Close-out date / Status
No notification of summons and successful prosecutions were received in the reporting month.	NA	NA	NA	NA

Report changes

7) There was no reporting change in the reporting month.

Key construction works in the reporting month

- 8) Major construction activities undertake during the reporting month included:
 - Construction of pillar box and laying cable ducting by UU at LT-2
 - Installation of lift cart and E&M works for Lift LT-4
 - Junction realignment and modification works at Shing Kai Road
 - Laying of stormwater drainage pipes/ sewer pipes/ watermains
 - Waterproof work for Box Culvert under section 8 (confined space)
 - Construction of Seawater Intake Box Culvert
 - Construction of Pumping Stations
 - Construction of Harbour Steps and Outfalls
 - Construction of Observation Deck
 - Construction of Toilet Cum Changing Room

Future key issues

9) The future key issues and potential impact in the coming month are given in Table IV.

Table IV Summary of future key issues and potential impact in the coming month

Future key issues in the coming month	Potential impact	
Construction of Back-of- House	Noise and Air Quality, Chemical	
Construction of Back-of- House	and Waste Management	
Rising main laying works	Noise, Air and Water Quality	
Construction of footpath at Road L12d	Noise and Air Quality, Chemical	
Construction of footpath at Road L12d	and Waste Management	
Hard landscaping works for Elevated Landscape Deck	Noise and Air Quality, Chemical	
Hard failuscaping works for Elevated Landscape Deck	and Waste Management	
Construction of Town office	Noise and Air Quality, Chemical	
Construction of Temp office	and Waste Management	

1. INTRODUCTION

Project Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.2 Contract No. ED/2018/01 Kai Tak Development stage 4 infrastructure at the former runway and south apron (The Project), comprises mainly the design and construction of a dual two- lane Road D3 (Metro Park Section), a single 2-lane Road L12d, a salt water pumping station, a sewage pumping station, landscaped deck and promenade above and adjoining Road D3 (Metro Park Section) respectively, some remaining road works at Road L14, noise barrier at Road D3A, and other associated works at the former runway and south apron. The proposed works are shown in Figure 1 and Figure 2. During the course of the Contract No. ED/2018/01, there may be modification of noise barriers in association with the construction of footbridges connecting to the landscaped deck of Road D3A by developers of adjacent lands (Figure 3). The proposed works and site boundary are shown in Figure 4.
- 1.3 The new road connecting Shing Fung Road & Shing Kai Road has been open for public vehicles since 31 December 2022. Detailed location referring to Figure 5.
- 1.4 Civil Engineering and Development Department (CEDD) had completed an Environmental Impact Assessment (EIA) and is the Permit Holder.
- 1.5 The construction work under ED/2018/01 comprises the EM&A Manuals (EIA Register Nos. AEIAR-130/2009 for Kai Tak Development and EIA Register Nos. AEIAR-170/2013 for Roads D3A and D4A) and Environmental Permit (EP) Nos. EP-337/2009 and Variation to the EP (VEP) No. EP-445/2013/B.
- 1.6 Air quality and noise monitoring has been proposed in the EM&A Manual with EIA Register Nos. AEIAR-130/2009 for Kai Tak Development while no air quality and noise monitoring are proposed in EM&A Manual with EIA Register Nos. AEIAR-170/2013 for Roads D3A and D4A.

Project Organization

1.7 The project organization chart and with respect to the EM&A programme is shown in Appendix A. Information of key personnel contact names and telephone numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Role	Contact Person	Position	Phone No.	Fax No.
Civil Engineering and Development	Project	Mr. Jason Wong	Senior Engineer	3579 2453	2739 0076
Development Department (CEDD)	Department		Engineer	3579 2458	2739 0076
AECOM Asia Co. Ltd. (AECOM)	Supervisor (act as Engineers' Representative (ER) listed in EM&A Manual)	Ms. Fanny Lau	CRE	3911 4201	3911 4288
Ramboll Hong Kong Limited (Ramboll)	Independent Environmental Checker (IEC)	Mr. Y H Hui	IEC	3465 2850	3465 2899
Ka Shing Management Consultant Limited (Ka Shing)	Environmental Team (ET)	Mr. Chan Pang	ET Leader	6082 2973	2120 7752
Penta-Ocean Construction Co., Ltd. (Penta-Ocean)	Contractor	Mr. Tony Tang	Environmental Officer	9433 2628	3465 8898

Works Area and Construction Programme

1.8 The construction works commenced on 20 January 2020. The construction programme of the Project is given in Appendix B.

Construction works undertaken during reporting month

1.9 Major construction works of the Project in the reporting month are summarized in Table 1.2:

Table 1.2 Major activities of the Project during reporting month

Construction of pillar box and laying cable	Installation of lift cart and E&M works for Lift	
ducting by UU at LT-2	LT-4	
Junction realignment and modification works at	Laying of stormwater drainage pipes/ sewer	
Shing Kai Road	pipes/ watermains	
Waterproof work for Box Culvert under section	Construction of Seawater Intake Box Culvert	
8 (confined space)		
Construction of Pumping Stations	Construction of Harbour Steps and Outfalls	
Construction of Observation Deck	Construction of Toilet Cum Changing Room	

Submission Status under the Environmental Permits

1.10 The status of required submission under Environmental Permit (EP) conditions under EP-337/2009 and Variation to the EP (VEP) No. EP-445/2013/B are summarized in Table 1.3.

Table 1.3 Summary of Status of Required Submission of EPs

EP Condition EP-337/2009	EP Condition EP-445/2013/B	Submission	Submission Date
Condition 1.11	Condition 1.12	Notification of Commencement Date of Construction of the Project	6 Jan 2020
Condition 2.3	Condition 2.3	Management Organization of Main Construction Companies	9 Sep 2019
Condition 2.3	Condition 2.3	Updated Management Organization of Main Construction Companies	17 Aug 2021
Condition 2.4	Condition 2.4	Design Drawings	6 Jan 2020
Condition 2.11	Condition 2.5	Landscape Mitigation Plans	13 Nov 2020
Condition 2.1	Condition 2.5	Landscape Mitigation Plans (Revision 2)	18 May 2021
NA	Condition 2.9	Detailed Design Plan of Traffic Noise Mitigation Measures	9 Dec 2022
Condition 3.2	NA	Baseline Monitoring Report	2 Jan 2020
Condition 3.2	NA	Revised Baseline Monitoring Report	28 Mar 2020
Condition 3.3	Condition 3.2	Monthly EM&A Report (July 2024)	15 August 2024

2. AIR QUALITY MONITORING

Monitoring Requirements

2.1 In accordance with EM&A Manuals (EIA Register Nos. AEIAR-130/2009), impact air quality monitoring shall be carried out during the construction phase of the Project. For regular impact monitoring, a sampling frequency of at least once in every six says will be strictly observed at all of the monitoring stations for 24-hour TSP. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days will be undertaken when the highest dust impact occurs.

Monitoring Locations

2.2 Three designated monitoring stations were selected for air quality monitoring programme. Impact air quality monitoring was conducted at three air quality monitoring stations in the reporting month. Table 2.1 describes the air quality monitoring locations, which are also depicted in Figure 6.

Table 2.1 Locations of Air Quality Monitoring Stations

Air Quality Monitoring Locations for the Project	Location of Measurement	
AM3 - Sky Tower	Podium floor near T7	
AM4(A) - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop	Ground	
AM7 – Hong Kong Children's Hospital	Rooftop	

- 2.3 Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. No 24-TSP monitoring was conducted at AM4(A) while 1-hr TSP monitoring at AM4(A) were conducted on the ground floor with orienting to the Project site.
- 2.4 ET approached the potential sensitive receivers for monitoring station relocation since May 2022. ET conducted site visit in nearby area and found that there was no property management company in most of the nearby premises and could not approach the residents regarding the environmental monitoring. No permission can be applied for environmental monitoring.
- 2.5 For those premises have property management company, ET sent the proposal to owner /

property management company and explained the purpose of environmental monitoring (refer to Appendix C – Apply permission for Environmental Monitoring). Figure 7 shows the proposed alternative monitoring locations. No permission of setup and entry is received until the reporting month.

2.6 Summary of the status of for proposed alternative monitoring locations for AM4(A) are given in Table 2.2.

Table 2.2 Proposed alternative monitoring locations for AM4(A)

Proposed alternative monitoring locations for M11	Status upto reporting month		
A1 - The Lok Sin Tong Modular Social Housing Scheme	Rejected application on 13 Oct 2022		
A2 - Freder Centre	No reply from building management office		
A3 - New Port Centre	No reply from building management office		
A4 - 112 - 138 To Kwa Wan Road	No property management company and could not apply the permission.		
A5 - 2 - 26 Hok Ling Street	No property management company and could not apply the permission.		
A6 - 1 - 27 Hok Ling Street	No property management company and could not apply the permission.		
A7 - 2 - 28 Tsun Fat Street	No property management company and could not apply the permission.		
A8 - 1 - 27 Tsun Fat Street	No property management company and could not apply the permission.		
A9 – 2 - 28 Yin On Street	No property management company and could not apply the permission.		
A10 – 1 – 27 Yin On Street	No property management company and could not apply the permission.		
A11 – 2 – 28 Shim Luen Street	No property management company and could not apply the permission.		
A12 - 1 - 27 Shim Luen Street	No property management company and could not apply the permission.		
A13 - 2 - 28 Hung Wan Street	No property management company and could not apply the permission.		
A14 - 1 - 27 Hung Wan Street	No property management company and could not apply the permission.		
A15 - 2 - 28 Pang Ching Street	No property management company and could not apply the permission.		
A16 - 1 - 27 Pang Ching Street	No property management company and could not apply the permission.		
A17 - 2 - 28 Ying Yeung Street	No property management company and could not apply the permission.		
A18 - 1 - 27 Ying Yeung Street	No property management company and could not apply the permission.		
A19 - 2 - 28 Lun Cheung Street	No property management company and could not apply the permission.		
A20 - 1 - 27 Lun Cheung Street	No property management company and could		

Proposed alternative monitoring locations for M11	Status upto reporting month	
	not apply the permission.	
A21 - 2 - 28 Luk Ming Street	No property management company and could not apply the permission.	
A22 - 1 - 27 Luk Ming Street	No property management company and could not apply the permission.	
A23 - 2 - 28 Fung Yi Street	No property management company and could not apply the permission.	

2.7 No update for the approval of monitoring relocation in the reporting month and ET will resume the impact monitoring once the alternative monitoring location for AM4(A) are confirmed.

Monitoring Parameters, Frequency and Duration

2.8 The air quality monitoring locations and monitoring frequency are listed in Table 2.3.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Air Monitoring Station	Location for Measurement	Parameter	Duration	Frequency
AM3 - Sky Tower	Podium floor near T7			
AM4(A) - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop	Ground	- 24-hour average TSP - 1-hour	- 24 hours - 1 hour	Once every 6 daysThree times
AM7 - Hong Kong Children's Hospital	Rooftop	average TSP		every 6 days

- 2.9 The monitoring schedule for reporting month and next month is presented in Appendix D
- 2.10 Photographic records of the impact monitoring setup are shown in Appendix E.

Monitoring Equipment

2.11 24-hour average TSP and 1-hour average TSP levels were measured for impact monitoring. 24-hour average TSP levels were measured by the High Volume Samplers (HVS) and 1-hour average TSP levels were measured by direct reading method to indicate short-term impacts. Wind data monitoring equipment was set up at conspicuous locations for logging wind speed

and wind direction near to the dust monitoring locations. Table 2.4 summarizes the equipment to be used in the air quality monitoring.

Table 2.4 Air Quality Monitoring Equipment

Equipment	Model	Quantity
HVS Sampler	TE-5170 X c/w of TSP sampling inlet	2
Calibrator	TISCH TE-5025A	1
1-hour TSP Dust Meter	TSI Model AM510 SidePak Personal Aerosol Monitor	2
Wind Anemometer	Davis Vantage Pro2 Weather Station	1

- 2.12 High volume samplers (HVS) (TE-5170 X c/w of TSP sampling inlet) comprising with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 2.13 Calibration certificates, catalogue of equipment are given in Appendix F.

Monitoring Methodology and QA/QC Procedure

24-hour TSP Monitoring

Operating/Analytical Procedures

- 2.14 Setup criteria of HVS are shown as follows:
 - A horizontal platform with appropriate support to secure the samplers against gusty wind was provided.
 - No two samplers were placed less than 2m apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2m of separation from walls, parapets and penthouses was set for the rooftop samples.
 - A minimum of 2m separation from any supporting structure, measured horizontally was set.
 - No furnaces or incineration flues was nearby.
 - Airflow around the sampler was unrestricted.
 - Any wire fence and gate, to protect the samplers, was not caused any obstruction during

- monitoring.
- Permission were obtained to setup the samplers and to obtain access to the monitoring stations.
- A secured supply of electricity was provided to operate the samplers.
- 2.15 Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 m³/min. and 1.7 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.16 For TSP sampling, Glass Fiber Filter Media 8" x 10" have a collection efficiency of > 99 % for particles of 0.3 μm diameter were used.
- 2.17 The power supply was checked to ensure the sampler worked properly and then placed any filter media at the designated air monitoring station.
- 2.18 The filter holding frame was removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.19 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure was sufficient to avoid air leakage at the edges.
- 2.20 The shelter lid was closed and secured with the aluminium strip.
- 2.21 The timer was programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.22 After sampling, the filter was removed from the HVS and put into a clean and labeled seal plastic bag to avoid cross contamination. The elapsed time was also be recorded. The sampled filters were sent to the HOKLAS accredited or other internationally accredited laboratory for weighting.

Maintenance/Calibration

2.23 The following maintenance/calibration are required for the HVS:

- The HVS and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
- High volume samplers were calibrated with at bi-monthly intervals using TE-5025A
 Calibration Kit throughout all stages of the air quality monitoring.

1-hour TSP Monitoring

Measurement Procedures

- 2.24 The measurement procedures of the 1-hour TSP were conducted in accordance with the Manufacturer's Instruction Manual as follows:
 - Set up the dust meter on a tripod at 1.2m level.
 - Turned on the dust meter and check the battery, if too low, change new ones. Pointed the meter to the source area or the planned measurement area.
 - The zero calibration of the instrument was conducted before and after each sampling.
 - TSP levels were recorded for 1-hour with 5-minute data logging interval.
 - Recorded down the general meteorological conditions, Test ID no., start/end time, spot check reading at each sampling location for data processing.
 - Recorded any activities that may generate dust during measurement period.

Maintenance/Calibration

- 2.25 The following maintenance/calibration are required for the direct dust meters:
 - To validity the accuracy of dust meter, compare the results measured by dust meter and HVS by direct reading method every 12 months throughout all stages of the air quality monitoring.

Wind Data Monitoring

- 2.26 Wind Anemometer was installed at the roof-top of AM7 Hong Kong Children's Hospital with 10m above ground and clear of constructions or turbulence caused by the buildings.
- 2.27 The wind data was captured by a data logger and the data was downloaded at least once per month for analysis.

- 2.28 The wind data monitoring equipment will be re-calibrated at least once every six months.
- 2.29 Wind direction is divided into 16 sectors of 22.5 degrees each.
- 2.30 Details of weather information during the monitoring period are shown in Appendix G.

Action and Limit Levels

2.31 The Action and Limit Levels of 24-hour average TSP and 1-hour average TSP are summarized in Table 2.5 and Table 2.6 respectively.

Table 2.5 Action and Limit Levels of 24-hour average TSP for Construction Dust Monitoring

Parameter	Air Monitoring Station	Action Level, μg/m ³	Limit Level, µg/m³
24-hour average TSP	AM3	182	260
	AM4(A)	187	260
	AM7	181	260

Table 2.6 Action and Limit Levels of 1-hour average TSP for Construction Dust Monitoring

Parameter	Air Monitoring Station	Action Level, µg/m ³	Limit Level, μg/m ³
1-hour average TSP	AM3	297	500
	AM4(A)	326	500
	AM7	315	500

Impact Air Quality Monitoring results

- 2.32 Impact monitoring results for 24-hour average TSP and 1-hour average TSP levels at the designed air quality monitoring stations are summarized in Table 2.7 and Table 2.8 respectively.
- 2.33 Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. No 24-TSP monitoring was conducted at AM4(A) while 1-hr TSP monitoring at AM4(A) were conducted on the ground floor with orienting to the Project site. ET will resume the impact monitoring once the alternative monitoring location for AM4(A) is confirmed.

<u>Table 2.7 Summary of 24-hour average TSP Monitoring Data during the reporting month</u>

Air Monitoring Station	Average TSP Concentration, µg/m ³	Range, μg/m ³	Action Level, μg/m ³	Limit Level, μg/m ³
AM3	50	40 – 61	182	260
AM4(A)	/	/ – /	187	260
AM7	55	41 - 63	181	260

Table 2.8 Summary of 1-hour average TSP Monitoring Data during the reporting month

Air Monitoring Station	Average TSP Concentration, µg/m ³	Range, μg/m ³	Action Level, μg/m ³	Limit Level, μg/m ³
AM3	45	31 - 64	297	500
AM4(A)	66	44 – 89	326	500
AM7	55	39 - 72	315	500

- 2.34 There was no Action and Limit Level exceedance of 24-hour average TSP and 1-hour average TSP levels recorded during the reporting month.
- 2.35 Graphical presentation and detailed monitoring results of 24-hour average TSP and 1-hour average TSP levels are shown in Appendix H and Appendix I respectively.
- 2.36 The Event and Action Plan is provided in Appendix J.
- 2.37 Non-project related construction activities in the adjacent construction sites were observed during the reporting period and may affect the monitoring results.

3. NOISE MONITORING

Monitoring Requirements

- 3.1 In accordance with EM&A Manuals (EIA Register Nos. AEIAR-130/2009), impact noise monitoring shall be carried out during the construction phase of the Project.
- 3.2 Regular monitoring, $L_{Aeq, 30-minute}$, for each station will be on a weekly basis and conduct one set of measurements between 0700 1900 on normal weekdays.
- 3.3 If construction works are extended to include works during 1900 0700 as well as public holidays and Sundays, additional weekly impact monitoring will be carried out during the respective restricted hours periods.

Monitoring Locations

3.4 Two designated monitoring stations were selected for noise monitoring programme. Impact noise monitoring was conducted at two noise monitoring stations in the reporting month. Table 3.1 describes the noise monitoring locations, which are also depicted in Figure 8.

Table 3.1 Locations of Noise Monitoring Stations

Noise Monitoring Locations for the Project	Location of Measurement
M11 - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop	Ground (Façade)
M12 - Hong Kong Children's Hospital	Rooftop (Façade)

- 3.5 Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022.
- 3.6 ET approached the potential sensitive receivers for monitoring station relocation since May 2022. ET conducted site visit in nearby area and found that there was no property management company in most of the nearby premises and could not approach the residents regarding the environmental monitoring. No permission can be applied for environmental monitoring.

- 3.7 For those premises have property management company, ET sent the proposal to owner / property management company and explained the purpose of environmental monitoring (refer to Appendix C Apply permission for Environmental Monitoring). Figure 9 shows the proposed alternative monitoring locations. No permission of setup and entry is received until the reporting month.
- 3.8 Summary of the status of for proposed alternative monitoring locations for M11 are given in Table 3.2.

<u>Table 3.2 Proposed alternative monitoring locations for M11</u>

Table 5.2 Troposed difficultive monitoring locallo	115 JOI 19111
Proposed alternative monitoring locations for M11	Status upto reporting month
A1 - The Lok Sin Tong Modular Social Housing Scheme	Rejected application on 13 Oct 2022
A2 - Freder Centre	No reply from building management office
A3 - New Port Centre	No reply from building management office
A4 - 112 - 138 To Kwa Wan Road	No property management company and could not apply the permission.
A5 - 2 - 26 Hok Ling Street	No property management company and could not apply the permission.
A6 - 1 - 27 Hok Ling Street	No property management company and could not apply the permission.
A7 - 2 - 28 Tsun Fat Street	No property management company and could not apply the permission.
A8 - 1 - 27 Tsun Fat Street	No property management company and could not apply the permission.
A9 – 2 - 28 Yin On Street	No property management company and could not apply the permission.
A10 – 1 – 27 Yin On Street	No property management company and could not apply the permission.
A11 – 2 – 28 Shim Luen Street	No property management company and could not apply the permission.
A12 - 1 - 27 Shim Luen Street	No property management company and could not apply the permission.
A13 - 2 - 28 Hung Wan Street	No property management company and could not apply the permission.
A14 - 1 - 27 Hung Wan Street	No property management company and could not apply the permission.
A15 - 2 - 28 Pang Ching Street	No property management company and could not apply the permission.
A16 - 1 - 27 Pang Ching Street	No property management company and could not apply the permission.
A17 - 2 - 28 Ying Yeung Street	No property management company and could not apply the permission.
A18 - 1 - 27 Ying Yeung Street	No property management company and could not apply the permission.
A19 - 2 - 28 Lun Cheung Street	No property management company and could

Proposed alternative monitoring locations for M11	Status upto reporting month
	not apply the permission.
A20 - 1 - 27 Lun Cheung Street	No property management company and could not apply the permission.
A21 - 2 - 28 Luk Ming Street	No property management company and could not apply the permission.
A22 - 1 - 27 Luk Ming Street	No property management company and could not apply the permission.
A23 - 2 - 28 Fung Yi Street	No property management company and could not apply the permission.

3.9 No update for the approval of monitoring relocation in the reporting month and ET will resume the impact monitoring once the alternative monitoring location for M11 are confirmed.

Monitoring Parameters, Frequency and Duration

3.10 The noise monitoring locations and monitoring frequency are listed in Table 3.3.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

		•	
Noise Monitoring Station	Location for Measurement	Parameter	Frequency and Duration
M11 - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop*	Ground (Façade)	L_{Aeq}, L_{A10} and L_{A90}	30 - minutes measurement at each monitoring station between 0700 – 1900 hrs on normal weekdays
M12 - Hong Kong Children's Hospital	Rooftop (Façade)		(Monday to Saturday) at frequency of once per week.

^{*} Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022.

- 3.11 The monitoring schedule for reporting month and next month is presented in Appendix D.
- 3.12 Photographic records of the monitoring setup are shown in Appendix E.

Monitoring Equipment

3.13 As referred to in the Technical Memorandum (TM) issued under the Noise Control Ordinance (NCO), sound level meters in compliance with the IEC 61672-1 (Type 1) standard [this

standard replaced the International Electrotechnical Commission Publications 60651:1979 (Type 1) and 60804:1985 (Type 1)] were used for noise monitoring. Table 3.4 summarizes the equipment to be used in the noise monitoring.

Table 3.4 Noise Monitoring Equipment

Equipment	Model	Quantity
Sound Level Meter	RION NL52	2
Sound Level Calibrator	RION NC 74	1
Sound Level Calibrator	RION NC 75	1
Air Flowmeter	TSI TA440 Air Velocity	1

3.14 Calibration certificates, catalogue of equipment are given in Appendix K.

Monitoring Methodology and QA/QC Procedure

- 3.15 The noise level measurement was conducted at 1m from the exterior of the nearby noise sensitive receivers building façade and at 1.2m above the ground and facing to the source area or the planned measurement area.
- 3.16 No noise measurement was conducted in the presence of fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. Air flow was measured by air flow meter.
- 3.17 Turned on the sound level meter and check the battery, if too low, change new ones.
- 3.18 Calibration was conducted immediately prior to and after each noise measurement, the accuracy of the sound level meters was checked by using sound calibrator generating 1,000 Hz with 94dB. Measurement data was found to be valid only if the calibration levels from before and after the noise measurement agreed to within 1.0 dB.
- 3.19 Noise level was recorded.
- 3.20 Recorded any activities that may generate noise during measurement period.

Maintenance and Calibration

- 3.21 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 3.22 The sound level meter and sound calibrator were calibrated annually.
- 3.23 Calibration for sound level meter was conducted immediately prior to and following each noise measurement by using sound calibrator generating a known sound pressure level at a known frequency (1,000 Hz with 94dB). Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Action and Limit Levels

3.24 The Baseline Noise Levels and Action and Limit Levels for construction noise is presented in Table 3.5.

Table 3.5 Baseline Noise Level and Action and Limit Levels for Construction Noise Monitoring

Time Period	Noise Monitoring Station	Baseline Noise Levels, dB (A)	Action Level	Limit Level ^
0700 – 1900 on	M11	68.3	When one documented	75 dB(A)
normal weekdays	M12	61.9	complaint is received.	73 dD(71)

Note: ^ If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

Impact Noise Monitoring results

- 3.25 Impact noise monitoring results at the designed noise monitoring stations are summarized in Table 3.6 respectively.
- 3.26 Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. 30-min noise monitoring at M11 were conducted on the ground floor with orienting to the Project site. ET will resume the impact monitoring once the alternative monitoring location for M11 is confirmed.

Table 3.6 Summary of Noise Monitoring Data during the reporting month

Noise Monitoring Station	Measured L _{Aeq, 30-min} , Average, dB(A)	Measured L _{Aeq, 30-min} , Range, dB(A)	Action Level	Limit Level ^
M11	73.5	73.1 - 74.0	When one documented	75
M12	63.3	61.5 - 64.8	complaint is received	dB(A)

Note: ^ If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

- 3.27 There were no Action Level exceedance of noise monitoring and Limit Level exceedance of L_{Aeq} , 30min recorded during the reporting month.
- 3.28 Graphical presentation and detailed monitoring results are shown in Appendix L.
- 3.29 The Event and Action Plan is provided in Appendix J.
- 3.30 Non-project related construction activities in the adjacent construction sites were observed during the reporting period and may affect the monitoring results.

4. COMPARISON OF EM&A RESULTS WITH EIA

PREDICTIONS

4.1 The environmental impacts predictions were given in Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works - Investigation, Design and Construction - Kai Tak Development Environmental Impact Assessment Report, EIA Register Nos. AEIAR-130/2009 for Kai Tak Development (The EIA Report). The EM&A data was compared with the EIA predictions as summarized in Table 4.1 to Table 4.3.

Table 4.1 Comparison of 24-hour average TSP Monitoring Data with EIA predictions

	. CD .V.	Predicted Cumulative Maximum 24-hour average TSP concentration		Measured 24-hr average TSP in
Air Monitoring Station	ASR No. in EIA report	Scenario 1 (Mid 2009 to Mid 2013),	Scenario 2 (Mid 2013 to Late 2016),	Reporting Month (August 2024) µg/m ³
		$\mu g/m^3$	$\mu g/m^3$	116
AM3 - Sky Tower	A40^	106	138	40 – 61
AM4(A) - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop*	A43^	123	195	/-/
AM7 – Hong Kong Children's Hospital	PA60	NA	NA	41 – 63

Note:

Table 4.2 Comparison of 1-hour average TSP Monitoring Data with EIA predictions

Air Monitoring Station	ASR No. in EIA report	1-hour av	Itration Scenario 2 (Mid 2013 to Late 2016), µg/m³	Measured 1-hr average TSP in Reporting Month (August 2024) µg/m³
AM3 - Sky Tower	A40	217^	247^	31 – 64
AM4(A) - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop*	A43	283^	409^	44 – 89
AM7 – Hong Kong Children's Hospital	PA60	NA	NA	39 – 72

Note:

[^] Prediction results are given in the Table 3.13 of the EIA report EIA Register Nos. AEIAR-130/2009 for Kai Tak Development.

^{*} Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. No 24-TSP monitoring was conducted at AM4(A) because of the assess limitation in the reporting month.

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Noise Monitoring Station	NSR No. in EIA report	Predicted Mitigated Construction Noise Levels during Normal Daytime Working Hour LAeq, 30min, dB(A)	Measured Noise Level in Reporting Month (August 2024) L _{Aeq, 30min} , dB(A)
M11 - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop*	N18	50 – 76*	73.1 – 74.0
M12 - Hong Kong Children's Hospital	PN83, PN84, PN84A	NA	61.5 – 64.8

Note:

- 4.2 24-hr TSP monitoring result at AM3 were recorded lower than the prediction in the EIA Report. Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. No 24-TSP monitoring was conducted at AM4(A) because of the assess limitation in the reporting month. Non-project related construction activities in the adjacent construction sites were observed during the reporting period and may affect the monitoring results.
- 4.3 No prediction in the EIA Report for 24-hour TSP monitoring results at AM7.
- 4.4 1-hour TSP monitoring results at AM3 and AM4(A) were recorded lower than the prediction in the EIA Report. Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. 1-hour TSP monitoring was conducted on the ground floor outside AM4(A) with facing to the Project Site because of the access limitation in the reporting month. Non-project related construction activities in the adjacent construction sites were observed during the reporting period and may affect the monitoring results.
- 4.5 No prediction in the EIA Report for 1-hour TSP monitoring results at AM7.
- 4.6 Noise monitoring results at M11 were recorded lower than the prediction in the EIA Report.

[^] Prediction results are given in the Table 3.13 of the EIA report EIA Register Nos. AEIAR-130/2009 for Kai Tak Development.

^{*} Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. 1-hour TSP monitoring was conducted on the ground floor outside AM4(A) with facing to the Project Site because of the access limitation in the reporting month.

^{*} Prediction results are given in the Table 3.20 of the EIA report EIA Register Nos. AEIAR-130/2009 for Kai Tak Development.

^{*}Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. Construction noise monitoring was conducted on the ground floor outside M11 with facing to the Project Site because of the access limitation in the reporting month.

Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. Construction noise monitoring was conducted on the ground floor outside M11 with facing to the Project Site because of the access limitation in the reporting month. Non-project related construction activities in the adjacent construction sites were observed during the reporting period and may affect the monitoring results.

4.7 No prediction in the EIA Report for noise monitoring results at M12.

5. LANDSCAPE AND VISUAL MONITORING

5.1 In accordance with EM&A Manuals (EIA Register Nos. AEIAR-130/2009 and AEIAR-170/2013), Landscape and Visual Monitoring shall be carried out during the construction phase of the Project. Regular impact monitoring will be conducted at least once per week.

Results and Observations

- 5.2 Site inspections were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.
- 5.3 Site inspections were conducted on 1, 6, 15, 22 and 29 August 2024 in the reporting month.
- 5.4 The summaries of site audits are attached in Table 5.1.

Table 5.1 Summary of observations of Landscape and Visual impact during the reporting month

Inspection Date	Key Observations	Recommendations / Actions	Close-out Date / Status
01 August 2024	No	NA	NA
06 August 2024	No	NA	NA
15 August 2024	No	NA	NA
22 August 2024	No	NA	NA
29 August 2024	No	NA	NA

- 5.5 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.6 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in Appendix N shall be performed.

6. ENVIRONMENTAL SITE INSPECTION AND AUDIT

Site Inspection

- 6.1 Site inspections were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.
- 6.2 Site inspections were conducted on 1, 6, 15, 22 and 29 August 2024 in the reporting month.
- 6.3 The summaries of site audits are attached in Table 6.1.

Table 6.1 Summary of site inspections observations during the reporting month

Inspection Date	Key Observations	Recommendations / Actions	Close-out Date / Status
01 August 2024	Observation: The NRMM label was missing at Part 2A.	Action Taken: The NRMM label was displayed at a conspicuous position.	Closed-out on 06 August 2024
06 August 2024	Observation: The site entrance (L12D road) should be sprayed water regularly	Action Taken: The site entrance (L12D road) has been sprayed water regularly.	Closed-out on 15 August 2024

Inspection Date	Key Observations	Recommendations / Actions	Close-out Date / Status
15 August 2024	NA	NA	NA
22 August 2024	Observation: The NRMM label on bobcat is found corrupt, please display a new one.	Action Taken: The NRMM label on bobcat has been properly displayed a new one.	Closed-out on 29 August 2024
29 August 2024	Observation: The NRMM label should be properly displayed on construction equipment.	Action Taken: The NRMM label has been properly displayed on construction equipment.	Closed-out on 05 September 2024

Status of Waste Management

- 6.4 The amount of wastes generated by the major site activities of the work contracts within the Project during the reporting month is shown in Appendix O.
- 6.5 The Contractor was registered as a chemical waste producer for the Project. The Contractor was reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of

Practice on the Packaging, Labelling and Storage of Chemical Wastes.

Status of Environmental Licenses, Notification and Permits

6.6 A summary of the relevant permits, licenses and/or notifications on environmental protection for the Project is shown in Table 6.2.

Table 6.2 Summary of Environmental Licenses, Notifications and Permits

Environmental Licenses, Notifications and Permits	Ref. No.	Valid Form	Valid Till
Environmental Permit under EIAO	EP-337/2009	23 Apr 2009	N/A
Environmental Fermit under EIAO	EP-445/2013/B	3 May 2022	N/A
Construction Dust Notification under APCO	445956	6 Jun 2019	N/A
Wastewater Discharge License under WPCO	WT00034610-2019	26 Sep 2019	30 Sep 2024
Waste Disposal Billing Account	7034450	28 Jun 2019	N/A
Registration as a Chemical Waste Producer	5218-286-P3182-03	18 Jul 2019	N/A
Construction Noise Permit	GW-RE0525-24	30 Apr 2024	29 Oct 2024
	GW-RE0526-24	30 Apr 2024	29 Oct 2024
	GW-RE0082-24	14 Feb 2024	13 Aug 2024
	GW-RE0445-24	21 Apr 2024	20 Oct 2024
	GW-RE0570-24	10 May 2024	09 Nov 2024
	GW-RE0787-24	05 Jul 2024	04 Jan 2025
	GW-RE0945-24	15 Aug 2024	14 Feb 2025

Implementation Status of Environmental Mitigation Measures

- 6.7 The Contractor has implemented environmental mitigation measures and requires as stated in the EIA reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month is summarized in Appendix P.
- 6.8 In response to the site audit findings, the Contractor carried out corrective actions with summary given in Appendix P.

Environmental Complaint and Non-compliance

6.9 No complaint was received in the reporting month. Summary of complaints in the reporting month is tabulated in Table 6.3.

Table 6.3 Summary of complaints in the Reporting Month

Date of complaint received	Description of complaint	Investigation / Recommendations / Action taken	Close-o ut date / Status
NA	NA	NA	NA

6.10 Complaint log and Complaint Investigation report are shown in Appendix Q.

Notifications of summons and successful prosecutions

6.11 No notification of summons and successful prosecutions was received in the reporting month. Summary of summons and successful prosecutions in the reporting month is tabulated in Table 6.4.

Table 6.4 Summary of summons and successful prosecutions in the Reporting Month

Date of receiving notification of summons or prosecutions	Date of event	Description of event	Action taken	Close-out date / Status
No notification of summons and successful prosecutions were received in the reporting month.	NA	NA	NA	NA

6.12 The summaries of cumulative environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in Appendix Q.

7. FUTURE KEY ISSUES

Construction Programme in the coming month

7.1 The major construction activities and potential impacts in the next reporting month as follow:

Table 7.1 Summary of future key issues and potential impact in the coming month

Future key issues in the coming month	Potential impact	
Construction of Back-of- House	Noise and Air Quality, Chemical	
Collstruction of Back-of- House	and Waste Management	
Rising main laying works	Noise, Air and Water Quality	
Construction of footpath at Road L12d	Noise and Air Quality, Chemical	
Construction of footpath at Road L12d	and Waste Management	
Hard landscaping works for Elevated Landscape Deck	Noise and Air Quality, Chemical	
Hard failuscaping works for Elevated Landscape Deck	and Waste Management	
Construction of Town office	Noise and Air Quality, Chemical	
Construction of Temp office	and Waste Management	

- 7.2 The mitigation measures for environmental impact including Air Quality, Construction Noise, Water Quality, Chemical and Waste Management, Landscape and Visual shall be implemented:
 - Sufficient watering of the works site with the active dust emitting activities,
 - Limitation of the speed for vehicles on unpaved site roads,
 - Properly cover the stockpiles,
 - Good maintenance to the plant and equipment,
 - Use of quieter plant and Quality Powered Mechanical Equipment (QPME),
 - Provide movable noise barriers,
 - Appropriate desilting/ sedimentation devices provided on site for treatment before discharge,
 - Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall,
 - Onsite waste sorting and implementation of trip ticket system,
 - Good management and control on construction waste reduction,
 - Erection of decorative screen hoarding,
 - Strictly following the Environmental Permits and Licenses, and
 - Provide sufficient mitigation measures as recommended in Approved EIA Reports.

Environmental Site Inspection and Monitoring Schedule for next month

7.3 The tentative schedule for weekly site inspection and air quality and noise monitoring in the next month is provided in Appendix D.

8. CONCLUSIONS

- 8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.
- 8.2 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. 1-hour TSP monitoring was conducted on the ground floor outside AM4(A) with facing to the Project Site because of the access limitation in the reporting month.
- 8.3 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since1 Sept 2022. No 24-hour TSP monitoring was conducted at AM4(A) because of the assess limitation in the reporting month.
- 8.4 Construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. Impact monitoring was conducted on the ground floor outside M11 with facing to the Project Site because of the access limitation in the reporting month.
- 8.5 No complaint was received in the reporting month.
- 8.6 No notification of summons and successful prosecutions was received in the reporting month.

Figure

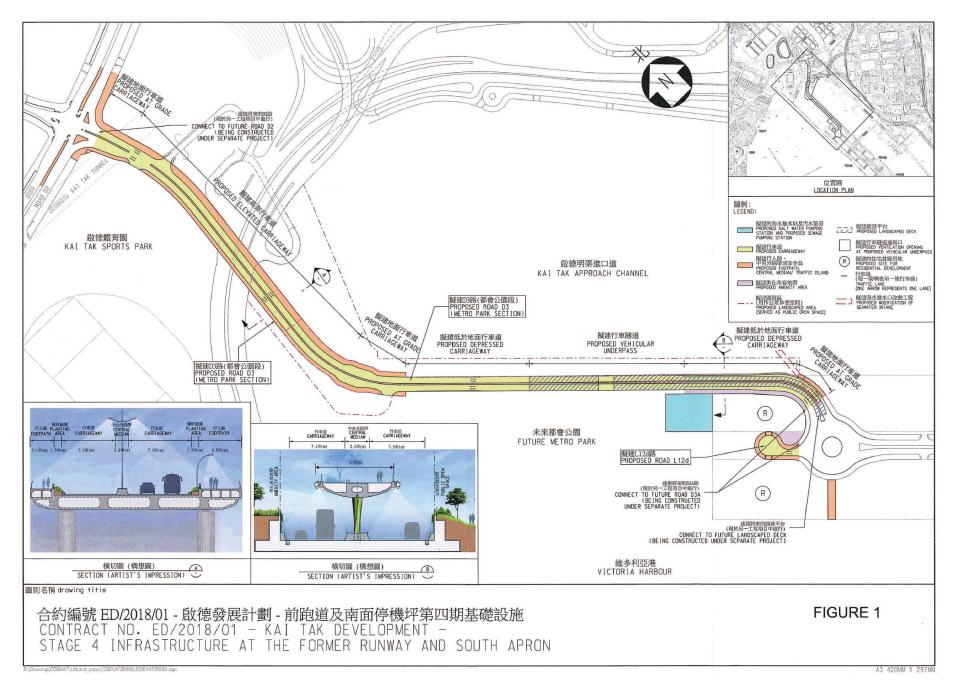


Figure 1 – Proposed works of Contract No. ED/2018/01

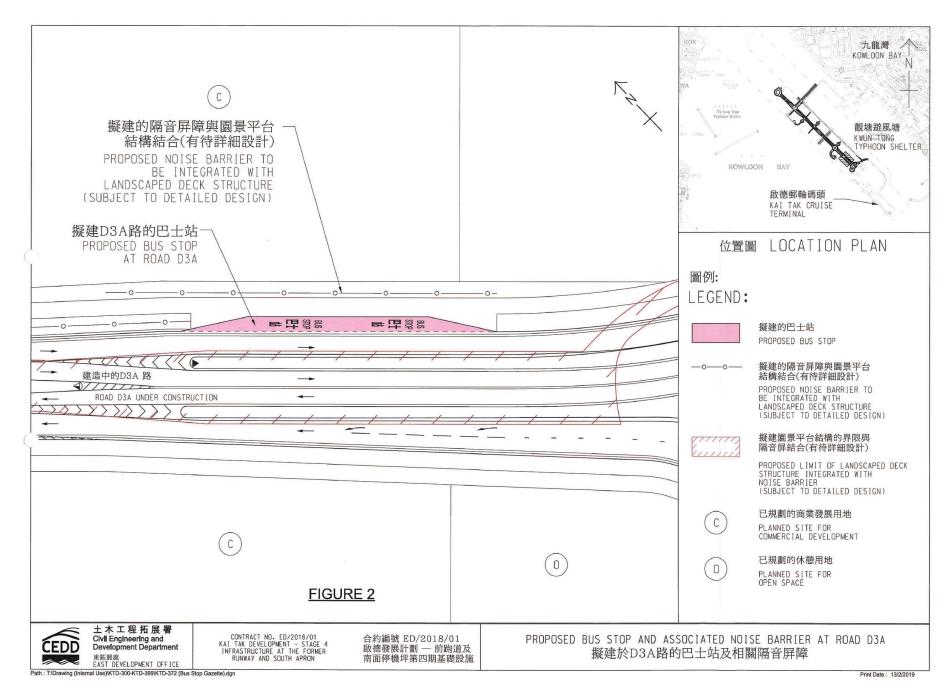


Figure 2 – Proposed Bus Stop And Associated Noise Barrier At Road D3A

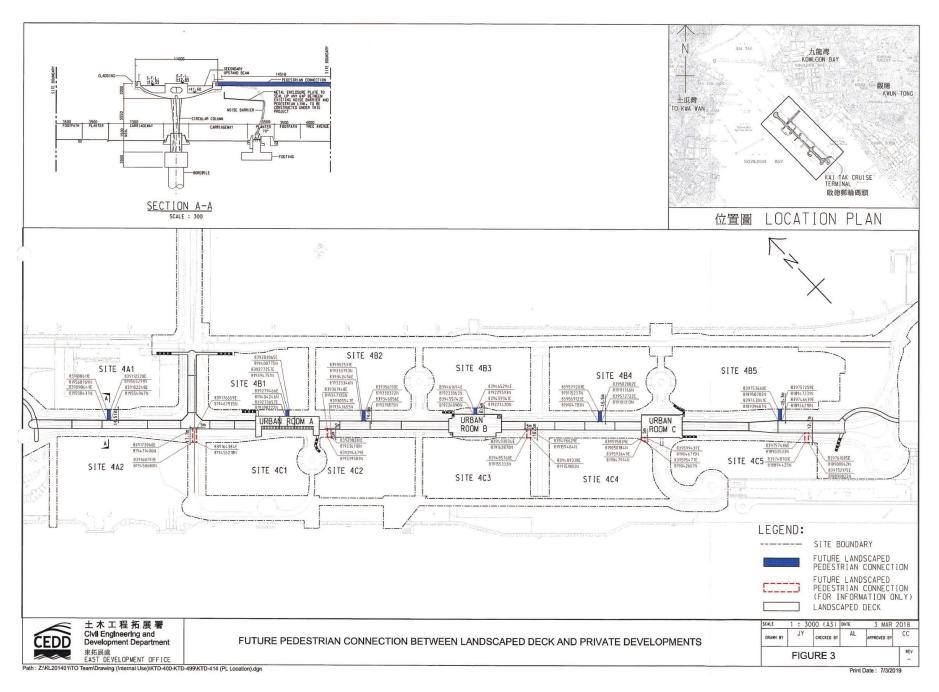


Figure 3 – Future Pedestrian Connection Between Landscaped Deck And Private Developments

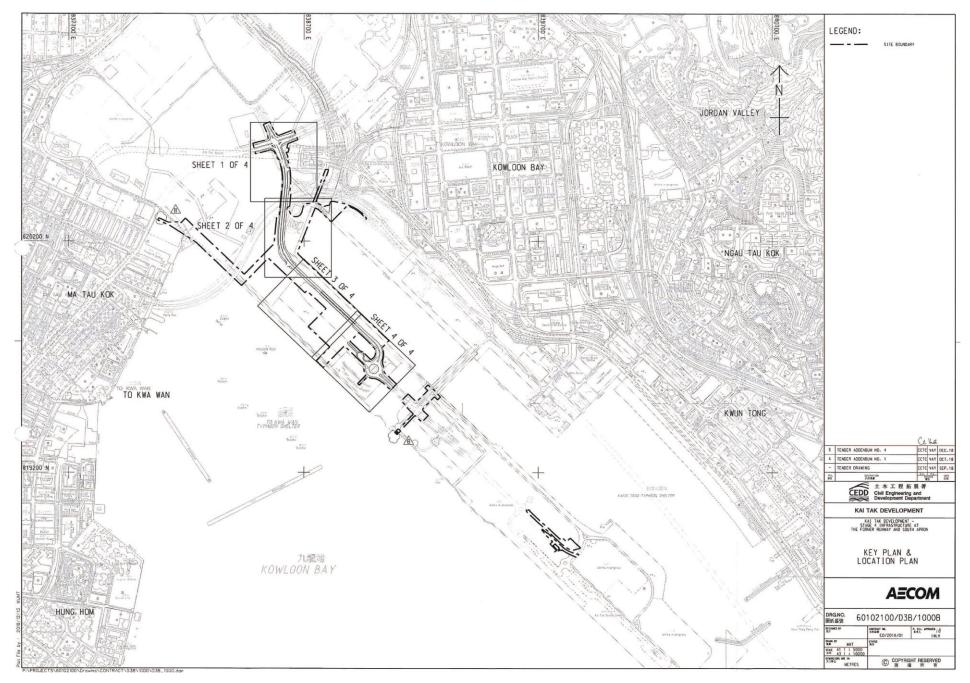


Figure 4 – Site Layout Plan

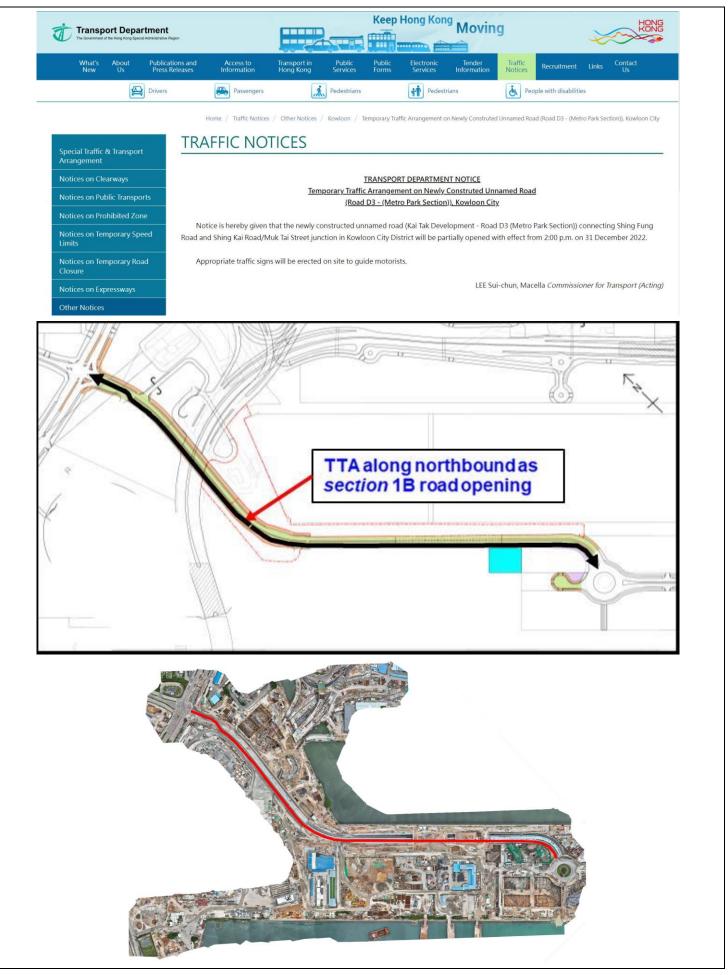


Figure 5 – New Opened Road on 31 December 2022

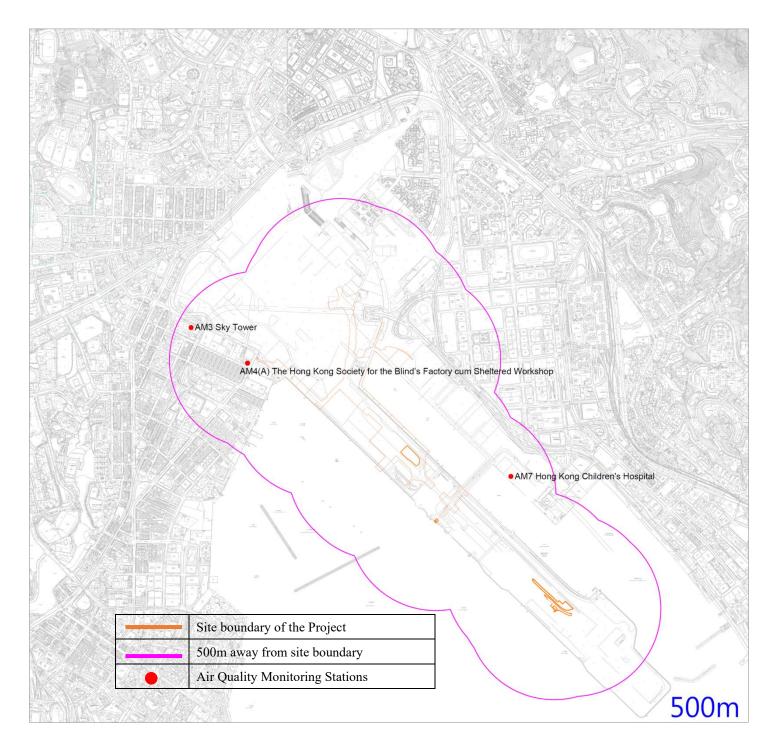


Figure 6 – Air Quality Monitoring Stations

^{*} Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. Construction noise monitoring was conducted on the ground floor outside M11 with facing to the Project Site because of the access limitation in the reporting month.

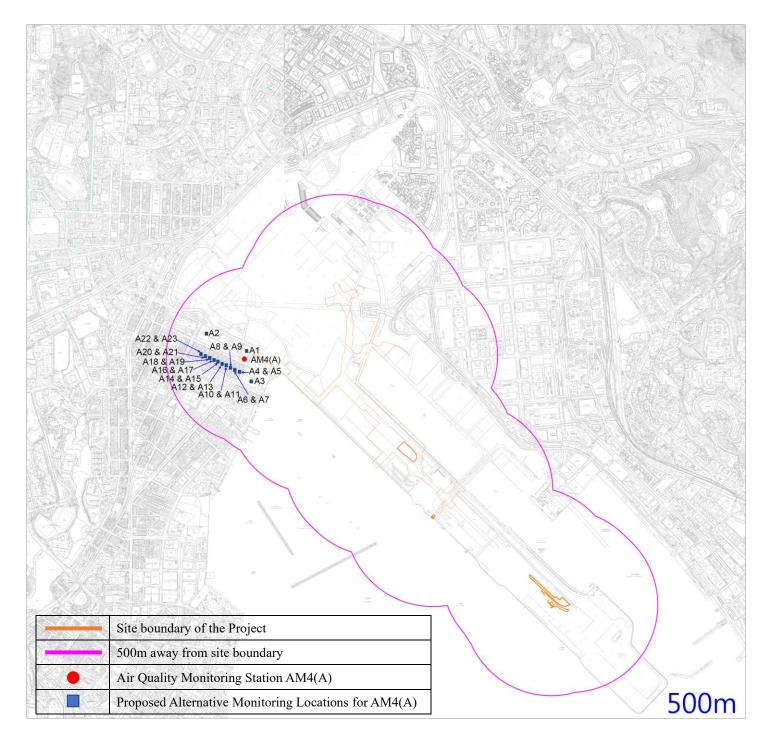
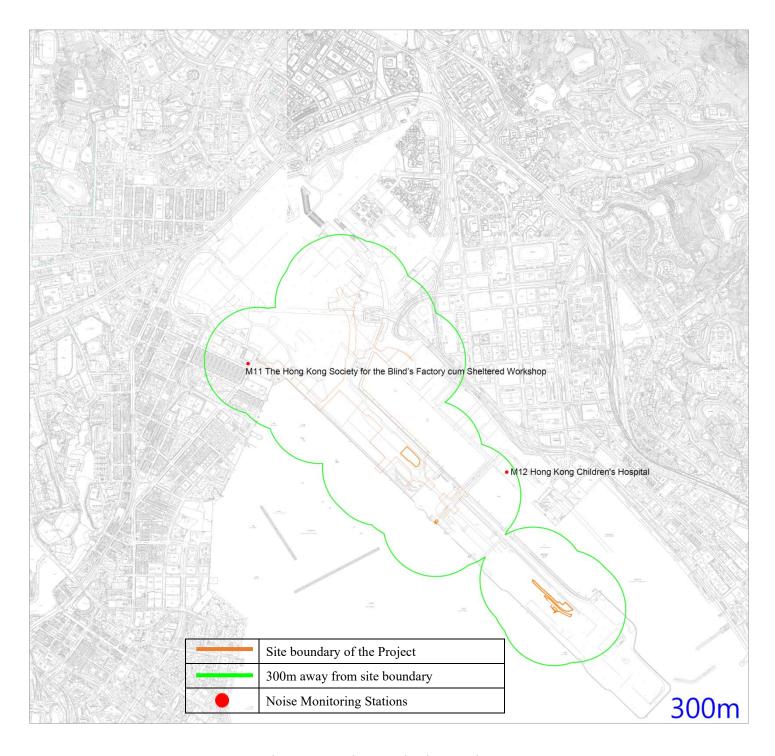
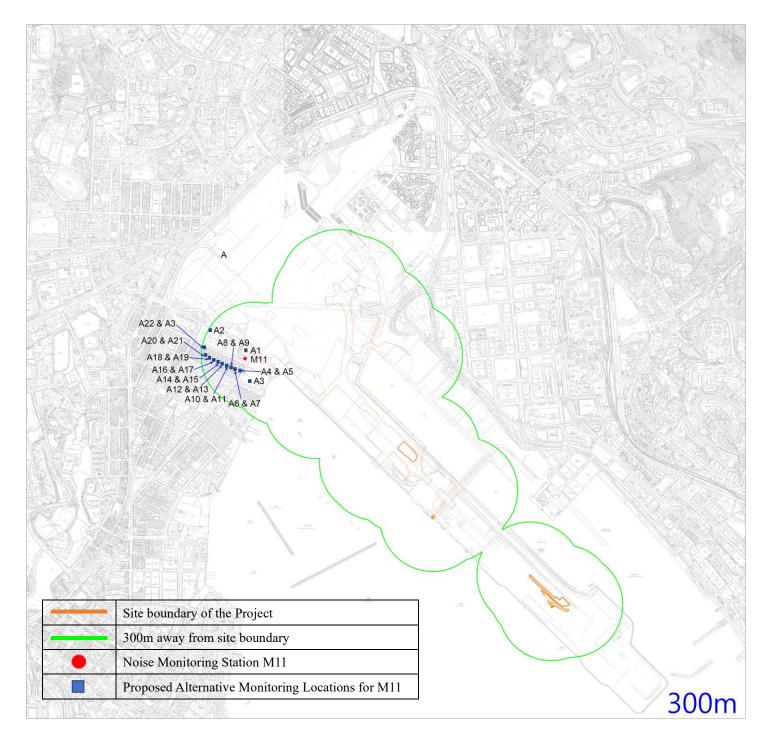
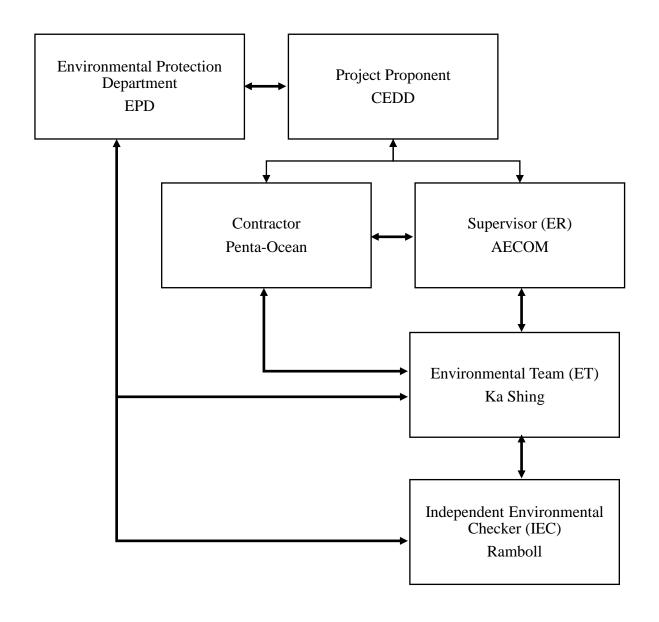
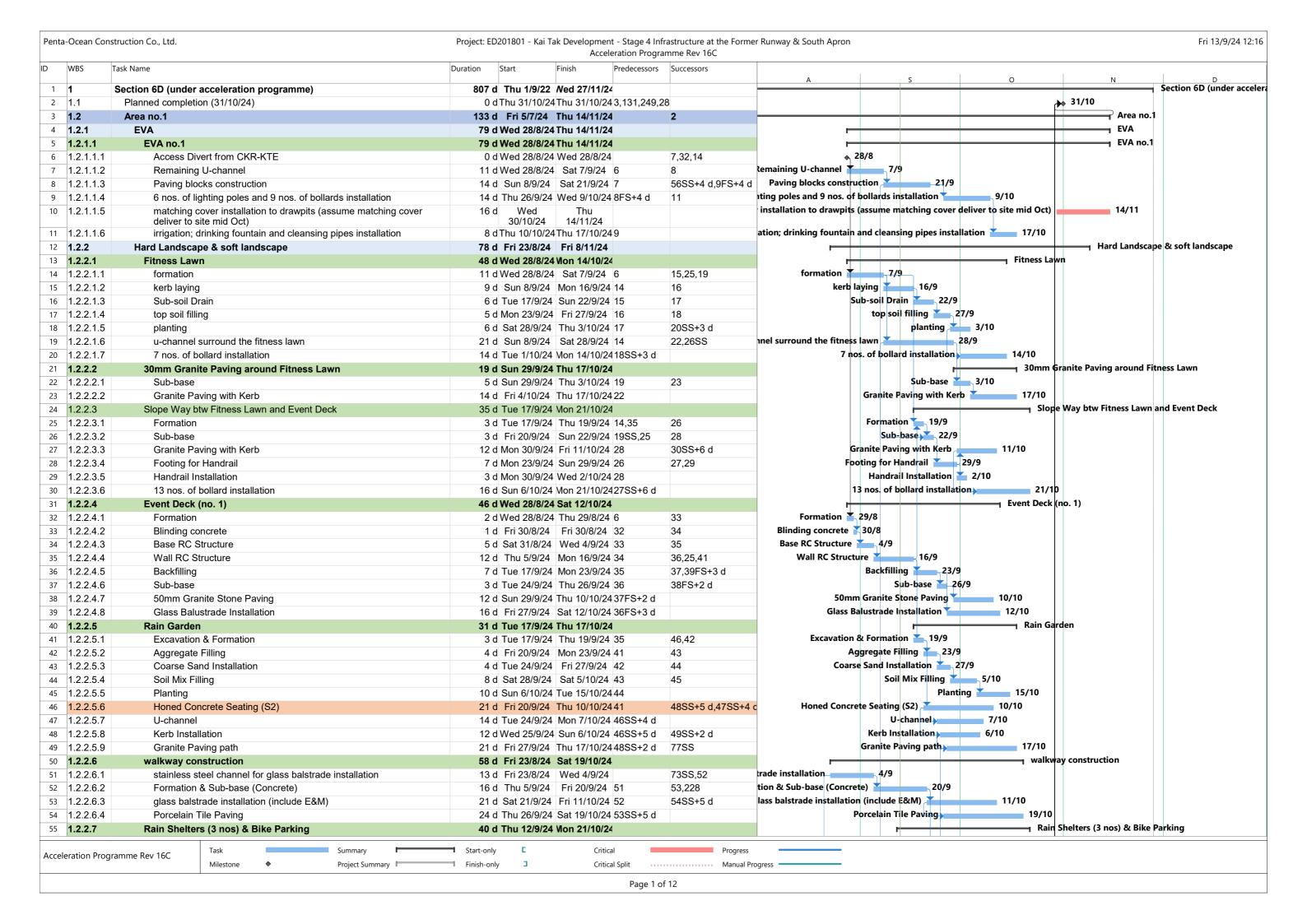
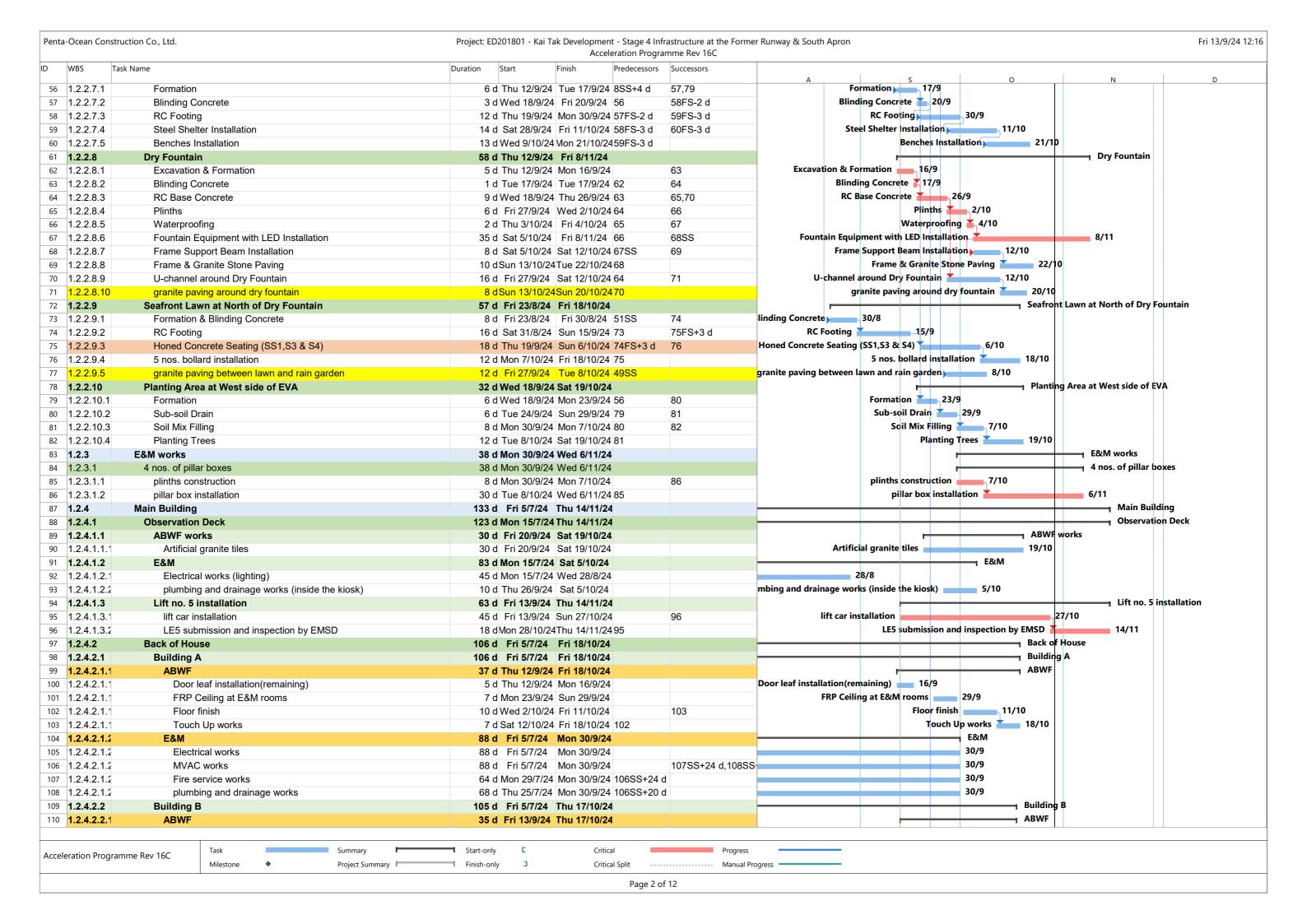



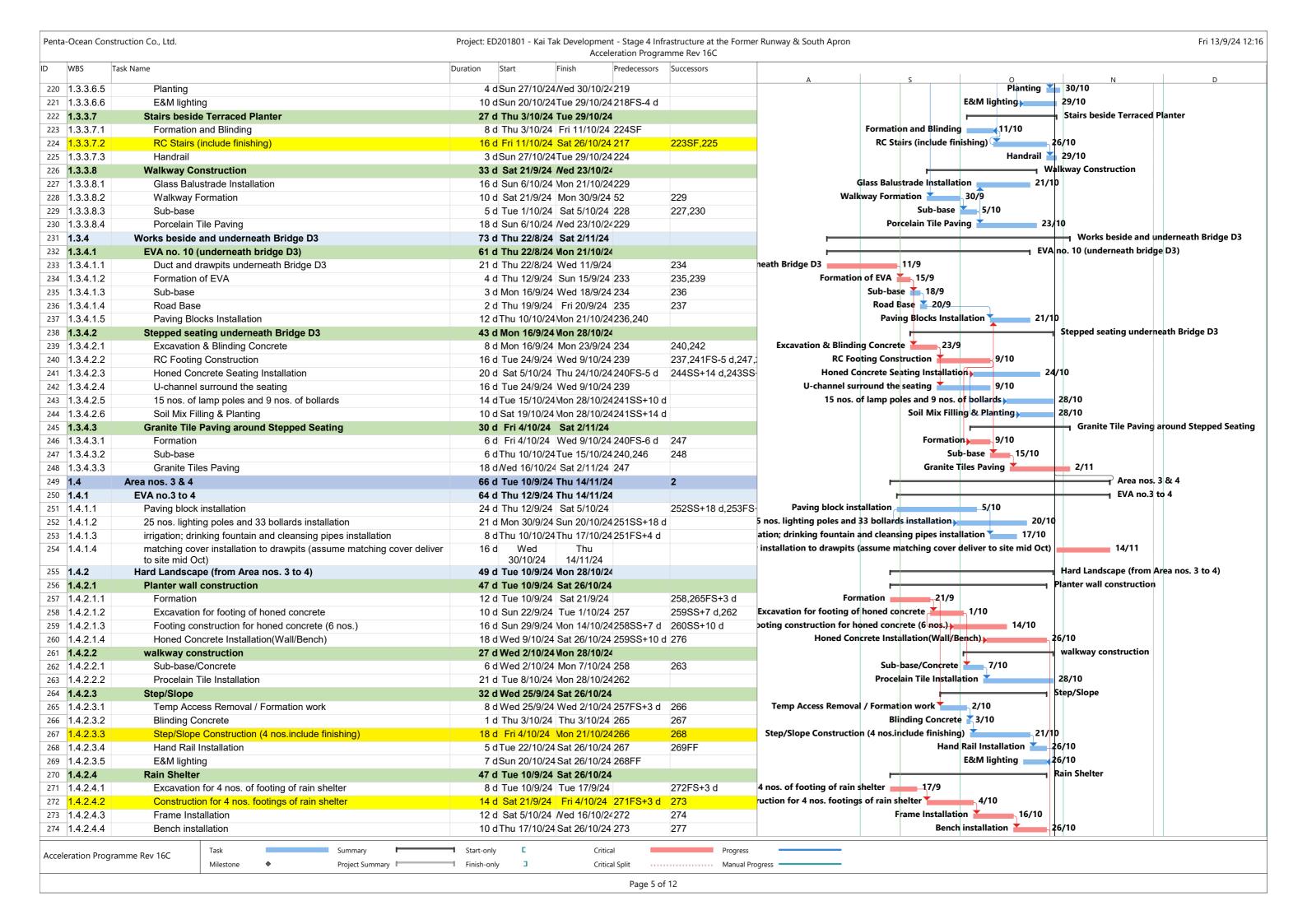
Figure 7 – Proposed Alternative Monitoring Locations for AM4(A)

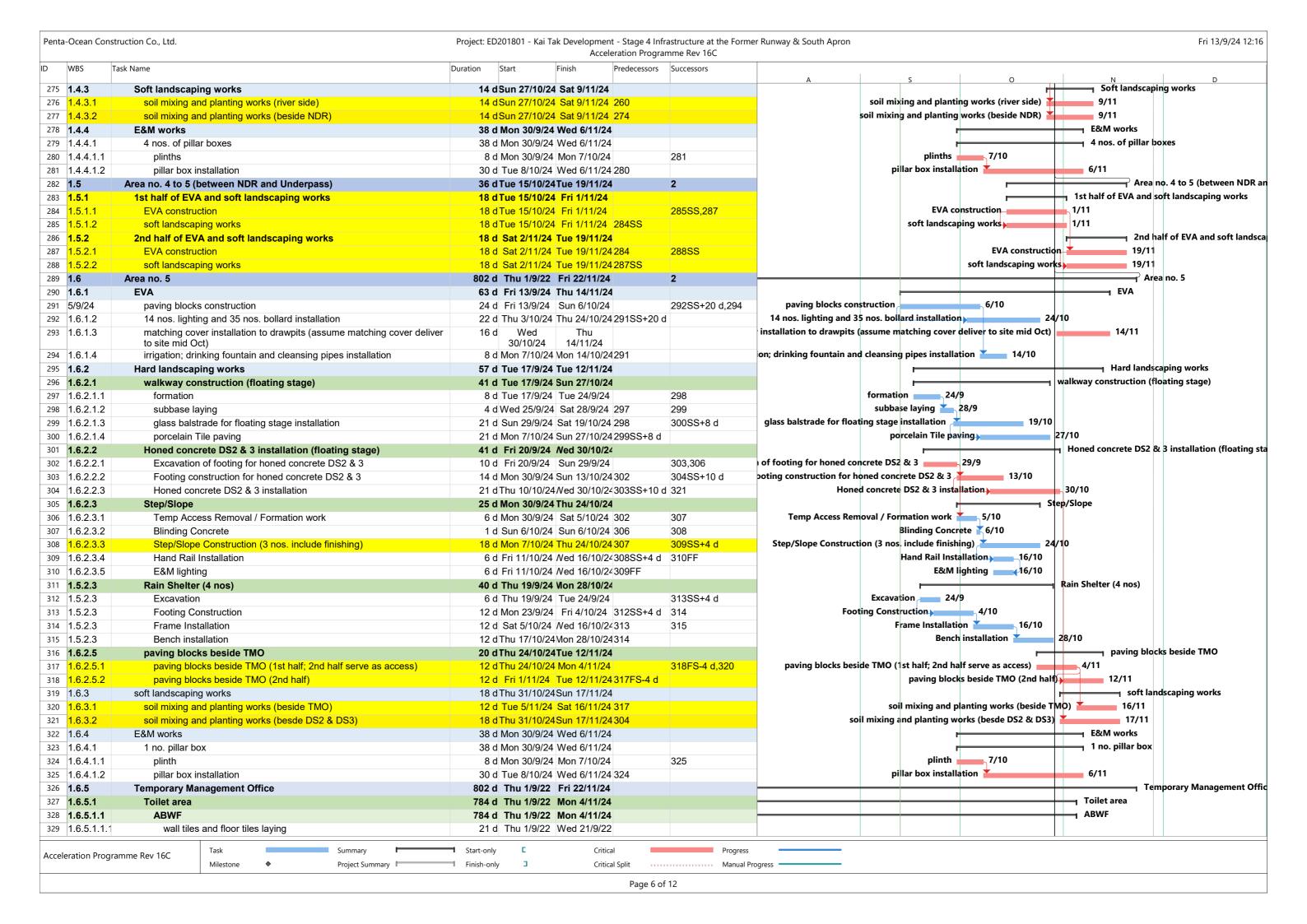
 $Figure\ 8-Noise\ Monitoring\ Stations$

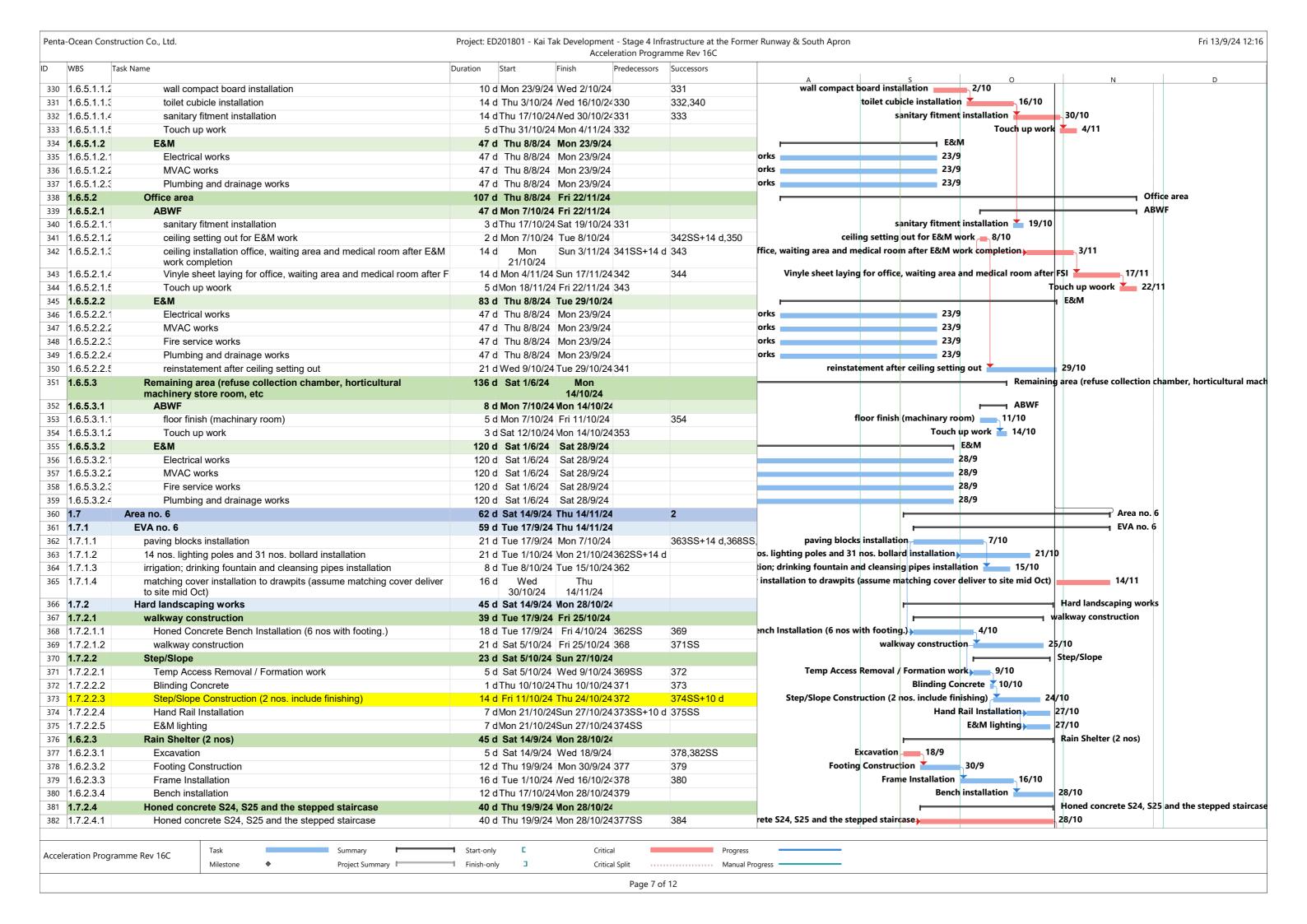



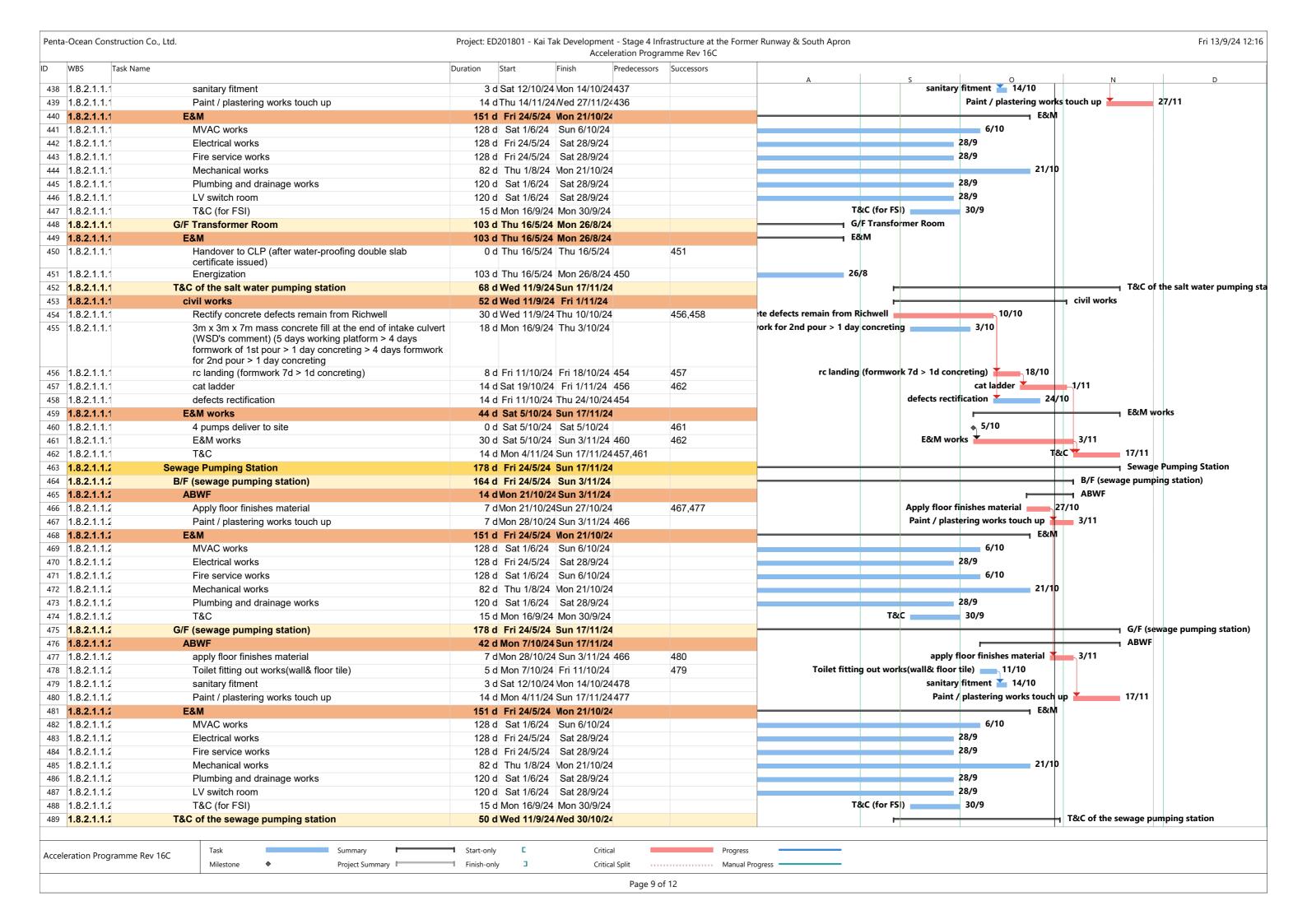

Figure 9 – Proposed Alternative Monitoring Locations for M11

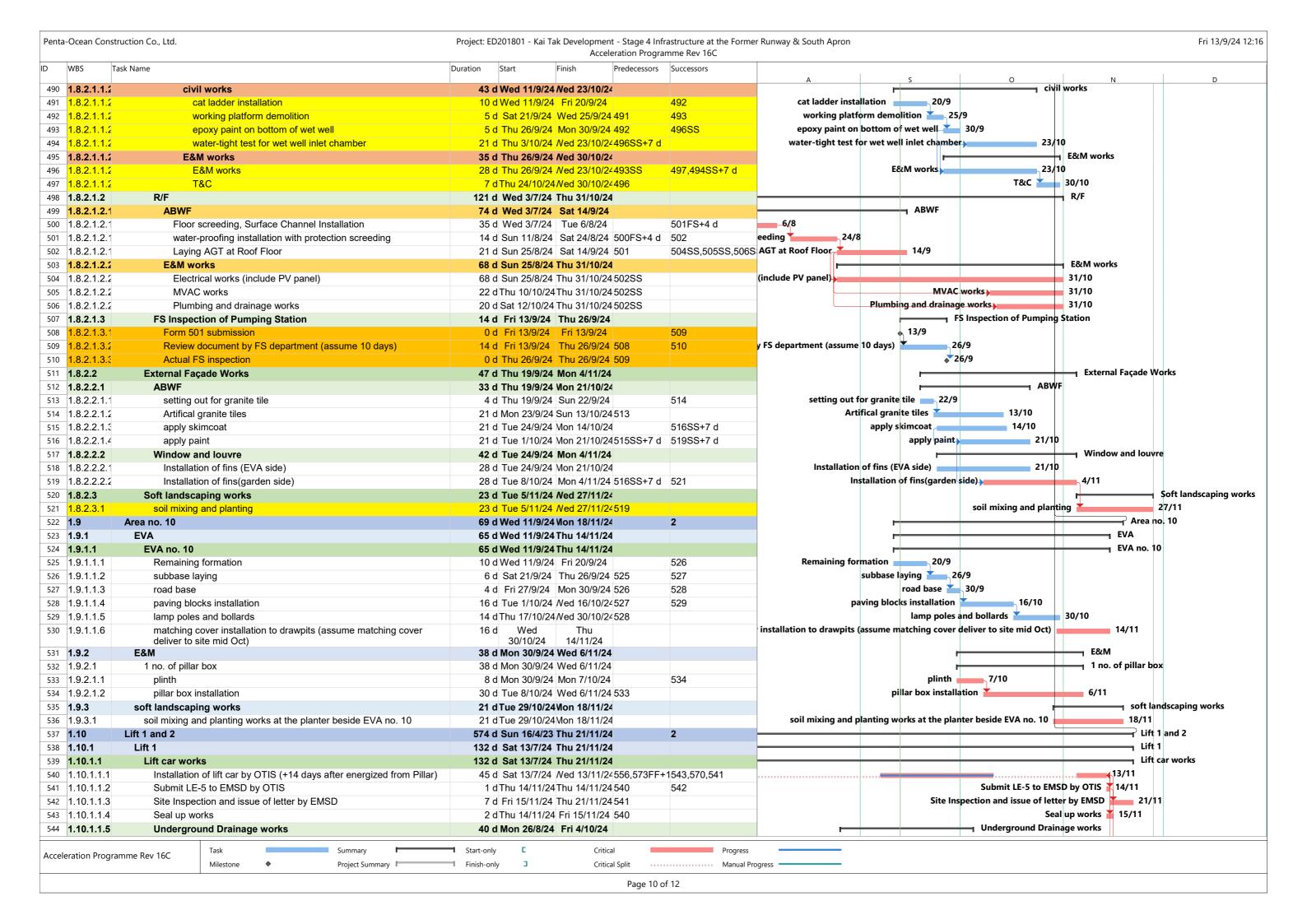

Appendix A – Organization Chart of EM&A Team

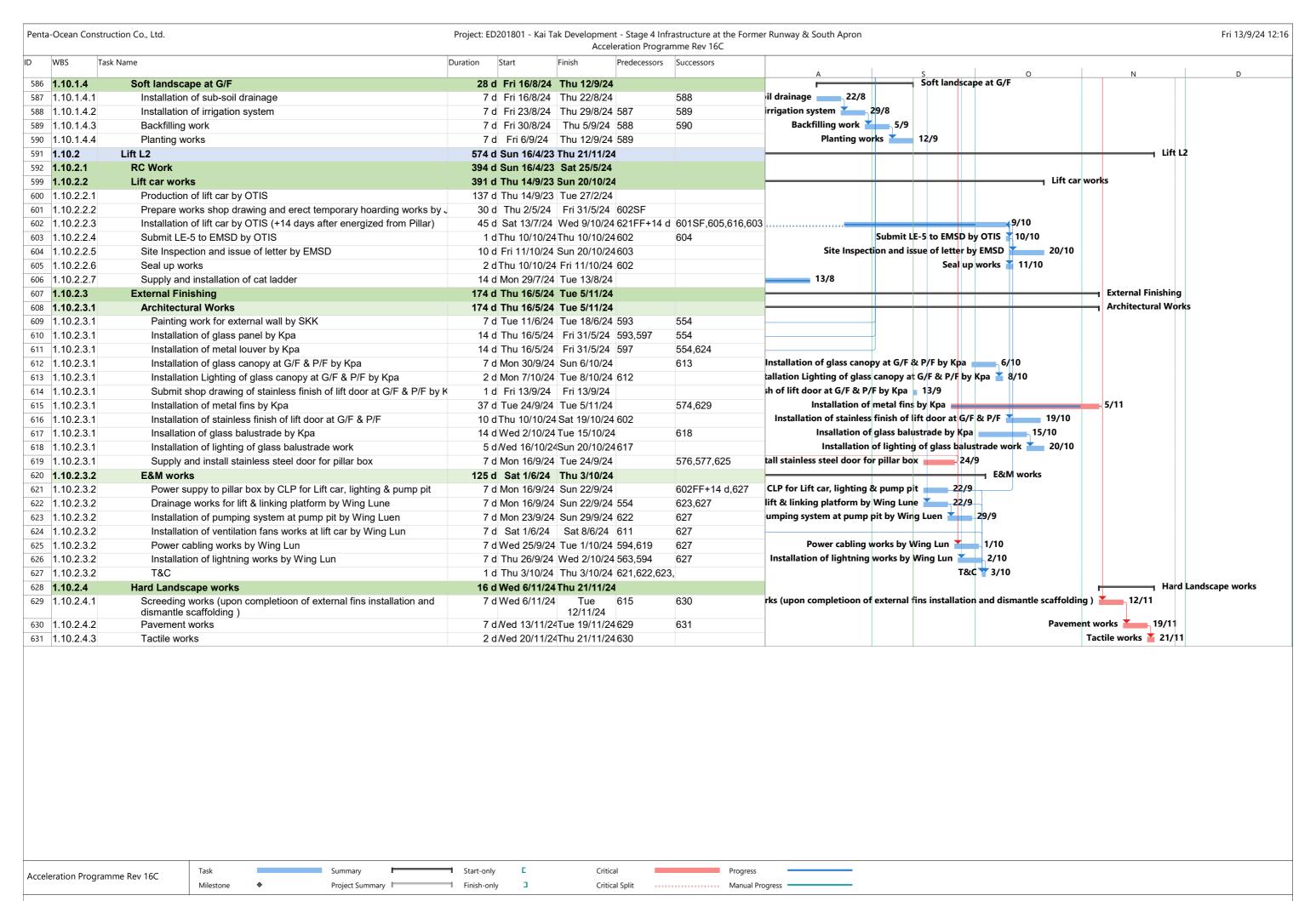



Link of communication


Appendix B – Construction Programme







Appendix C – Apply permission for Environmental Monitoring

Propose alternative monitoring location: The Lok Sin Tong Modular Social Housing Scheme Status: Rejected application Email on: 10 May 2022 Email on: 13 October 2022 Subject The Lok Sin Tong Benevolent Society Kowloon - Apply Subject The Lok Sin Tong Benevolent Society Kowloon - Reject to Apply permission for Environmental Monitoring for Stage 4 of Kai Tak permission for Environmental Monitoring for Stage 4 of Kai Tak Development Development From To To Bcc Bcc 2022-05-10 15:48 2022-10-13 15:52 Date Figure 1 Impact dust measurement setup.jpg(~1.2 MB) Company: The Lok Sin Tong Benevolent Society Kowloon Figure 2 Impact noise measurement setup.jpg(~979 KB) By Email Company: The Lok Sin Tong Benevolent Society Kowloon By Email Referring to the communication between your staff and me regarding the captioned work at 21 September 2022, the Lok Sin Tong Benevolent Society Kowloon was rejected the apply permission for Environmental Monitoring Dear Mada for Stage 4 of Kai Tak Development. 5 May 2022 Due to electricity supply and security concern in Modular House , Environmental monitoring at Modular House is not allowed open. Should you have any enquires regarding the measurement, please do not hesitate to contact Re: Environmental Monitoring for Kai Tak Development - Stage 4 Infrastructure at the former runway and south Thank you for your kind attention and I look forward to receiving your favourable reply soon. We, Ka Shing Management Consultant Limited (KS), is appointed by Civil Engineering and Development Department (CEDD), working as Environmental Team (ET) to conduct the monitoring and audit works as part of Yours Sincerely, the EM&A programme of the Kai Tak Development - Stage 4 Infrastructure at the former runway and south apron (KTD Stage 4 Project) starting from July 2019 to May 2024. Lee Wing Hang Ka Shing Management Consultant Limited KTD Stage 4 project is located in the south-eastern part of Kowloon Peninsular of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. Your premise, Hong Kong Society for Blind Workshop and Hotels, is one of the proposed sensitive receivers. We would like to obtain your kind permission for entering the premise to carry out baseline and impact monitoring, baseline dust monitoring (1-hour and 24-hour TSP monitoring) and baseline noise monitoring (30minute) would need to conduct continuously for 14 days, our propose baseline monitoring date is June 2022. After baseline monitoring, impact dust monitoring (1-hour and 24-hour TSP monitoring) and impact noise monitoring (30-minute) would take place between 08:00 hrs to 18:00 hrs in normal working days once every six The monitoring location will be located on the roof top floor of The Lok Sin Tong Modular Social Housing Scheme at Junction of Sung Wong Toi Road and To Kwa Wan Road facing to Kai Tak Development area. 220V power supply is needed for 24-hour TSP monitor with size 0.5m (L) x 0.5m (W) x 1.4m (H). We will pay for the electricity. Similar setup photo records are shown in Figure 1 and Figure 2 for your kindly reference. Our technician will stay at the measurement point for 1-hour TSP and 30-mintue noise measurement. We hope to conduct site visit at 13:30 pm of 25 May 2022 (Wed). Should you have any enquires regarding the measurement, please do not hesitate to contact Thank you for your kind attention and I look forward to receiving your favourable reply soon. Yours Sincerely Lee Wing Hang Ka Shing Management Consultant Limited

opose alternative monitoring location: Freder Centre
atus: No reply from building management office unit the reporting month
nail on: 19 July 2022
Subject Freder Centre - Apply permission for Environmental Monitoring for Stage 4 of Kai Tak Development
From 10011000000
то
Bcc Bcc
Date 2022-07-19 13:33
 Figure 1 Impact dust measurement setup.jpg(~1.2 MB) Figure 2 Impact noise measurement setup.jpg(~979 KB)
Community Fooders Contra
Company: Freder Centre By Email
Dear Sir
Re: Environmental Monitoring for Kai Tak Development - Stage 4 Infrastructure at the former runway and south apron
We, Ka Shing Management Consultant Limited (KS), is appointed by Civil Engineering and Development
Department (CEDD), working as Environmental Team (ET) to conduct the monitoring and audit works as part of the EMBA programme of the Kai Tak Development - Stage 4 Infrastructure at the former runway and south apron (KTD Stage 4 Project) starting from July 2019 to May 2024.
KTD Stage 4 project is located in the south-eastern part of Kowloon Peninsular of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. Your premise, Hong Kong Society for Blind Workshop and Hotels, is one of the proposed sensitive receivers.
We would like to obtain your kind permission for entering the premise to carry out baseline and impact monitoring, baseline dust monitoring (1-hour and 24-hour TSP monitoring) and baseline noise monitoring (30-minute) would need to conduct continuously for 14 days, our propose baseline monitoring date is August 2022.
After baseline monitoring, impact dust monitoring (1-hour and 24-hour TSP monitoring) and impact noise monitoring (30-minute) would take place between 08:00 hrs to 18:00 hrs in normal working days once every six days.
The monitoring location will be located on the roof top floor of Freder Centre at Junction of Sung Wong Toi Road and To Kwa Wan Road facing to Kai Tak Development area. 220V power supply is needed for 24-hour TSP monitor with size 0.5m (L) x 0.5m (W) x 1.4m (H). We will pay for the electricity. Similar setup photo records are shown in Figure 1 and Figure 2 for your kindly reference. Our technician will stay at the measurement point for 1-hour TSP and 30-mintue noise measurement.
We hope to conduct site visit at 15:30pm of 26 July 2022 (Tue).
Should you have any enquires regarding the measurement, please do not hesitate to contact at
Thank you for your kind attention and I look forward to receiving your favourable reply soon.
Yours Sincerely,
Lee Wing Hang Ka Shing Management Consultant Limited

Propose alternative monitoring location: New Port Centre Status: No reply from building management office unit the reporting month Email on: 19 July 2022 Email on: 17 August 2022 New Port Centre - Apply permission for Environmental Kum Shing Group and Hong Kong Energy Infrastructure Limited -Monitoring for Stage 4 of Kai Tak Development Apply permission for Environmental Monitoring for Stage 4 of Kai From Tak Development From To Bcc To Bcc Date 2022-07-19 13:33 2022-08-17 11:54 Date Figure 1 Impact dust measurement setup.jpg(~1.2 MB) Figure 2 Impact noise measurement setup.jpg(~979 KB) Figure 1 Impact dust measurement setup.jpg(~1.2 MB) Company: New Port Centre & Synergis management services limited Figure 2 Impact noise measurement setup.jpg(~979 KB) plug 01.jpg(~2.6 MB) By Email Company: Kum Shing Group and Hong Kong Energy Infrastructure Limited Dear Sir Re: Environmental Monitoring for Kai Tak Development - Stage 4 Infrastructure at the former runway and south By Email apron Dear Si We, Ka Shing Management Consultant Limited (KS), is appointed by Civil Engineering and Development Department (CEDD), working as Environmental Team (ET) to conduct the monitoring and audit works as part of Re: Environmental Monitoring for Kai Tak Development - Stage 4 Infrastructure at the former runway and south the EM&A programme of the Kai Tak Development - Stage 4 Infrastructure at the former runway and south apron (KTD Stage 4 Project) starting from July 2019 to May 2024. We, Ka Shing Management Consultant Limited (KS), is appointed by Civil Engineering and Development KTD Stage 4 project is located in the south-eastern part of Kowloon Peninsular of the HKSAR, comprising the Department (CEDD), working as Environmental Team (ET) to conduct the monitoring and audit works as part of apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau the EM&A programme of the Kai Tak Development - Stage 4 Infrastructure at the former runway and south apron Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. Your premise, New Port Centre, is one of the proposed (KTD Stage 4 Project) starting from July 2019 to May 2024. We would like to obtain your kind permission for entering the premise to carry out baseline and impact KTD Stage 4 project is located in the south-eastern part of Kowloon Peninsular of the HKSAR, comprising the monitoring, baseline dust monitoring (1-hour and 24-hour TSP monitoring) and baseline noise monitoring (30apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau minute) would need to conduct continuously for 14 days, our propose baseline monitoring date is August 2022. Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. Your premise, New Port Centre, is one of the proposed sensitive receivers. After baseline monitoring, impact dust monitoring (1-hour and 24-hour TSP monitoring) and impact noise monitoring (30-minute) would take place between 08:00 hrs to 18:00 hrs in normal working days once every six We would like to obtain your kind permission for entering the premise to carry out baseline and impact monitoring, baseline dust monitoring (1-hour and 24-hour TSP monitoring) and baseline noise monitoring (30minute) would need to conduct continuously for 14 days, our propose baseline monitoring date is August 2022. The monitoring location will be located on the roof top floor of New Port Centre at Junction of Sung Wong Toi Road and To Kwa Wan Road facing to Kai Tak Development area. 220V power supply is needed for 24-hour TSP After baseline monitoring, impact dust monitoring (1-hour and 24-hour TSP monitoring) and impact noise monitor with size 0.5m (L) x 0.5m (W) x 1.4m (H). We will pay for the electricity. Similar setup photo records are shown in Figure 1 and Figure 2 for your kindly reference. Our technician will stay at the monitoring (30-minute) would take place between 08:00 hrs to 18:00 hrs in normal working days once every six measurement point for 1-hour TSP and 30-mintue noise measurement. The monitoring location will be located on the roof top floor of New Port Centre at Junction of Sung Wong We hope to conduct site visit at 13:30pm of 26 July 2022 (Tue). Toi Road and To Kwa Wan Road facing to Kai Tak Development area. 220V power supply is needed for 24-hour TSP monitor with size 0.5m (L) x 0.5m (W) x 1.4m (H). We will pay for the electricity. Similar setup photo Should you have any enquires regarding the measurement, please do not hesitate to contact records are shown in Figure 1 and Figure 2 for your kindly reference. Our technician will stay at the measurement point for 1-hour TSP and 30-mintue noise measurement. Thank you for your kind attention and I look forward to receiving your favourable reply soon. We hope to loan the company on the roof top floor of Plug 01 for 24-hour TSP monitor of power supply. Yours Sincerely, Should you have any enquires regarding the measurement, please do not hesitate to contact Lee Wing Hang Ka Shing Management Consultant Limited Thank you for your kind attention and I look forward to receiving your favourable reply soon.

Yours Sincerely,

Ka Shing Management Consultant Limited

Propose alternative monitoring location: New Port Centre Status: No reply from building management office unit the reporting month Email on: 19 August 2022 Email on: 15 September 2022 New Port Centre - Apply permission for Environmental Monitoring for Stage 4 of Kai Tak Development Subject RE: Kum Shing Group and Hong Kong Energy Infrastructure Limited - Apply permission for Environmental Monitoring for To Bcc Stage 4 of Kai Tak Development 2022-09-15 15:35 From • Figure 1 Impact dust measurement setup.jpg(~1.2 MB) Figure 2 Impact noise measurement setup.jpg(~979 KB) To Figure 3 expect Impact dust measurement setup.png(~267 KB) Figure 4 power supply plug.jpg(~2.6 MB) Company: New Port Centre & Synergis management services limited 2022-08-19 08:36 Re: Environmental Monitoring for Kai Tak Development - Stage 4 Infrastructure at the former runway and south Dear Mr. LEE, We, Ka Shing Management Consultant Limited (KS), is appointed by Civil Engineering and Development Department (CEDD), working as Environmental Team (ET) to conduct the monitoring and audit works as part of the EM&A programme of the Kai Tak Development - Stage 4 Infrastructure at the former runway and south apron As we do not have ownership to the roof, we'd suggest you to approach the management company of Newport (KTD Stage 4 Project) starting from July 2019 to May 2024. Center for further discussion. KTD Stage 4 project is located in the south-eastern part of Kowloon Peninsular of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau https://www.synergis.com.hk/html/en/ Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. Your premise, New Port Centre, is one of the proposed sensitive receivers. We would like to obtain your kind permission for entering the premise to carry out baseline and impact monitoring, baseline dust monitoring (1-hour and 24-hour TSP monitoring) and baseline noise monitoring (30best, minute) would need to conduct continuously for 14 days, our propose baseline monitoring date is August 2022. Paul Lee After baseline monitoring, impact dust monitoring (1-hour and 24-hour TSP monitoring) and impact noise monitoring (30-minute) would take place between 08:00 hrs to 18:00 hrs in normal working days once every six The monitoring location will be located on the roof top floor of New Port Centre at Junction of Sung Wong Toi Road and To Kwa Wan Road facing to Kai Tak Development area. 220V power supply is needed for 24-hour TSP monitor with size 0.5m (L) \times 0.5m (W) \times 1.4m (H). We will pay for the electricity. Similar setup photo records are shown in Figure 1 and Figure 2 for your kindly reference. The expect of impact dust measurement setup photo records are shown in Figure 3 and the power supply will come from the roof of the socket (Figure 4) for reference. Our technician will stay at the measurement point for 1-hour TSP and 30-mintue Should you have any enquires regarding the measurement, please do not hesitate to contact Thank you for your kind attention and I look forward to receiving your favourable reply soon. Yours Sincerely, Ka Shing Management Consultant Limited

Appendix D – Environmental monitoring schedules

Contract No. EDO 15/2018 Environmental Monitoring at Kai Tak Development Stage 4 Infrastructure at the former runway and south apron Tentative Environmental Monitoring and Weekly Site Inspection Schedule for August 2024

August 2024

Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1 Weekly Site Inspection	2	3 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7
4	5	6 Weekly Site Inspection + SSMC meeting	7	8	9 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	10
11	12	13	14	Weekly Site Inspection 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	16	17
18	19	20	21 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	22 Weekly Site Inspection	23	24
25	26	27 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	28	29 Weekly Site Inspection	30	31

NOTE:

1) Site inspection schedule and Impact monitoring schedule may be changed due to unforeseen circumstance (e.g. adverse weather).

Air Quality Monitoring Station

AM3 - Sky Tower

AM4(A) - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop

AM7 - Hong Kong Children's Hospital

Noise Quality Monitoring Station

M11 - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop

M12 - Hong Kong Children's Hospital

Contract No. EDO 15/2018 Environmental Monitoring at Kai Tak Development Stage 4 Infrastructure at the former runway and south apron Tentative Environmental Monitoring and Weekly Site Inspection Schedule for September 2024

September 2024

Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	3	4	5 Weekly Site Inspection	6	7 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7
8	9	10 Weekly Site Inspection + SSMC meeting	11	12	13 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	14
15	16	17	18	Weekly Site Inspection 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	20	21
22	23	24	25 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12	26 Weekly Site Inspection	27	28
29	30 24-hr TSP: AM3, AM4(A), AM7 1-hr X3 TSP: AM3, AM4(A), AM7 30-min Noise: M11, M12					

NOTE:

- 1) Site inspection schedule and Impact monitoring schedule may be changed due to unforeseen circumstance (e.g. adverse weather).
- 2) Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A) and M11), the premises owner rejected ET to conduct impact monitoring starting from 1 Sept 2022. No 24-TSP monitoring will be conducted at AM4(A) while 1-hr TSP at AM4(A) and 30-min noise monitoring at M11 will be conducted on the ground floor with orienting to the Project site. ET will resume the impact monitoring once the alternative monitoring location for AM4(A) and M11 are confirmed.

Air Quality Monitoring Station

AM3 - Sky Tower

 $\ensuremath{\mathsf{AM4}}(A)$ - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop

AM7 - Hong Kong Children's Hospital

Noise Quality Monitoring Station

M11 - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop

M12 - Hong Kong Children's Hospital

Appendix E – Photographic records

Impact TSP Monitoring

Measurement setup at AM3

Measurement setup at AM4(A)

Measurement setup at AM7

Impact Noise Monitoring

Measurement setup at M11

Measurement setup at M12

Weather Station at the rooftop of Hong Kong Children's Hospital

Appendix F – Calibration certificates, catalogue of air quality monitoring equipment

Catalogue of High Volume Sampler (HVS)

Suspended Particulate (TSP) air sampler featuring a mass flow controller (MFC) for accurate and consistent particulate sampling. The mass flow controller adjust the motor speed as the filter media collects particulate to maintain a constant flow rate throughout the entire sample duration. The system utilizes a stainless steel filter holder for use with standard 8" x 10" filter paper. The anodized aluminum shelter and robust electrical components allow the system to operate a continuous 24 hour sample.

ABOUT US: Tisch Environmental Inc. Tisch Environmental is the benchmark for high volume air sampling, particulate. metals, volatiles, and specialty monitoring equipment. Since the company's inception in 1953 as General Metal Works, our product line has expanded from the first high volume air sampler to include high-tech and custom samplers. Our clients are professionals from every sector of the regulatory and industrial markets.

TISCH 🕡

Mass Flow Controlled

- 7-Day Mechanical Timer
- Flapsed Time Indicator
- Aluminum Outdoor Shelter
- Brush Style Motor
- Dickson Chart Recorder, 24 Hour
- Stainless Steel Filter Holder
- 36-60 CFM
- Made In USA

www.tisch-env.com

TE-5170 TSP MFC, 110 Volt 60 Hertz, 8 Amps TE-5170X TSP MFC, 220 Volt 50 Hertz 4 Amps TE-5170XZ TSP MFC, 220 Volts 60 Hertz, 4 Amps

TSP MFC

MFC TSP Ambient Air Sampler

Particulate Size: Total Suspended Particulate (TSP) EPA Designation: CFR 40 Part 50 Appendix B Flow Controller: Mass Flow Controller Motor Style: Brush Style Motor Assembly

Pressure Recorder: Dickson Chart Recorder, 24 hour

Timer: 7 Day Mechanical

Elapsed Time Indicator: Mechanical, Hours and Tenths

Flow Range: 39-60CFM, 1.09M³M-1.68M³M

Housing: Anodized Aluminum Filter Holder: Stainless Steel, 8" x 10" 4" Recorder Charts: Box of 100

Filter Holder: 8" x 10" Stainless Steel with hold down frame

US EPA Reference Method Sampling, CFR Appendix J Part 50 Regulatory Compliance

Institutional Studies Construction Sites

Bridge and Water Tower Painting Sites

Fence Line Monitoring Industrial Monitoring Landfill Monitoring

Public Health Applications

TE-3000 Filter Holder Cartridge TE-G653 8" x 10" Glass Fiber Filter Media TE-33384 Motor Brush Set (110volt)

TE-33378 Motor Brush Set (220volt) TE-116311 Replacement Motor (110volt)

TE-116312 Replacement Motor (220volt) TE-106 Recorder Charts TE-160 Recorder Pen Points TE-5018 Gasket 8" x 10"

TE-5028 -Variable Flow Calibration Kit TE-HVC-V Xcalibrator HiVol Calibrator

Weight: 75lbs, Shelter

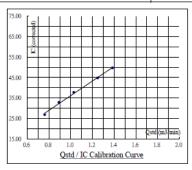
Shipping Dimensions: 46"W x 23"L x 20" H, Shelter 19"W x 19"L x 20"H, Lid

Assembled Dimensions: 28"W x 28"L x 61"H

Calibration Certificate of HVS

Air Sampler Calibration Curve Plotting & Calculation

(Dickson recorder)


Calibration curve ref. No. :	ATSPC-01-2024060701	Date of calibration :	07/06/2024
Location :	Sky Tower	Sampler :	TE-5170X
Calibration Data			
Ambient barometric pressure	e, Pa = 755.4 (mmHg)	Ambient temperature, Ta =	299.75 (deg K)
0-4161 2.0202	76	0-11-1	12000

Calibration Curve

Plate No.	H ₂ O (in)	Qstd (m³/min)	I (chart)	IC (corrected)
18	8.00	1.385	50.0	49.70
13	6.50	1.249	45.0	44.73
10	4.40	1.029	38.0	37.77
7	3.30	0.892	33.0	32.80
5	2.40	0.761	27.0	26.84

Subsequent calculation of sampler flow

Method	Calibration equation	Slope, m	Intercept, b	Corr. coeff., r
Dickson recorder	Qstd = 1/ml [(I)(Sqrt((Pav/760)(298/Tav)))-bl]	35.732	0.3774	0.9980

Calibration curve requirements : (A). r > 0.990; (B). At least 3 Qstd numbers are in the TSP range (1.1 - 1.7 m3 / min).

 $Remark: Qstd (m^3/min) = 1/m [Sqrt (H_2O (Pa/760)(298/Ta)) - b].$

IC (corrected) = I [Sqrt ((Pa/760)(298/Ta))].

FLOW (corrected) = Sqrt (FLOW (mano)(Pa/760)(298/Ta))

Form No. INS-HVS-CAL dd 16 01 2020

Air Sampler Calibration Curve Plotting & Calculation

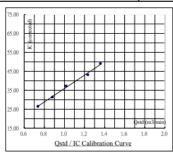
(Dickson recorder)

 Calibration curve ref. No. :
 ATSPC-01-2024080601
 Date of calibration :
 06/08/2024

 Location :
 Sky Tower
 Sampler :
 TE-5170X

 Calibration Data

 Ambient barometric pressure, Pa =
 753.8
 (mmHg)
 Ambient temperature, Ta =
 306.95
 (deg K)


 Qstd Slope, m =
 2.03976
 Qstd Intercept, b =
 -0.012990

Calibration Curve

Plate No.	H ₂ O (in)	Qstd (m³/min)	I (chart)	IC (corrected)
18	7.90	1.359	50.0	49.07
13	6.50	1.233	44.0	43.18
10	4.40	1.016	38.0	37.29
7	3.30	0.880	32.0	31.40
5	2.30	0.736	27.0	26.50

Subsequent calculation of sampler flow

Method	Calibration equation	Slope, m	Intercept, b	Corr. coeff., r
Dickson recorder	Qstd = 1 / m1 [(1) (Sqrt ((Pav / 760) (298 / Tav))) - b1]	35.390	0.5128	0.9971

 $Calibration \ curve \ requirements: \quad (A). \ \ r \geq 0.990 \ ; \ \ (B). \ \ At \ least \ 3 \ Qstd \ numbers \ are \ in the \ TSP \ range \ (1.1 - 1.7 \ m3 \ / min \).$

Remark: Qstd (m³ / min) = 1/m [Sqrt (H₂O (Pa / 760) (298 / Ta)) - b]. IC (corrected) = 1 [Sqrt ((Pa / 760) (298 / Ta))].

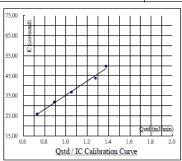
FLOW (corrected) = Sqrt (FLOW (mano) (Pa / 760) (298 / Ta)

Calibrated by : Checked by : Name : (Poon Tsz Wing) Name : (Choy Ching Yee)

Form No. INS-HVS-CAL dd 16 01 2020

Calibration Certificate of HVS

Air Sampler Calibration Curve Plotting & Calculation (Dickson recorder)


Calibration curve	e ref. No. :	ATSPC-01-202	24060703	Date of calibration :	07/06/2024	
Location :	Hong Kon	g Children's Hos	pital	Sampler :	TE-5170X	
Calibration Date	<u>1</u>					
Ambient barome	tric pressure, P	a = 755.4	(mmHg)	Ambient temperature, T	a = 299.75	(deg K)
0-43 (1	2.02076			Out Intercent has	0.012000	

Calibration Curve

	Plate No.	H ₂ O (in)	Qstd (m³/min)	I (chart)	IC (corrected)
Ì	18	7.90	1.376	50.0	49.70
Ī	13	6.80	1.277	44.0	43.74
Ī	10	4.60	1.052	37.0	36.78
Ī	7	3.30	0.892	32.0	31.81
ſ	5	2.20	0.729	26.0	25.85

Subsequent calculation of sampler flow

Method	Calibration equation	Slope, m	Intercept, b	Corr. coeff., r
Dickson recorder	Qstd = 1 / ml [(I)(Sqrt((Pav / 760)(298 / Tav)))-b1]	35.218	0.0617	0.9954

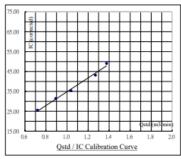
 $Calibration \ curve \ requirements: \quad (A). \ \ r>0.990 \ ; \ \ (B). \ \ At \ least \ 3 \ Qstd \ numbers \ are in the \ TSP \ range \ (1.1-1.7 \ m3 \ / min \).$

Remark: $Qstd(m^3/min) = 1/m[Sqrt(H_2O(Pa/760)(298/Ta)) - b].$ IC (corrected) = I[Sqrt((Pa/760)(298/Ta))].

FLOW (corrected) = Sqrt (FLOW (mano) (Pa/760) (298 / Ta)).

Form No. INS-HVS-CAL dd 16 01 2020

Air Sampler Calibration Curve Plotting & Calculation (Dickson recorder)


Calibration curve ref. No. :	ATSPC-01-2024080603	Date of calibration :	06/08/2024
Location : Hong Kong	Children's Hospital	Sampler :	TE-5170X
Calibration Data			
Ambient barometric pressure, Pa	= 753.8 (mmHg)	Ambient temperature, Ta =	306.95 (deg K)
Ostd Slone m = 2 03976		Ostd Intercent h = -0	012990

Calibration Curve

Plate No.	H ₂ O (in)	Qstd (m³/ min)	I (chart)	IC (corrected)
18	8.10	1.376	50.0	49.07
13	6.90	1.270	44.0	43.18
10	4.60	1.038	36.0	35.33
7	3.40	0.893	32.0	31.40
5	2.20	0.720	26.0	25.51

Subsequent calculation of sampler flow

Method	Calibration equation	Slope, m	Intercept, b	Corr. coeff., r
Dickson recorder	Qstd = 1 / m1 [(1) (Sqrt ((Pav / 760) (298 / Tav))) - b1]	34.697	0.1402	0.9952

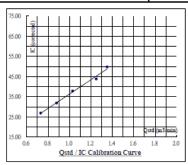
Calibration curve requirements : (A). r > 0.990; (B). At least 3 Qstd numbers are in the TSP range (1.1 - 1.7 m3/min).

Remark: Qstd (m³ / min) = 1/m [Sqrt (H₂O (Pa /760) (298 / Ta)) - b]. IC (corrected) = I [Sqrt ((Pa /760) (298 / Ta))]. FLOW (corrected) = Sqrt (FLOW (mano) (Pa /760) (298 / Ta)).

Form No. INS-HVS-CAL dd 16 01 2020

Calibration Certificate of HVS

Air Sampler Calibration Curve Plotting & Calculation (Dickson recorder)


Calibration curve ref. No. :	ATSPC-01-2024053001	Date of calibration :	30/05/2024
Model no :	GS2310	Serial number :	10346
Calibration Data			
Ambient barometric pressure,	Pa =753.9 (mmHg)	Ambient temperature, Ta =	298.65 (deg K)
Octd Slope m = 2.0207	6	Octd Intercent b = 0.0	12000

Calibration Curve

Plate No.	H ₂ O	Qstd	I	IC
Plate No.	(in)	(m ³ /min)	(chart)	(corrected)
18	7.60	1.351	50.0	49.74
13	6.50	1.250	44.0	43.77
10	4.40	1.029	38.0	37.81
7	3.20	0.879	32.0	31.84
5	2.20	0.730	27.0	26.86

Subsequent calculation of sampler flow

Method	Calibration equation	Slope, m	Intercept, b	Cоп. coeff., r
Dickson recorder	Qstd = 1/ml [(I)(Sqrt((Pav/760)(298/Tav)))-bl]	35.445	0.8648	0.9952

Calibration curve requirements: (A). r > 0.990; (B). At least 3 Qstd numbers are in the TSP range (1.1 - 1.7 m3 / min).

Remark: Qstd $(m^3 / min) = 1/m [Sqrt (H_2O (Pa / 760) (298 / Ta)) - b].$

IC (corrected) = I [Sqrt ((Pa / 760)(298 / Ta))].

FLOW (corrected) = Sqrt (FLOW (mano) (Pa / 760) (298 / Ta)).

Form No. INS-HVS-CAL dd 16 01 2020

Orifice Transfer Standard Certification Worksheet TE-5025A

RECALIBRATION DUE DATE: May 6, 2025

		alibration Certification Informati	on	
Cal. Date:	May 6, 2024	Rootsmeter 5/N: 438320	Ta: 295	*K
Operator:	Jim Tisch		Pa: 748.5	mm Hg
Calibration	Model #: TE-5025A	Calibrator S/N: 0006		

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4190	3.2	2.00
2	3	4	1	1.0030	6.4	4.00
3	5	6	1	0.8950	7.9	5.00
4	7	8	1	0.8520	8.8	5.50
5	9	10	1	0.7040	12.7	8.00

		Data Tabulat	tion		
Vstd (m3)	Qstd (x-axis)	√∆H(Pa / Tstd / Ta / T	Va	Qa (x-axis)	√∆H(Ta/Pa) (y-axis)
0.9907	0.6982	1.4106	0.9957	0.7017	0.8878
0.9864	0.9835	1.9949	0.9914	0.9885	1.2556
0.9844	1.0999	2.2304	0.9894	1.1055	1.4037
0.9832	1.1540	2.3393	0.9882	1.1599	1.4723
0.9781	1.3893	2.8213	0.9830	1.3964	1.7756
	m=	2.03976		m=	1.27726
QSTD	b=	-0.01299	QA	b=	-0.00818
	r=	1.00000		r=	1.00000

	Calculation	15	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
- 0	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	r manometer reading (mm Hg
Ta: actual abs	olute temperature ("K)
Pa: actual ban	ometric pressure (mm Hg)
b: intercept	
m: slope	

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

RECALIBRATION

Tisch Environmental, Inc. Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610

FAX: (513)467-9009

Catalogue of Dust Meter (TSI Sidepak AM510)

The SidePak AM510 monitor's easy-to-read display shows your data as both real-time aerosol mass-concentration and 8-hour time-weighted average (TWA). With its convenient data logging and long battery life, the AM510 is also ideal for extended sampling. The easy-to-use TrakPro Data Analysis Software lets you create effective graphs and reports.

User Friendly

- + Small, lightweight and quiet to maximize worker acceptance
- + Rugged design with secure belt clip
- + Easy-to-understand user interface with only four keys
- + Lockable keypad prevents tampering while sampling
- + User-adjustable sample flow rate
- + Define, label and store multiple calibration constants
- + Easy-to-read LCD display
- + Convenient, threaded tripod socket accommodates area sampling

Advanced Features

- + Smart Battery Management System provides precise run time information, maximizes battery capacity and speeds charging
- Integrated pump allows use of size-selective aerosol inlet conditioners
- + Built-in impactors let you choose "none," 1.0, 2.5 or 10-micron cut off
- + 10-mm Dorr-Oliver cyclone for respirable sampling
- + Display shows real-time concentrations (mg/m3) and "on-the-fly" TWA as you data log
- + Display statistics: max, min and average readings, elapsed time and 8-hour TWA

Quick and Easy Reports

- + Convenient preprogramming for occupational exposure sampling
- + Data log for long periods and store multiple tests
- + Analyze data, print graphs and create reports with TrakPro Data Analysis Software
- + USB port lets you conveniently connect to your computer

Power to Spare

- + Long-lasting NiMH rechargeable battery packs eliminate
- + Choice of rechargeable NiMH smart battery packs or AA-cell pack

Model AM510 SidePak Personal Aerosol Monitor

Sensitivity

90° light scattering, Sensor Type 670 nm laser diode 0.001 to 20 mg/m³ Aerosol Concentration Range (calibrated to respirable fraction of ISO 12103-1,

A1 test dust)

Particle Size Range 0.1 to 10 micrometer (µm) Minimum Resolution 0.001 mg/m³

Zero stability ±0.001 mg/m3 over 24 hours

using 10-second time-constant Temperature Coefficient Approximately +0.0005 mg/m³ per

°C (for variations from temperature at which instrument was last zeroed)

Flow Rate

User-adjustable, 0.7 to 1.8 Range liters/min (L/min)

Temperature Range

32 to 120°F (0 to 50°C)

Storage Range -4 to 140°F (-20 to 60°C)

Operational Humidity

0 to 95% RH, non-condensing

Time Constant (LCD display)

Jser-adjustable, 1 to 60 seconds

Data Logging

Approx. 31,000 Data Points Logging Interval User-adjustable, 1 second to 1 hour

User-Select Calibration Factors

Factory Setting 1.0 (non-adjustable) User-defined Settings 3, with user-defined labels Range 0.1 to 10.0, user-adjustable

Physical

Weight

4.2 x 3.7 x 2.8 in. (106 x 92 x 70 mm) with 801723, 801724, 801729 or External Dimensions

801743 battery

5.1 x 3.7 x 2.8 in. (130 x 92 x 70 mm) with 801708, 801722, 801728,

801735, or 801736 battery 16 oz (0.46 kg) with 801723, 801724,

801729 or 801743 battery 19 oz (0.54 kg) with 801708, 01722, 801728, 801735, or 801736 battery

Display Tripod Socket 2 line x 12 character LCD 1/4-20 female thread

Power Supply/Charger (P/N 2613210) Input Voltage Range 100 to 240 VAC. S0 to 60 Hz

Input Voltage Range Output Voltage 9 VDC @ 1.0 A

Maintenance

Recommended annually Factory Clean/Calibrate User Zero Calibration Before each use User Flow Calibration As needed

Communications Interface

Type Connector, Instrument USB Mini-B (socket)

Minimum Computer Requirements for

TrakPro™ Data Analysis Software Communications Port Universal Serial Bus (USB)

v 1.1 or higher

Microsoft Windows® XP, or 7 Operating System (32-bit or 64-bit) operating systems

Battery Performance

Battery Options	Charge Time (hrs)*	Intrinsic Safety Rating	Run Time (hrs @ 1.7 L/min)
1600 mAH NiMH Pack, 4.8 V (P/N 801723)	3.0	No	7.1
1650 mAH NiMH Pack, 4.8V (P/N 801724, 801729 or 801743)	3.5	CSA**	7.5
2700 mAH NiMH Pack, 4.8 V (P/N 801722 or 801728)	5.5	No	12.0
2700 mAH NiMH Pack, 4.8 V (P/N 801735)	5.5	No	12.0
6-Cell AA-size Alkaline Pack*** (P/N 801708 or 801736 with six user-supplied AA cells)	N/A	No	22.5

*Of a fully depleted battery

**All dust plugs and dust gaskets must be installed.

***Using Energizer AA-size, E91 alkaline batteries.

Battery Level Indicator

The Smart Battery Management System™ technology utilizes a built-in "gauge" in the SidePak™ battery packs. The gauge monitors battery capacity and calculates run time information by dividing capacity of the battery (mAH) by the instantaneous current consumed by the instrument (mA). This calculation is correct for current operating conditions and can change due to current (mA) consumption or changes in battery capacity.

Calibration Certificate of Dust Meter (TSI Sidepak AM510)

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong

Tel: +852 25680106 Email: info@callab.com.hk Fax: +852 30116194 Website: www.callab.com.hk

Calibration Certificate No.: CC0072312 Information provided by customer

Castco Testing Centre Limited Customer: Address: 33, On Kui Street, Fanling, N.T.

Equipment identification provided by custome

Equipment Description Manufacturer Assigned equipment No. Aerosol Monitor

Certificate Information

Date of Receipt: 8 December 2023 Calibration Condition: 21.3°C, 56%RH, 1014hPa Date of Calibration: Adjustment: Due Date of Calibration: Appearance: Good Calibration Procedure: ISO 21501-4:2018 N/A Remark:

Reference Equipment Identification

Equipment Description Serial No. **Expiration Date** 8534 8534182605 Aerosol Monitor 24 November 2024

Result of Calibration

Indication

Gas	Reference Setting (mg/m³)	Measured reading (mg/m³)	Error (%)	Uncertainty (%)	Technical Requirement	Technical Reference Doc
Dust - TSP	0.103	0.100	-2.9	14.0	N/A	Mfr's Spec.
Dust - TSP	0.202	0.200	-1.0	14.0	N/A	Mfr's Spec.
Dust - TSP	0.300	0.299	-0.3	14.0	N/A	Mfr's Spec.

Note: The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of SVR. A coverage factor of 2 in assumed unies supplicitly intend.

Note2: The standard (3) and international (3) and international expectation are treasable to national or international recognized standard and are calibrated on a schedule to maintain the

accuracy and good condition.

The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the

Calibrated By:

Company Chop:

Wing Cheng

Warren Yeung

Certificate Issue Date: 19 December 2023

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited CC0072312

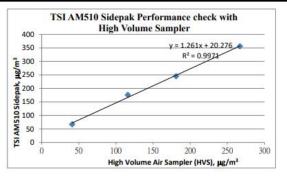
2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

Page 1 of 1

Personal Aerosol Monitor Performance check with High Volume Sampler

Preformance Check ref. No AS0240523-3 23/05/2024 Report Issue Date Date of performance check 23/05/2024

Objective:


A dust meter and a Total Suspended Particulate High Volume Air Sampler (HVS) were placed together to measure the Total Suspended Particulate (TSP) concentrations simultaneously to check the performance.

Equipment Used:

Equipment	Manufacturer and Model	Serial Number
Personal Aerosol Monitor	TSI AM510 Sidepak	11306015
Total Suspended Particulate High Volume Air Sampler	GS2310	10346

Resustt:

Equipment		Measurement	Result, μg/m ³	
TSI AM510 Sidepak	67	176	245	356
High Volume Air Sampler (HVS)	41	116	181	267

Tested by Checked by Name: Poon Tsz Wing Name: Choy Ching Yee

Form No. ENV CAL SAMPLER CC1 dd12/12/2003

Calibration Certificate of Dust Meter (TSI Sidepak AM510)

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong Tel: +852 25680106 Email: info@callab.com.hk

Fax: +852 30116194

ISO 21501-4:2018

Calibration Certificate No.: CC0212312

Information provided by customer Castco Testing Centre Limited

33, On Kui Street, Fanling, N.T.

Equipment identification provided by customer

Equipment Description Manufacturer Model No. Serial No. Assigned equipment No. Aerosol Monitor SidePak AM510 11506009 AAST-RSP-08

Certificate Information

Calibration Procedure:

Date of Receipt: 14 December 2023 Date of Calibration: 18 December 2023 Due Date of Calibration:

Calibration Condition: Adjustment: Appearance:

Website: www.callab.com.hk

21.3°C, 56%RH, 1014hPa Good

Reference Equipment Identification

Equipment Description Model Aerosol Monitor 8534 Serial No. **Expiration Date** 24 November 2024

Result of Calibration

Gas	Reference Setting (mg/m³)	Measured reading (mg/m³)	Error (%)	Uncertainty (%)	Technical Requirement	Technical Reference Doc
Oust - TSP	0.103	0.113	9.7	14.0	N/A	Mfr's Spec.
Oust - TSP	0.202	0.218	7.9	14.0	N/A	Mfr's Spec.
Oust - TSP	0.300	0.296	-1.3	14.0	N/A	Mfr's Spec.

Note: The estimated expanded uncertainties have been calculated in "Collustion and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of 50x. A coverage factor of 2 a secured unless explicitly stated.

Note: The standard of 3 and incorrument used in the collocation are traceasted to national or international recognised standard and are calibrated on a schedule to maintain the

accuracy and good condition. Note3: The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication reporting the lone term stability of the

Notes: The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calib

Calibrated By:

Checked and Approved By:

Warren Yeung Wing Cheng

Certificate Issue Date: 19 December 2023

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

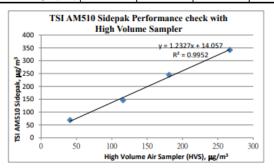
CC0212312 Page 1 of 1

Personal Aerosol Monitor Performance check with High Volume Sampler

Preformance Check ref. No	AS0240523-2	Report Issue Date	23/05/2024	
Date of performance check	23/05/2024	_		

Objective:

A dust meter and a Total Suspended Particulate High Volume Air Sampler (HVS) were placed together to measure the Total Suspended Particulate (TSP) concentrations simultaneously to check the performance.


Equipment Used:

Equipment	Manufacturer and Model	Serial Number
Personal Aerosol Monitor	TSI AM510 Sidepak	11506009
Total Suspended Particulate High Volume Air Sampler	GS2310	10346

Resustt:

Form No. ENV CAL SAMPLER CC1 4d12/12/2003

Equipment		Measurement	Result, µg/m ³		
TSI AM510 Sidepak	69	146	245 342		
High Volume Air Sampler (HVS)	41	116	181	267	

Checked by Tested by Poon Tsz Wing Choy Ching Yee

Catalogue of Weather Station

Cabled Vantage Pro2™ & Vantage Pro2 Plus™ Stations

6152C 6162C

Vantage Pro2™

The Vantage Pro2[™] (# 6152C) and Vantage Pro2[™] Plus (# 6162C) cabled weather stations include two components: the Integrated Sensor Suite (ISS) and the console. The ISS contains the sensor interface module (SIM), rain collector, an anemometer, and a passive radiation shield. The Vantage Pro2 console provides the user interface, data display, and calculations. The Vantage Pro2 Plus weather station includes two additional sensors that are optional on the Vantage Pro2 and purchased separately: the UV Sensor and the Solar Radiation Sensor. The console and ISS are powered by an AC-power adapter connected to the console. Batteries can be installed in the console to provide a backup power supply. Use WeatherLink® to let your weather station interface with a computer, log data, and upload weather information to the Internet. The 6152C and 6162C models rely on passive shielding to reduce solar-radiation induced temperature errors in the outside temperature sensor readings.

Integrated Sensor Suite (ISS)

Operating Temperature	-40° to +150°F (-40° to +65°C)
Non-operating Temperature	-40° to +158°F (-40° to +70°C)
	5 mA (average) at 4 to 6 VDC for ISS only. 10 mA average for both console and ISS
Connectors, Sensor	Modular RJ-11
Cable Type	4-conductor, 26 AWG
Cable Length, Anemometer	40' (12 m) (included); 240' (73 m) (maximum recommended)

Maximum displayable wind decreases as the length of cable increases, at 140' (42 m) of cable, the maximum wind speed displayed is 135 mph (60 m/s); at 240' (73 m), the maximum wind speed displayed is 100 mph (34 m/s)

Wind Speed Sensor Solid state magnetic sensor Wind Direction Sensor Wind vane with potentiometer (214 cm2) collection area Temperature Sensor Type...... PN Junction Silicon Diode Relative Humidity Sensor Type Film capacitor element Sensor Inputs

ISS Dimensions(not including anemometer or bird spikes):

Vantage Pro2 with Fan-Asprated Rad Shield............ 20.8" x 9.4" x 16.0" (528 mm x 239 mm x 406 mm) Vantage Pro2 Plus with Standard Rad Shield 14.3" x 9.7" x 14.5" (363 mm x 246 mm x 368 mm) Vantage Pro2 Plus with Fan-Aspirated Rad Shield 21.1" x 9.7" x 16.0" (536 mm x 246 mm x 406 mm)

DAVIS [""||| * Davis Instruments 3465 Diablo Ave., Hayward, CA 94545-2778 USA (510) 732-9229 * FAX (510) 670-0589 * sales@davisinstruments.com * www.davisinstruments.com

DS6152C, 6162C Rev. W 12/7/18

Vantage Pro2

Ultra Violet (UV) Radiation Index (requires UV sensor)

Historical Graph Data Hourly Average, Daily, Monthly Highs Alarm High Threshold from Instant Calculation

Wind

Wind Chill (Calculated)

Range -110° to +135°F (-79° to +57°C)

Source...... United States National Weather Service (NWS)/NOAA

Equation Used Osczevski (1995) (adopted by US NWS in 2001)

Variables Used Instant Outside Temperature and 10-min. Avg. Wind Speed

Current Display Data Instant Calculation

Current Graph Data Instant Calculation; Hourly, Daily and Monthly Low

Historical Graph Data. Hourly, Daily and Monthly Lows Alarm..... Low Threshold from Instant Calculation

Wind Direction

Update Interval 2.5 to 3 seconds

Monthly Dominant

Monthly Dominants

Wind Speed

other units are converted from mph and rounded to nearest 1 km/hr, 0.1

m/s or 1 knot

length of cable from anemometer to ISS increases.)

Current Display Data Instant

Current Graph Data Instant Reading; 10-minute and Hourly Average; Hourly High; Daily,

Monthly and Yearly High with Direction of High

Highs with Direction of Highs

High Thresholds from Instant Reading and 10-minute Average

Calibration Certificate of Weather Station

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong Tel: +852 25680106 Email: info@callab.com.hk Fax: +852 30116194 Website: www.callab.com.hk

Calibration Certificate No.: CC0852407

Information provided by customer Customer: Castco Testing Centre Limited Address: 33, On Kui Street, Fanling, N.T.

Equipment identification provided by customer

Equipment Description	Manufacturer	Model No.	Serial No.	Assigned equipment No.:
Weather Station	Davis	Vantage PRO 2	AZ170710016	AAST-W5-03

Certificate Information

Date of Receipt: 18 July 2024 24.4°C, 54%RH, 998hPa Calibration Condition: 24 July 2024 Date of Calibration: Adjustment: N/A Due Date of Calibration: N/A Good Appearance: Calibration Procedure: JJF 1183-2007, JJF 1076-2020, Remark: N/A SOP-116

Reference Equipment Identification

Equipment Description	Model	Serial No.	Expiration Date
Platinum resistance thermometer	KPPRHT-A-1	KCI I-1095, KCI P-1095	9 November 2024
Humidity sensor	KPPRHT-A-1	KCI I-1095, KCI P-1095	9 November 2024
Hot Wire Anemometer	9535	T95351316004	11 August 2024

Note: The estimated expended uncertainties have been calculated in "Crahuston and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of 95%. A coverage Social of 15 a sourced unknown by social confidence of 95%. A coverage Social of 15 a sourced unknown to response to most one of international recognised standard and are calibrated on a schedule to maintain the sociality and standard social confidence.

Note: The search of special confidence.

Note: The search is approach in the confidence refer to the condition of the instrument on the date of calibrations and carry no implication regarding the long term stability of the

Approved By:

lonew Warren Yeung

Certificate Issue Date: 29 July 2024 CF-BEG-04

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0852407 Page 1 of 2

Appendix G – Weather information

General Information

Date	Absolute Daily Min Temperature (°C)	Absolute Daily Max Temperature (°C)	Total Rainfall (mm)
01/08/2024	28.2	32.9	2.3
02/08/2024	28.2	31.5	0.4
03/08/2024	28.7	33.3	0
04/08/2024	28.3	34.2	0
05/08/2024	29.3	35.4	0
06/08/2024	26.6	34.9	10.3
07/08/2024	28.6	33.7	0
08/08/2024	29.3	33.2	0
09/08/2024	28.7	33	0
10/08/2024	29	32.7	Trace
11/08/2024	29.2	32	0
12/08/2024	26	31.8	20.9
13/08/2024	28	33.4	5
14/08/2024	28.2	30.5	0.1
15/08/2024	26	29.9	8
16/08/2024	26.5	29.5	0.4
17/08/2024	25.2	28.8	116.2
18/08/2024	25.8	30.3	32.5
19/08/2024	26.9	28.8	19.3
20/08/2024	25.6	28.5	11.4
21/08/2024	26.3	28.2	3.9
22/08/2024	26.6	32	0
23/08/2024	28	31.4	0
24/08/2024	28.1	34.3	0
25/08/2024	28	33.7	0
26/08/2024	28.4	33.8	0
27/08/2024	28.5	34.1	0
28/08/2024	27.6	34.8	Trace
29/08/2024	28.3	33.6	Trace
30/08/2024	27.9	33.7	23.3
31/08/2024	27.8	32.2	7.5

NOTE1: The above weather information was obtained from manned weather station of Hong Kong Observatory.

NOTE2: race means rainfall less than 0.05 mm

https://www.hko.gov.hk/en/cis/dailyExtract.htm?y=2024&m=8

Mean Wind Speed and Wind Direction recorded by the weather station setup at the rooftop of Hong Kong Children's Hospital

Date	Time	Wind Speed (m/s)	Wind Direction												
01/08/2024	0:00	1.3	90	02/08/2024	0:00	0.4	270	03/08/2024	0:00	0.4	67.5	04/08/2024	0:00	0.4	112.5
01/08/2024	1:00	2.2	90	02/08/2024	1:00	0.4	270	03/08/2024	1:00	0.4	112.5	04/08/2024	1:00	0.4	112.5
01/08/2024	2:00	1.3	67.5	02/08/2024	2:00	0.4	270	03/08/2024	2:00	0.9	22.5	04/08/2024	2:00	0.4	135
01/08/2024	3:00	1.8	22.5	02/08/2024	3:00	0.9	247.5	03/08/2024	3:00	0.9	90	04/08/2024	3:00	0.9	135
01/08/2024	4:00	1.3	67.5	02/08/2024	4:00	0.4	270	03/08/2024	4:00	0.9	292.5	04/08/2024	4:00	0.4	112.5
01/08/2024	5:00	1.3	90	02/08/2024	5:00	0.9	270	03/08/2024	5:00	0.4	292.5	04/08/2024	5:00	0.4	157.5
01/08/2024	6:00	1.8	135	02/08/2024	6:00	1.3	247.5	03/08/2024	6:00	0.4	292.5	04/08/2024	6:00	0.4	135
01/08/2024	7:00	1.8	67.5	02/08/2024	7:00	0.9	270	03/08/2024	7:00	0.9	22.5	04/08/2024	7:00	0.4	112.5
01/08/2024	8:00	1.3	225	02/08/2024	8:00	0.9	135	03/08/2024	8:00	0.4	22.5	04/08/2024	8:00	0.9	292.5
01/08/2024	9:00	1.3	157.5	02/08/2024	9:00	1.3	247.5	03/08/2024	9:00	0.9	337.5	04/08/2024	9:00	0.4	112.5
01/08/2024	10:00	1.8	112.5	02/08/2024	10:00	0.9	112.5	03/08/2024	10:00	0.9	270	04/08/2024	10:00	0.4	135
01/08/2024	11:00	1.8	67.5	02/08/2024	11:00	0.9	112.5	03/08/2024	11:00	0.4	22.5	04/08/2024	11:00	0.4	112.5
01/08/2024	12:00	2.2	22.5	02/08/2024	12:00	0.9	112.5	03/08/2024	12:00	0.9	202.5	04/08/2024	12:00	0.9	135
01/08/2024	13:00	2.7	45	02/08/2024	13:00	0.4	135	03/08/2024	13:00	0.4	270	04/08/2024	13:00	0.4	90
01/08/2024	14:00	2.2	45	02/08/2024	14:00	0.9	157.5	03/08/2024	14:00	0.4	247.5	04/08/2024	14:00	0.4	45
01/08/2024	15:00	2.7	45	02/08/2024	15:00	0.4	135	03/08/2024	15:00	1.3	202.5	04/08/2024	15:00	0.4	90
01/08/2024	16:00	3.1	90	02/08/2024	16:00	0.4	202.5	03/08/2024	16:00	1.3	247.5	04/08/2024	16:00	0.4	67.5
01/08/2024	17:00	1.3	67.5	02/08/2024	17:00	0.4	247.5	03/08/2024	17:00	0.4	247.5	04/08/2024	17:00	0.4	135
01/08/2024	18:00	1.3	67.5	02/08/2024	18:00	0.4	247.5	03/08/2024	18:00	0.4	157.5	04/08/2024	18:00	0.4	90
01/08/2024	19:00	1.3	135	02/08/2024	19:00	0.4	247.5	03/08/2024	19:00	0.9	202.5	04/08/2024	19:00	0.4	112.5
01/08/2024	20:00	0.4	67.5	02/08/2024	20:00	0.9	247.5	03/08/2024	20:00	0.4	225	04/08/2024	20:00	0.4	157.5
01/08/2024	21:00	1.3	90	02/08/2024	21:00	0.4	22.5	03/08/2024	21:00	0.4	225	04/08/2024	21:00	0.9	135
01/08/2024	22:00	0.9	67.5	02/08/2024	22:00	0.4	225	03/08/2024	22:00	0.4	225	04/08/2024	22:00	1.3	135
01/08/2024	23:00	0.9	67.5	02/08/2024	23:00	0.9	112.5	03/08/2024	23:00	0.4	225	04/08/2024	23:00	0.9	135

Mean Wind Speed and Wind Direction recorded by the weather station setup at the rooftop of Hong Kong Children's Hospital

Date	Time	Wind Speed (m/s)	Wind Direction												
05/08/2024	0:00	0.9	112.5	06/08/2024	0:00	0.9	337.5	07/08/2024	0:00	0.4	247.5	08/08/2024	0:00	0.4	247.5
05/08/2024	1:00	0.9	112.5	06/08/2024	1:00	0.4	337.5	07/08/2024	1:00	0.4	225	08/08/2024	1:00	0.4	225
05/08/2024	2:00	0.4	135	06/08/2024	2:00	0.4	337.5	07/08/2024	2:00	0.4	247.5	08/08/2024	2:00	0.9	270
05/08/2024	3:00	0.9	157.5	06/08/2024	3:00	1.3	337.5	07/08/2024	3:00	0.4	270	08/08/2024	3:00	1.3	247.5
05/08/2024	4:00	0.4	135	06/08/2024	4:00	2.2	45	07/08/2024	4:00	0.9	270	08/08/2024	4:00	1.3	135
05/08/2024	5:00	0.4	202.5	06/08/2024	5:00	2.2	292.5	07/08/2024	5:00	0.4	247.5	08/08/2024	5:00	0.4	112.5
05/08/2024	6:00	0.4	247.5	06/08/2024	6:00	1.8	337.5	07/08/2024	6:00	0.9	270	08/08/2024	6:00	0.4	157.5
05/08/2024	7:00	0.4	247.5	06/08/2024	7:00	1.8	22.5	07/08/2024	7:00	1.8	247.5	08/08/2024	7:00	0.4	135
05/08/2024	8:00	0.4	247.5	06/08/2024	8:00	2.2	45	07/08/2024	8:00	1.8	247.5	08/08/2024	8:00	0.4	112.5
05/08/2024	9:00	0.9	247.5	06/08/2024	9:00	1.8	45	07/08/2024	9:00	1.3	247.5	08/08/2024	9:00	0.9	292.5
05/08/2024	10:00	1.3	202.5	06/08/2024	10:00	1.3	315	07/08/2024	10:00	1.3	270	08/08/2024	10:00	0.4	112.5
05/08/2024	11:00	1.8	202.5	06/08/2024	11:00	2.2	202.5	07/08/2024	11:00	0.9	270	08/08/2024	11:00	0.4	135
05/08/2024	12:00	1.3	225	06/08/2024	12:00	0.9	247.5	07/08/2024	12:00	0.9	225	08/08/2024	12:00	0.4	112.5
05/08/2024	13:00	0.4	270	06/08/2024	13:00	1.3	22.5	07/08/2024	13:00	0.4	225	08/08/2024	13:00	0.9	135
05/08/2024	14:00	0.9	247.5	06/08/2024	14:00	1.3	202.5	07/08/2024	14:00	0.9	315	08/08/2024	14:00	1.3	90
05/08/2024	15:00	0.4	225	06/08/2024	15:00	1.8	270	07/08/2024	15:00	0.4	315	08/08/2024	15:00	1.3	22.5
05/08/2024	16:00	0.4	292.5	06/08/2024	16:00	1.8	247.5	07/08/2024	16:00	1.3	315	08/08/2024	16:00	0.9	112.5
05/08/2024	17:00	0.9	315	06/08/2024	17:00	0.9	247.5	07/08/2024	17:00	1.3	157.5	08/08/2026	17:00	1.3	157.5
05/08/2024	18:00	0.9	247.5	06/08/2024	18:00	0.9	247.5	07/08/2024	18:00	1.3	157.5	08/08/2024	18:00	0.9	135
05/08/2024	19:00	1.3	225	06/08/2024	19:00	1.3	315	07/08/2024	19:00	1.3	202.5	08/08/2024	19:00	1.3	112.5
05/08/2024	20:00	1.3	157.5	06/08/2024	20:00	1.3	270	07/08/2024	20:00	0.9	202.5	08/08/2024	20:00	1.3	157.5
05/08/2024	21:00	1.3	202.5	06/08/2024	21:00	1.3	270	07/08/2024	21:00	0.9	292.5	08/08/2024	21:00	1.3	112.5
05/08/2024	22:00	0.9	202.5	06/08/2024	22:00	0.9	337.5	07/08/2024	22:00	0.9	247.5	08/08/2024	22:00	1.3	90
05/08/2024	23:00	1.3	247.5	06/08/2024	23:00	1.3	247.5	07/08/2024	23:00	0.9	270	08/08/2024	23:00	0.9	22.5

Mean Wind Speed and Wind Direction recorded by the weather station setup at the rooftop of Hong Kong Children's Hospital

Date	Time	Wind Speed (m/s)	Wind Direction												
09/08/2024	0:00	0.9	90	10/08/2024	0:00	0.9	270	11/08/2024	0:00	0.9	112.5	12/08/2024	0:00	1.8	45
09/08/2024	1:00	0.9	22.5	10/08/2024	1:00	0.9	292.5	11/08/2024	1:00	0.9	90	12/08/2024	1:00	1.8	112.5
09/08/2024	2:00	0.4	45	10/08/2024	2:00	0.9	135	11/08/2024	2:00	0.9	135	12/08/2024	2:00	1.8	22.5
09/08/2024	3:00	1.3	67.5	10/08/2024	3:00	0.9	112.5	11/08/2024	3:00	0.9	135	12/08/2024	3:00	0.4	112.5
09/08/2024	4:00	1.3	112.5	10/08/2024	4:00	0.9	135	11/08/2028	4:00	0.9	112.5	12/08/2024	4:00	1.3	90
09/08/2024	5:00	0.9	157.5	10/08/2024	5:00	1.3	112.5	11/08/2024	5:00	0.9	135	12/08/2024	5:00	0.9	45
09/08/2024	6:00	0.9	315	10/08/2024	6:00	0.9	135	11/08/2024	6:00	0.9	90	12/08/2024	6:00	0.4	45
09/08/2024	7:00	0.9	292.5	10/08/2024	7:00	0.4	45	11/08/2024	7:00	1.3	112.5	12/08/2024	7:00	0.4	292.5
09/08/2024	8:00	0.9	135	10/08/2224	8:00	0.4	135	11/08/2024	8:00	1.3	112.5	12/08/2024	8:00	0.9	22.5
09/08/2024	9:00	0.9	45	10/08/2024	9:00	0.4	112.5	11/08/2024	9:00	0.9	112.5	12/08/2024	9:00	2.2	247.5
09/08/2024	10:00	1.3	202.5	10/08/2024	10:00	0.4	67.5	11/08/2024	10:00	1.8	112.5	12/08/2024	10:00	2.7	337.5
09/08/2024	11:00	0.9	135	10/08/2024	11:00	0.4	90	11/08/2026	11:00	0.9	112.5	12/08/2024	11:00	2.2	270
09/08/2024	12:00	0.9	112.5	10/08/2024	12:00	0.4	135	11/08/2024	12:00	1.3	112.5	12/08/2024	12:00	2.2	247.5
09/08/2024	13:00	0.9	45	10/08/2024	13:00	0.4	90	11/08/2024	13:00	1.3	67.5	12/08/2024	13:00	2.7	337.5
09/08/2024	14:00	0.9	135	10/08/2024	14:00	0.4	90	11/08/2024	14:00	0.9	112.5	12/08/2024	14:00	2.2	270
09/08/2024	15:00	0.9	180	10/08/2024	15:00	0.4	112.5	11/08/2024	15:00	0.9	67.5	12/08/2024	15:00	1.8	157.5
09/08/2024	16:00	0.9	112.5	10/08/2024	16:00	0.4	112.5	11/08/2024	16:00	1.3	112.5	12/08/2024	16:00	2.2	270
09/08/2024	17:00	0.9	135	10/08/2024	17:00	0.9	90	11/08/2024	17:00	0.9	135	12/08/2024	17:00	1.8	270
09/08/2024	18:00	0.9	112.5	10/08/2024	18:00	1.3	112.5	11/08/2024	18:00	0.9	157.5	12/08/2024	18:00	2.2	22.5
09/08/2024	19:00	0.9	112.5	10/08/2024	19:00	1.3	90	11/08/2024	19:00	0.9	90	12/08/2024	19:00	1.3	22.5
09/08/2024	20:00	1.3	135	10/08/2024	20:00	1.8	90	11/08/2024	20:00	0.9	135	12/08/2024	20:00	1.8	90
09/08/2024	21:00	0.9	135	10/08/2024	21:00	1.8	90	11/08/2024	21:00	0.9	112.5	12/08/2024	21:00	1.3	135
09/08/2024	22:00	1.8	135	10/08/2024	22:00	1.8	90	11/08/2024	22:00	0.9	90	12/08/2024	22:00	2.2	270
09/08/2024	23:00	1.8	112.5	10/08/2024	23:00	0.9	112.5	11/08/2024	23:00	0.4	90	12/08/2024	23:00	2.2	315

Date	Time	Wind Speed (m/s)	Wind Direction												
13/08/2024	0:00	2.2	67.5	14/08/2024	0:00	1.3	135	15/08/2024	0:00	0.4	135	16/08/2024	0:00	0.9	45
13/08/2024	1:00	1.8	135	14/08/2024	1:00	0.9	112.5	15/08/2024	1:00	1.3	90	16/08/2024	1:00	0.4	337.5
13/08/2024	2:00	1.3	22.5	14/08/2024	2:00	1.8	90	15/08/2024	2:00	0.9	135	16/08/2024	2:00	0.4	270
13/08/2024	3:00	0.9	135	14/08/2024	3:00	1.3	112.5	15/08/2024	3:00	0.4	90	16/08/2024	3:00	0.9	315
13/08/2024	4:00	1.3	112.5	14/08/2024	4:00	1.3	135	15/08/2024	4:00	0.4	292.5	16/08/2024	4:00	0.4	45
13/08/2024	5:00	1.3	112.5	14/08/2024	5:00	1.3	180	15/08/2024	5:00	0.4	67.5	16/08/2024	5:00	0.9	270
13/08/2024	6:00	1.3	112.5	14/08/2024	6:00	0.9	90	15/08/2024	6:00	0.4	90	16/08/2024	6:00	0.4	45
13/08/2024	7:00	1.8	135	14/08/2024	7:00	0.9	135	15/08/2024	7:00	0.4	157.5	16/08/2024	7:00	0.4	22.5
13/08/2024	8:00	1.3	112.5	14/08/2024	8:00	1.8	45	15/08/2024	8:00	0.4	112.5	16/08/2024	8:00	0.9	45
13/08/2024	9:00	1.3	112.5	14/08/2024	9:00	1.3	135	15/08/2024	9:00	0.4	67.5	16/08/2024	9:00	0.4	90
13/08/2024	10:00	1.3	67.5	14/08/2024	10:00	1.8	112.5	15/08/2024	10:00	0.4	135	16/08/2024	10:00	0.4	270
13/08/2024	11:00	2.2	157.5	14/08/2024	11:00	1.8	112.5	15/08/2024	11:00	0.4	157.5	16/08/2024	11:00	0.9	135
13/08/2024	12:00	1.3	112.5	14/08/2024	12:00	1.3	90	15/08/2024	12:00	0.4	157.5	16/08/2024	12:00	0.9	135
13/08/2024	13:00	1.3	180	14/08/2024	13:00	0.9	135	15/08/2024	13:00	0.9	112.5	16/08/2024	13:00	0.9	112.5
13/08/2024	14:00	1.3	112.5	14/08/2024	14:00	0.4	135	15/08/2024	14:00	1.3	112.5	16/08/2024	14:00	0.4	247.5
13/08/2024	15:00	0.9	90	14/08/2024	15:00	0.9	112.5	15/08/2024	15:00	0.9	112.5	16/08/2024	15:00	0.4	202.5
13/08/2024	16:00	1.8	135	14/08/2024	16:00	0.9	112.5	15/08/2024	16:00	0.9	67.5	16/08/2024	16:00	0.4	112.5
13/08/2024	17:00	0.4	112.5	14/08/2024	17:00	0.9	135	15/08/2024	17:00	0.9	112.5	16/08/2024	17:00	0.4	135
13/08/2024	18:00	1.3	157.5	14/08/2024	18:00	0.9	112.5	15/08/2024	18:00	0.4	337.5	16/08/2024	18:00	0.4	112.5
13/08/2024	19:00	1.3	90	14/08/2024	19:00	0.9	67.5	15/08/2024	19:00	0.4	135	16/08/2024	19:00	0.4	112.5
13/08/2024	20:00	0.9	90	14/08/2024	20:00	1.8	90	15/08/2024	20:00	0.9	112.5	16/08/2024	20:00	0.4	90
13/08/2024	21:00	1.3	22.5	14/08/2024	21:00	1.8	135	15/08/2024	21:00	0.9	22.5	16/08/2024	21:00	0.4	90
13/08/2024	22:00	1.3	90	14/08/2024	22:00	1.8	45	15/08/2024	22:00	1.3	135	16/08/2024	22:00	0.4	112.5
13/08/2024	23:00	1.8	45	14/08/2024	23:00	1.3	90	15/08/2024	23:00	1.8	112.5	16/08/2024	23:00	0.9	112.5

Date	Time	Wind Speed (m/s)	Wind Direction												
17/08/2024	0:00	1.8	90	18/08/2024	0:00	1.8	112.5	19/08/2024	0:00	1.3	90	20/08/2024	0:00	1.3	90
17/08/2024	1:00	2.7	90	18/08/2024	1:00	1.8	90	19/08/2024	1:00	1.3	135	20/08/2024	1:00	1.3	112.5
17/08/2024	2:00	3.1	112.5	18/08/2024	2:00	1.3	45	19/08/2024	2:00	1.8	135	20/08/2024	2:00	1.3	90
17/08/2024	3:00	2.2	202.5	18/08/2024	3:00	2.2	22.5	19/08/2024	3:00	1.8	90	20/08/2024	3:00	1.3	112.5
17/08/2024	4:00	4.5	45	18/08/2024	4:00	1.3	67.5	19/08/2024	4:00	0.9	112.5	20/08/2024	4:00	1.3	90
17/08/2024	5:00	5.4	45	18/08/2024	5:00	2.2	135	19/08/2024	5:00	1.8	337.5	20/08/2024	5:00	1.8	112.5
17/08/2024	6:00	3.1	90	18/08/2024	6:00	3.1	135	19/08/2024	6:00	1.3	112.5	20/08/2024	6:00	1.3	67.5
17/08/2024	7:00	3.1	112.5	18/08/2024	7:00	2.7	180	19/08/2024	7:00	1.3	90	20/08/2024	7:00	1.3	112.5
17/08/2024	8:00	4	112.5	18/08/2024	8:00	3.1	67.5	19/08/2024	8:00	1.3	90	20/08/2024	8:00	1.3	67.5
17/08/2024	9:00	3.6	112.5	18/08/2024	9:00	0.9	45	19/08/2024	9:00	1.3	112.5	20/08/2024	9:00	2.2	67.5
17/08/2024	10:00	4.5	247.5	18/08/2024	10:00	1.3	270	19/08/2024	10:00	1.3	112.5	20/08/2024	10:00	1.3	112.5
17/08/2024	11:00	3.6	315	18/08/2024	11:00	1.3	247.5	19/08/2024	11:00	2.2	135	20/08/2024	11:00	1.3	112.5
17/08/2024	12:00	3.6	315	18/08/2024	12:00	1.3	247.5	19/08/2024	12:00	1.3	135	20/08/2024	12:00	1.3	90
17/08/2024	13:00	2.7	315	18/08/2024	13:00	0.9	292.5	19/08/2024	13:00	1.8	112.5	20/08/2024	13:00	0.9	135
17/08/2024	14:00	2.2	315	18/08/2024	14:00	1.3	225	19/08/2024	14:00	1.3	90	20/08/2024	14:00	1.8	135
17/08/2024	15:00	2.2	247.5	18/08/2024	15:00	0.9	247.5	19/08/2024	15:00	1.3	135	20/08/2024	15:00	1.3	112.5
17/08/2024	16:00	2.7	247.5	18/08/2024	16:00	0.9	247.5	19/08/2024	16:00	1.8	135	20/08/2024	16:00	1.3	112.5
17/08/2024	17:00	2.2	157.5	18/08/2024	17:00	0.9	157.5	19/08/2024	17:00	1.8	112.5	20/08/2024	17:00	1.3	112.5
17/08/2024	18:00	1.8	135	18/08/2024	18:00	0.4	112.5	19/08/2024	18:00	1.3	135	20/08/2024	18:00	0.9	90
17/08/2024	19:00	2.2	157.5	18/08/2024	19:00	0.9	157.5	19/08/2024	19:00	1.3	90	20/08/2024	19:00	1.3	112.5
17/08/2024	20:00	1.8	135	18/08/2024	20:00	1.3	157.5	19/08/2024	20:00	1.8	45	20/08/2024	20:00	0.4	112.5
17/08/2024	21:00	2.2	112.5	18/08/2024	21:00	0.9	247.5	19/08/2024	21:00	1.3	22.5	20/08/2024	21:00	0.4	90
17/08/2024	22:00	2.7	135	18/08/2024	22:00	0.4	112.5	19/08/2024	22:00	2.7	45	20/08/2024	22:00	0.9	135
17/08/2024	23:00	3.1	157.5	18/08/2024	23:00	0.9	112.5	19/08/2024	23:00	1.8	135	20/08/2024	23:00	0.9	90

Date	Time	Wind Speed (m/s)	Wind Direction												
21/08/2024	0:00	0.9	67.5	22/08/2024	0:00	0.4	90	23/08/2024	0:00	0.9	315	24/08/2024	0:00	0.4	90
21/08/2024	1:00	0.4	112.5	22/08/2024	1:00	0.4	22.5	23/08/2024	1:00	1.3	292.5	24/08/2024	1:00	0.4	22.5
21/08/2024	2:00	0.4	90	22/08/2024	2:00	0.9	90	23/08/2024	2:00	0.4	45	24/08/2024	2:00	1.3	90
21/08/2024	3:00	0.9	112.5	22/08/2024	3:00	0.9	67.5	23/08/2024	3:00	0.4	45	24/08/2024	3:00	0.9	112.5
21/08/2024	4:00	0.9	90	22/08/2024	4:00	0.4	112.5	23/08/2024	4:00	0.4	67.5	24/08/2024	4:00	0.9	112.5
21/08/2024	5:00	1.3	112.5	22/08/2024	5:00	0.4	90	23/08/2024	5:00	0.9	90	24/08/2024	5:00	0.9	135
21/08/2024	6:00	1.3	67.5	22/08/2024	6:00	0.9	112.5	23/08/2024	6:00	0.4	135	24/08/2024	6:00	0.9	90
21/08/2024	7:00	1.3	112.5	22/08/2024	7:00	0.9	90	23/08/2024	7:00	0.9	90	24/08/2024	7:00	0.9	112.5
21/08/2024	8:00	0.9	67.5	22/08/2024	8:00	1.3	112.5	23/08/2024	8:00	0.4	112.5	24/08/2024	8:00	1.8	112.5
21/08/2024	9:00	1.3	67.5	22/08/2024	9:00	1.3	67.5	23/08/2024	9:00	0.9	135	24/08/2024	9:00	0.9	112.5
21/08/2024	10:00	0.9	90	22/08/2024	10:00	1.3	112.5	23/08/2024	10:00	1.3	112.5	24/08/2024	10:00	0.9	90
21/08/2024	11:00	0.9	90	22/08/2024	11:00	0.9	67.5	23/08/2024	11:00	1.3	112.5	24/08/2024	11:00	1.3	90
21/08/2024	12:00	0.9	67.5	22/08/2024	12:00	1.3	67.5	23/08/2024	12:00	0.9	157.5	24/08/2024	12:00	0.9	90
21/08/2024	13:00	0.4	112.5	22/08/2024	13:00	0.9	90	23/08/2024	13:00	1.3	90	24/08/2024	13:00	0.4	67.5
21/08/2024	14:00	0.9	67.5	22/08/2024	14:00	0.9	90	23/08/2024	14:00	1.3	112.5	24/08/2024	14:00	0.4	112.5
21/08/2024	15:00	0.4	135	22/08/2024	15:00	0.9	67.5	23/08/2024	15:00	0.9	90	24/08/2024	15:00	0.4	22.5
21/08/2024	16:00	0.4	67.5	22/08/2024	16:00	0.4	112.5	23/08/2024	16:00	0.9	67.5	24/08/2024	16:00	2.7	270
21/08/2024	17:00	0.9	67.5	22/08/2024	17:00	0.4	90	23/08/2024	17:00	0.4	112.5	24/08/2024	17:00	3.1	0
21/08/2024	18:00	0.9	90	22/08/2024	18:00	0.9	112.5	23/08/2024	18:00	0.9	67.5	24/08/2024	18:00	2.2	270
21/08/2024	19:00	0.9	90	22/08/2024	19:00	0.9	90	23/08/2024	19:00	1.3	67.5	24/08/2024	19:00	0.4	337.5
21/08/2024	20:00	0.9	90	22/08/2024	20:00	1.3	112.5	23/08/2024	20:00	0.9	90	24/08/2024	20:00	1.3	270
21/08/2024	21:00	1.3	67.5	22/08/2024	21:00	1.3	67.5	23/08/2024	21:00	0.9	90	24/08/2024	21:00	0.9	247.5
21/08/2024	22:00	0.9	67.5	22/08/2024	22:00	1.3	112.5	23/08/2024	22:00	0.9	67.5	24/08/2024	22:00	0.4	225
21/08/2024	23:00	1.3	90	22/08/2024	23:00	0.9	67.5	23/08/2024	23:00	1.8	90	24/08/2024	23:00	0.4	180

Date	Time	Wind Speed (m/s)	Wind Direction												
25/08/2024	0:00	2.2	112.5	26/08/2024	0:00	1.3	67.5	27/08/2024	0:00	1.3	90	28/08/2024	0:00	1.3	90
25/08/2024	1:00	2.2	90	26/08/2024	1:00	0.9	90	27/08/2024	1:00	1.8	67.5	28/08/2024	1:00	0.9	270
25/08/2024	2:00	2.7	112.5	26/08/2024	2:00	0.9	90	27/08/2024	2:00	0.9	112.5	28/08/2024	2:00	0.4	225
25/08/2024	3:00	1.8	112.5	26/08/2024	3:00	0.9	45	27/08/2024	3:00	0.4	112.5	28/08/2024	3:00	0.9	225
25/08/2024	4:00	2.2	90	26/08/2024	4:00	0.9	247.5	27/08/2024	4:00	0.4	90	28/08/2024	4:00	1.3	292.5
25/08/2024	5:00	1.3	90	26/08/2024	5:00	0.4	225	27/08/2024	5:00	0.9	112.5	28/08/2024	5:00	0.9	247.5
25/08/2024	6:00	1.3	112.5	26/08/2024	6:00	0.9	67.5	27/08/2024	6:00	0.9	90	28/08/2024	6:00	1.8	270
25/082024	7:00	1.3	112.5	26/08/2024	7:00	0.4	270	27/08/2024	7:00	1.3	90	28/08/2024	7:00	2.2	270
25/08/2024	8:00	2.2	112.5	26/08/2024	8:00	0.4	247.5	27/08/2024	8:00	1.3	112.5	28/08/2024	8:00	1.3	135
25/08/2024	9:00	2.2	90	26/08/2024	9:00	0.4	180	27/08/2024	9:00	0.9	90	28/08/2024	9:00	0.9	315
25/08/2024	10:00	2.7	112.5	26/08/2024	10:00	0.4	247.5	27/08/2024	10:00	0.9	90	28/08/2024	10:00	0.4	315
25/08/2024	11:00	1.8	112.5	26/08/2024	11:00	0.4	270	27/08/2024	11:00	1.3	112.5	28/08/2024	11:00	0.9	45
25/08/2024	12:00	2.2	90	26/08/2024	12:00	0.4	135	27/08/2024	12:00	1.3	112.5	28/08/2024	12:00	0.9	247.5
25/08/2024	13:00	1.3	90	26/08/2024	13:00	0.4	157.5	27/08/2024	13:00	0.9	135	28/08/2024	13:00	1.8	270
25/08/2024	14:00	1.3	112.5	26/08/2024	14:00	0.4	157.5	27/08/2024	14:00	0.9	112.5	28/08/2024	14:00	1.3	270
25/08/2024	15:00	1.3	112.5	26/08/2024	15:00	0.4	202.5	27/08/2024	15:00	0.4	112.5	28/08/2024	15:00	1.8	270
25/08/2024	16:00	0.9	135	26/08/2024	16:00	1.3	225	27/08/2024	16:00	0.9	112.5	28/08/2024	16:00	1.3	247.5
25/08/2024	17:00	1.3	90	26/08/2024	17:00	1.3	247.5	27/08/2024	17:00	0.4	112.5	28/08/2024	17:00	1.3	135
25/08/2024	18:00	0.9	112.5	26/08/2024	18:00	0.9	135	27/08/2024	18:00	0.4	135	28/08/2024	18:00	1.3	135
25/08/2024	19:00	0.9	112.5	26/08/2024	19:00	0.9	112.5	27/08/2024	19:00	0.9	180	28/08/2024	19:00	1.8	135
25/08/2024	20:00	1.8	112.5	26/08/2024	20:00	1.3	22.5	27/08/2024	20:00	0.4	247.5	28/08/2024	20:00	1.3	202.5
25/08/2024	21:00	0.4	90	26/08/2024	21:00	1.3	135	27/08/2024	21:00	0.4	270	28/08/2024	21:00	0.9	270
25/08/2024	22:00	1.3	45	26/08/2024	22:00	2.2	90	27/08/2024	22:00	0.4	270	28/08/2024	22:00	1.3	247.5
25/08/2024	23:00	0.9	112.5	26/08/2024	23:00	1.8	112.5	27/08/2024	23:00	0.4	247.5	28/08/2024	23:00	1.3	225

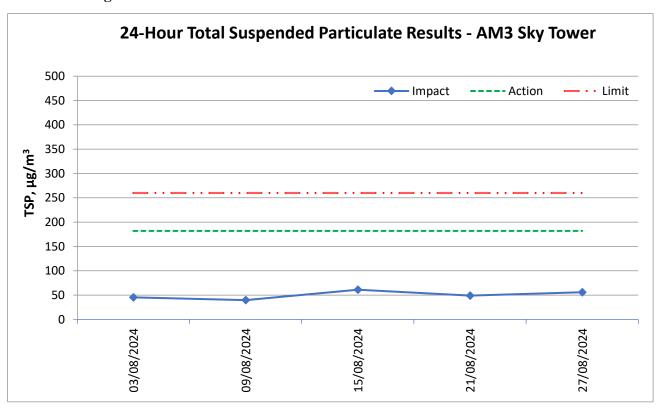
Date	Time	Wind Speed (m/s)	Wind Direction	Date	Time	Wind Speed (m/s)	Wind Direction	Date	Time	Wind Speed (m/s)	Wind Direction	Date	Time	Wind Speed (m/s)	Wind Direction
29/08/2024	0:00	0.4	112.5	30/08/2024	0:00	1.3	247.5	31/08/2024	0:00	1.8	247.5				
29/08/2024	1:00	0.9	112.5	30/08/2024	1:00	1.8	247.5	31/08/2024	1:00	1.3	270				
29/08/2024	2:00	1.8	90	30/08/2024	2:00	1.3	270	31/08/2024	2:00	1.8	270				
29/08/2024	3:00	1.3	22.5	30/08/2024	3:00	1.3	247.5	31/08/2024	3:00	1.3	247.5				
29/08/2024	4:00	0.4	22.5	30/08/2024	4:00	1.3	247.5	31/08/2024	4:00	1.3	247.5				
29/08/2024	5:00	1.3	270	30/08/2024	5:00	1.8	270	31/08/2024	5:00	1.3	247.5				
29/08/2024	6:00	1.3	135	30/08/2024	6:00	2.7	270	31/08/2024	6:00	1.8	247.5				
29/08/2024	7:00	1.8	22.5	30/08/2024	7:00	2.2	247.5	31/08/2024	7:00	1.3	270				
29/08/2024	8:00	0.9	292.5	30/08/2024	8:00	1.8	247.5	31/08/2024	8:00	1.3	247.5				
29/08/2024	9:00	0.9	90	30/08/2024	9:00	2.2	247.5	31/08/2024	9:00	1.3	247.5				
29/08/2024	10:00	0.9	22.5	30/08/2024	10:00	2.2	270	31/08/2024	10:00	1.3	112.5				
29/08/2024	11:00	0.4	337.5	30/08/2024	11:00	1.8	247.5	31/08/2024	11:00	1.3	135				
29/08/2024	12:00	0.9	292.5	30/08/2024	12:00	1.3	135	31/08/2024	12:00	1.8	135				
29/08/2024	13:00	1.3	90	30/08/2024	13:00	1.3	90	31/08/2024	13:00	1.8	112.5				
29/08/2024	14:00	0.9	315	30/08/2024	14:00	1.8	247.5	31/08/2024	14:00	1.3	112.5				
29/08/2024	15:00	0.4	112.5	30/08/2024	15:00	1.3	22.5	31/08/2024	15:00	1.3	157.5				
29/08/2024	16:00	0.9	247.5	30/08/2024	16:00	0.9	90	31/08/2024	16:00	1.8	135				
29/08/2024	17:00	0.9	247.5	30/08/2024	17:00	1.3	22.5	31/08/2024	17:00	1.3	135				
29/08/2024	18:00	1.3	90	30/08/2024	18:00	0.9	315	31/08/2024	18:00	1.3	135				
29/08/2024	19:00	1.3	45	30/08/2024	19:00	0.9	90	31/08/2024	19:00	1.3	112.5				
29/08/2024	20:00	0.9	247.5	30/08/2024	20:00	1.3	67.5	31/08/2024	20:00	0.4	112.5				
29/08/2024	21:00	1.8	112.5	30/08/2024	21:00	0.9	22.5	31/08/2024	21:00	0.4	112.5				
29/08/2024	22:00	1.8	112.5	30/08/2024	22:00	0.9	90	31/08/2024	22:00	0.9	90				
29/08/2024	23:00	0.4	135	30/08/2024	23:00	1.8	337.5	31/08/2024	23:00	0.4	135				

Appendix H-24-hr TSP monitoring results and graphical presentation

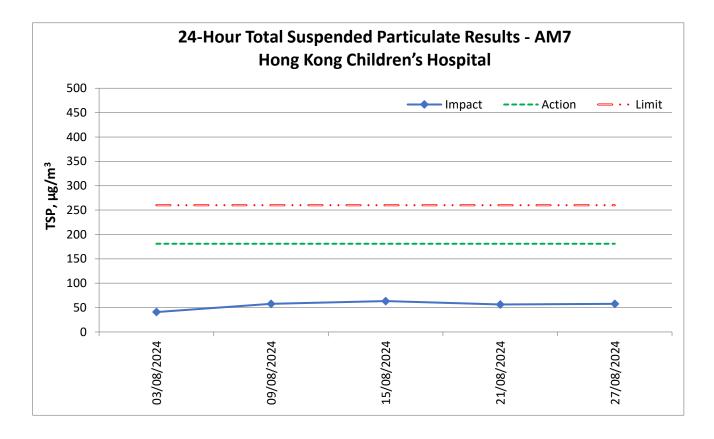
Location: AM3 – Sky Tower

Start Date	Weather	Air Temp.	Atmospheric Pressure	Filter w	eight (g)	Particulate	Elapso	e Time	Sampling Time	Flow (cf		Av. Flow	Total vol.	Conc.
		(°C)	(hPa)	Initial	Final	weight (g)	Initial	Final	(min)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
03/08/2024	Sunny	34.6	1008.7	15.3106	15.3924	0.0818	2024/8/3 9:34	2024/8/4 9:34	1440.0	46	46	1.25	1805	45
09/08/2024	Sunny	32.2	1005.6	18.4854	18.5609	0.0755	2024/8/9 13:23	2024/8/10 13:23	1440.0	48	48	1.32	1902	40
15/08/2024	Cloudy	30.6	1005.2	18.2312	18.3428	0.1116	2024/8/15 9:35	2024/8/16 9:35	1440.0	46	46	1.27	1826	61
21/08/2024	Cloudy	28.5	1009.8	15.4161	15.5062	0.0901	2024/8/21 13:24	2024/8/22 13:24	1440.0	46	46	1.28	1837	49
27/08/2024	Sunny	31.5	1005.4	18.0874	18.1897	0.1023	2024/8/27 9:36	2024/8/28 9:36	1440.0	46	46	1.27	1824	56

Maximum	61
Minimum	40
Average	50
Action Level	182
Limit Level	260


Location: AM4(A) - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop

Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. No 24-TSP monitoring was conducted at AM4(A) ET will resume the impact monitoring once the alternative monitoring location for AM4(A) is confirmed.


Location: AM7 – Hong Kong Children's Hospital

Start Date	Weather	Air Temp.	Atmospheric Pressure	Filter we	eight (g)	Particulate	Elapse	e Time	Sampling Time	Flow (cf		Av. Flow	Total vol.	Conc.
		(°C)	(hPa)	Initial	Final	weight (g)	Initial	Final	(min)	Initial	Final	(m³/min)	(m^3)	$(\mu g/m^3)$
03/08/2024	Sunny	34.6	1008.7	15.3046	15.3799	0.0753	2024/8/3 9:28	2024/8/4 9:28	1440.0	46	46	1.28	1845	41
09/08/2024	Sunny	32.2	1005.6	15.3362	15.4561	0.1199	2024/8/9 13:39	2024/8/10 13:39	1440.0	51	51	1.44	2078	58
15/08/2024	Cloudy	30.6	1005.2	18.1561	18.2855	0.1294	2024/8/15 9:27	2024/8/16 9:27	1440.0	50	50	1.42	2042	63
21/08/2024	Cloudy	28.5	1009.8	18.2196	18.3305	0.1109	2024/8/21 13:28	2024/8/22 13:28	1440.0	48	48	1.37	1971	56
27/08/2024	Sunny	31.5	1005.4	15.2615	15.3746	0.1131	2024/8/27 9:40	2024/8/28 9:40	1440.0	48	48	1.36	1957	58

24-hour average TSP

Note: Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. No 24-TSP monitoring was conducted at AM4(A). ET will resume the impact monitoring once the alternative monitoring location for AM4(A) is confirmed.

Appendix 1 – 1-hr 1SP monitoring results and graphical presentation

Location:
AM3 Sky Tower

Date	Measure	eme	nt Period	1-hr TSP concentration, g/m ³	Weather				
	9:00		10:00	37					
03/08/2024	10:00	1	11:00	40	Sunny				
	11:00	-	12:00	41					
	13:00		14:00	31					
09/08/2024	14:00	-	15:00	33	Sunny				
	15:00	1	16:00	34					
	9:00	-	10:00	54					
15/08/2024	10:00	-	11:00	54	Cloudy				
	11:00	-	12:00	50					
	13:00	-	14:00	36					
21/08/2024	14:00	1	15:00	36	Cloudy				
	15:00	1	16:00	42					
	9:00	-	10:00	57					
27/08/2024	10:00	1	11:00	64	Sunny				
	11:00	1	12:00	64					
N	laximum	1		64					
N	Minimum	l		31					
	Average			45					
	tion Lev			297					
Li	imit Leve	:1		500					

Date Measurement Period 1-hr TSP concentration, μg/m³ Weather 14:00 13:00 53 Location: 14:00 15:00 59 03/08/2024 Sunny AM4(A) -15:00 16:00 59 The Hong Kong 9:00 10:00 60 Society for the 09/08/2024 10:00 11:00 64 Sunny Blind's Factory 65 **Sheltered** 11:00 12:00 cum Workshop 13:00 14:00 71 15/08/2024 14:00 15:00 70 Cloudy 15:00 78 16:00 9:00 10:00 44 21/08/2024 10:00 11:00 49 Cloudy 12:00 11:00 53 14:45 15:45 83 27/08/2024 15:45 16:45 88 Sunny 17:45 16:45 89 89 Maximum

NOTE: Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since1 Sept 2022. 1-hr TSP monitoring at AM4(A) were conducted on the ground floor with orienting to the Project site. ET will resume the impact monitoring once the alternative monitoring location for AM4(A) is confirmed.

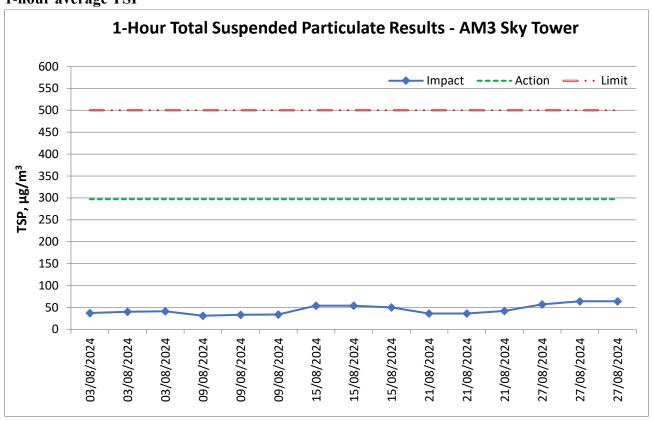
44

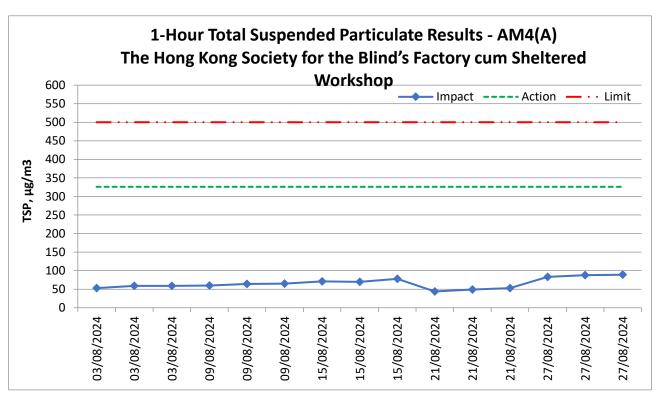
66

326 500

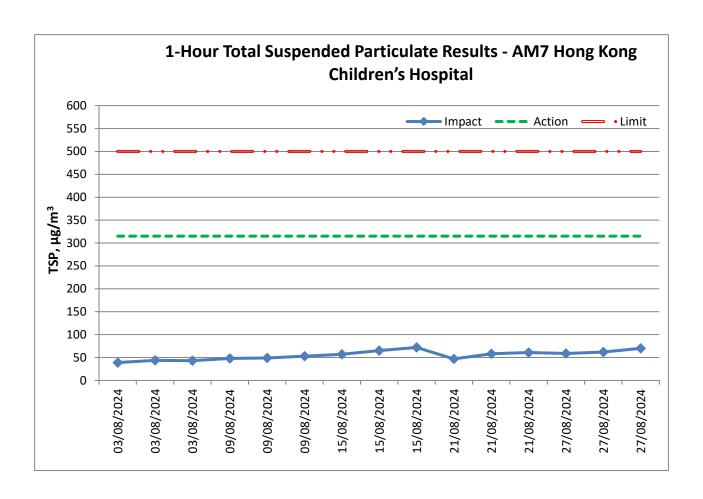
Minimum

Average


Action Level

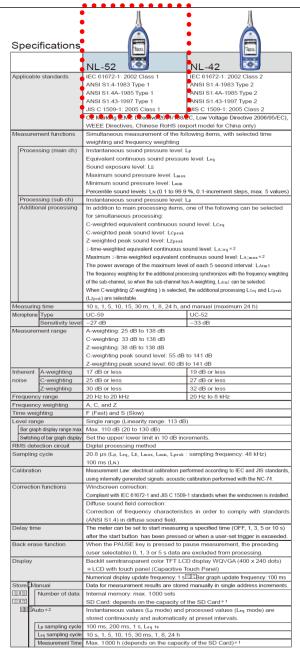

Limit Level

Location:
AM7 Hong Kong
Children's
Hospital


Date	Measure	mei	nt Period	1-hr TSP concentration, μg/m ³	Weather				
	9:00	-	10:00	39					
03/08/2024	10:00	-	11:00	44	Sunny				
	11:00	-	12:00	43					
	13:00	-	14:00	48					
09/08/2024	14:00	-	15:00	49	Sunny				
	15:00	-	16:00	53					
	9:00	-	10:00	57					
15/08/2024	10:00	-	11:00	65	Cloudy				
	11:00	-	12:00	72					
	13:00	-	14:00	47					
21/08/2024	14:00	-	15:00	58	Cloudy				
	15:00	-	16:00	61					
	9:30	-	10:30	59					
27/08/2024	10:30	-	11:30	62	Sunny				
	13:00	-	14:00	70					
N	Maximum			72					
I	Minimum			39					
Average				55					
Action Level				315					
Limit Level				500					

1-hour average TSP

NOTE: Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (AM4(A)), the premises owner rejected ET to conduct impact monitoring since1 Sept 2022. 1-hr TSP monitoring at AM4(A) were conducted on the ground floor with orienting to the Project site. ET will resume the impact monitoring once the alternative monitoring location for AM4(A) is confirmed.


Appendix J – Event and Action Plan for air quality

F		Ac	tion	
Event	ET	IEC	Supervisor / ER	Contractor
Action Level being exceeded by one sampling	 Identify source and investigate the causes of exceedance; Inform Contractor, IEC and Supervisor /ER; Repeat measurement to confirm finding. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Action Level being exceeded by two or more consecutive	Identify source and investigate the causes of exceedance;	 Check monitoring data submitted by ET; Check Contractor's 	Confirm receipt of notification of exceedance in writing;	on proper remedial actions;
sampling	2. Inform Contractor, IEC and Supervisor /ER;	working method; 3. Discuss with ET and	2. Notify Contractor;3. In consolidation with the	2. Submit proposals for remedial actions to
	3. Increase monitoring frequency to daily;	remedial measures;	IEC, agree with the Contractor on the remedial	Supervisor /ER and IEC within three working day
	4. Discuss with IEC and Contractor on remedial actions required;	4. Advise the Supervisor /ER on the effectiveness of the proposed remedial	measures to be implemented; 4. Supervise implementation	of notification; 3. Implement the agreed proposals;
	5. Assess the effectiveness of Contractor's remedial actions;	measures.	of remedial measures; 5. Conduct meeting with ET and IEC if exceedance	4. Amend proposal if appropriate.
	6. If exceedance continues, arrange meeting with IEC and Supervisor /ER;		continues.	
	7. If exceedance stops, cease additional monitoring.			
Limit Level being exceeded by one	1. Identify source and investigate the causes of	\mathcal{E}	1. Confirm receipt of notification of exceedance	1. Take immediate action to avoid further exceedance;
sampling	exceedance; 2. Inform Contractor, IEC,	2. Check Contractor's working method;	in writing; 2. Notify Contractor;	2. Discuss with ET and IEC on proper remedial
	Supervisor /ER, and EPD; 3. Repeat measurement to confirm finding;	3. Discuss possible remedial measures with ET and Contractor;	3. In consolidation with the IEC, agree with the Contractor on the remedial	actions; 3. Submit proposal for remedial actions to
	C,	4. Advise the Supervisor /ER	measures to be	Supervisor /ER and IEC

F. 4		Acti	ion	
Event	ET	IEC	Supervisor / ER	Contractor
	Contractor's remedial actions and keep EPD, IEC and Supervisor /ER informed of the results.	on the effectiveness of the proposed remedial measures.	 implemented; Supervise implementation of remedial measures; Conduct meeting with ET and IEC if exceedance continues. 	within three working days of notification; 4. Implement the agreed proposals.
Limit Level being exceeded by two or more consecutive sampling	 Notify IEC, Supervisor /ER, Contractor and EPD; Repeat measurement to confirm findings; Carry out analysis of Contractor's working procedures to identify source and investigate the causes of exceedance; Increase monitoring frequency to daily; Arrange meeting with IEC, Supervisor /ER and Contractor to discuss the remedial action to be taken; Assess effectiveness of Contractor's remedial actions and keep EPD, IEC and Supervisor /ER informed of the results; If exceedance stop, cease additional monitoring. 	submitted by ET; 2. Check Contractor's working method; 3. Discuss with Supervisor /ER, ET, and Contractor on the potential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Discuss with ET and IEC on proper remedial actions; Submit proposal for remedial actions to Supervisor /ER and IEC within three working days of notification; Implement the agreed proposals; Submit further remedial actions if problem still not under control; Stop the relevant portion of works as instructed by the Supervisor /ER until the exceedance is abated.

 $\label{eq:continuous_problem} \begin{tabular}{ll} Appendix $K-$ Calibration certificates, catalogue of noise monitoring equipment \end{tabular}$

Catalogue of Sound Level Meter

Data r	recall	Allows viewing of stored data
	memory	Up to five setup configurations can be saved in internal memory, for later recall
	,	Start up via file settings previously stored on SD card possible
Wavefe	orm recording *3	Start up the me column provinces y stored on the start possible
_	e format	Uncompressed waveform WAVE file
	mpling frequency	Select 48 kHz, 24 kHz or 12 kHz
_	ta length	Select 24 bit or 16 bit
	DC output	Output DC signals using a frequency weighting characteristic selected by processing
Outputs	Output voltage	2.5 V. 25 mV / dB at bar graph display full scale
	AC output	Output AC signals using a frequency weighting characteristic selected by
	AC output	processing or by A, C, Z-weighting.
	Output voltage	1 V (rms values) at bar graph display full scale
	Comparator	Turns on when the open-collector output exceeds the set value
	output*2	(max. applied voltage 24 V. max. current 60 mA, allowable dissipation 300 mW).
USB		
DSBL:		Allows USB to be connected to a computer and recognized as a removable disl Allows USB to be controlled via communication commands
	32C communication	Allows for RS-232C communication via use of a dedicated cable
_	continuous output*2	
	pe of Instantaneous value	
dat	1 10000000 14140	Leq, Lmax, Lmin, Lpeak
_	tput interval	100 ms
Print o		Printing of measurement results on dedicated printer DPU-414
_	r requirements	Four IEC R6 (size AA) batteries (alkaline or rechargeable batteries) or external power supply
Ba	ttery life (23 ℃)	Alkaline battery LR6 (AA): 26 h Ni-MH secondary battery: 25 h
		At the maximum *Depends on the setting
-	adapter	NC-98C (NC-34 for previous models cannot be used)
Ext	temal power voltage	5 to 7 V (rated voltage: 6 V)
Cu	rrent consumption	Approximately 90 mA (normal operation, rated voltage)
Ambie	nt Temperature	−10 to +50 °C
condit	ions Humidity	10 to 90 % RH (non-condensing)
Dustpi	roof / water-resistant	IP code: IP54 (except for microphone)
perfor	mance *4	See precautions regarding waterproofing
Dimer	nsions, weight	Approx. 250 (H) x 76 (W) x 33 mm(D), approx. 400 g (with batteries)
Suppl	ied accessories	Storage case x 1, Windscreen WS-10 x 1, Windscreen fall prevention rubber x 1,
		Hand strap x 1, LR6 (AA) alkaline batteries x 4, SD card 512 MB×1 (NX-42EX
		preinstalled model only)

Product name	Product number
Extended function program (Inst.on 512 MB SD card)	NX-42EX
Waveform recording program*2 (Inst.on 2 GB SD card)	NX-42WR
Octave, 1/3 octave real-time analysis program*2 (Inst.on 512 MB SD card)	NX-42RT
FFT analysis program *2 (Inst.on 512 MB SD card)	NX-42FT
Data management software for environmental measurement	AS-60
Data management software for environmental measurement (Includes the octave and 1/3 octave data management software)	AS-60RT
Data management software for environmental measurement (Includes the vibration level data management software)	AS-60VM
Waveform analysis software	CAT-WAVE
SD Card 512 MB	SD-512M
SD Card 2 GB	SD-2G
AC adapter (100 ∨ to 240 ∨)	NC-98C
Battery pack	BP-21
Microphone extension cables	EC-04 (from 2 m)
BNC-Pin output code	CC-24
Comparator output cable	CC-42C
Printer	DPU-414
Printer cable	CC-42P
RS 232C serial I/O cable	CC-42R
USB cable	_
Sound calibrator	NC-74
All-weather windscreen	WS-15
Windscreen mounting adapter	WS-15006
Rain-protection windscreen	WS-16
Sound level meter tripod	ST-80
All-weather windscreen tripod	ST-81

*4 Protection against harmful dust and water splashing from any direction.

Before use, verify that the rubber bottom cover and the battery compartment lid are firmly closed. To maintain the water and dust proof rating, internal packing replacement is required every two years (at

RION CO., LTD.

3-20-41, Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan Tel: +81-42-359-7888 Fax: +81-42-359-7442

This product is environment-friendly. It does not include toxic chemicals on our policy.

This product is certified to an International Protection rating of IP54 (dust protected and resistant to splashing water).
This leaffet is printed with environmentally friendly vegetable-based ink on recycled paper.

1011-4 E 212.P.D

Calibration Certificate of Sound Level Meter

(三半) 年(Centilente No.)。2002(2001(2)0,000)

说 明 DIRECTIONS

1. 本机构是国家市场监管总局授权建立的法定计量检定机构:"国家环境综合试验设备计量站",国家国助科工局授权建立的"国助科技工业4412二级计量站",本机构质量管理体系符合ISO/IEC 17025:2017标准的要求。

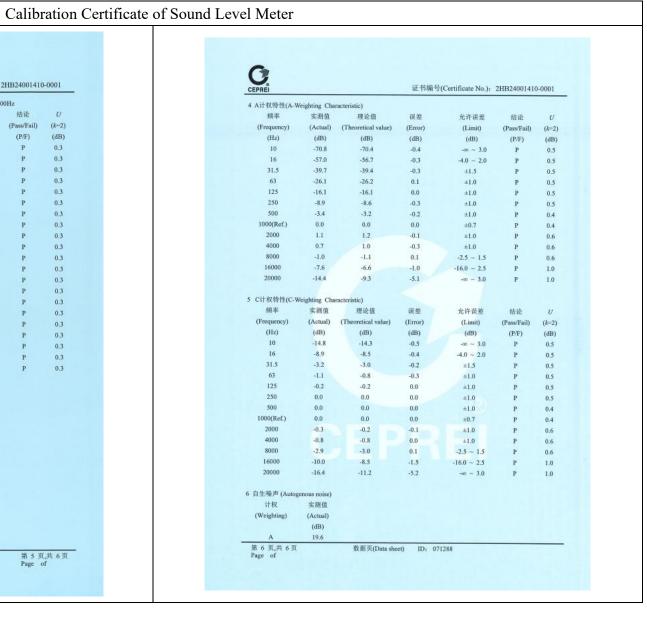
This laboratory is the legal metrological institute authorized by the State Administration for Market Regulation. It is the
"Nation Metrology Station of Combined Environmental Testing Equipment". It is the "No. 4412 Class 2 Metrology
Station of Science, Technology and Industry for National Defenses" authorized by the State Administration of Science,
Technology and Industry for National Defense. The quality management system of this laboratory is in accordance with
the ISO/IEC 17025/2017.

- 本证书中的数据可溯源到国际单位制(SI)单位和/或社会公用计量标准。
 The data of the certificate is traceable to the International system of Units (SI) and/or the public metrological standards.
- 3. 本次校准的技术依据及CNAS认可范围(Reference documents and CNAS accredited scopes):

 4. JIG 188-2017 声级计检定规程: Sound pressure level: (20~130)dB: Frequency Weighting: (20~130)dB, (10 Hz—20kHz)
- 2004.1/y · 控制内容查查查(NAS网站中注册编号为L13344的证书用件,超出范围的内容未被认可,其结果结论所收离的合格评定活动不在认可 范围内。(Pleus see the attachment of certificate No. L13544 at CNAS website for details, beyond which is not accredited, the conformity assessment activities on which the result/bonchistories are based are outside the ecopor of accreditation.)
- 4. 本次校准所使用的主要测量标准及溯源性声明(The main measurement standards used during the

名 称 (Description)		有效期/謝源单位 Due Date/Traceability to)	技术指标 (Specification)	测量范围 (Measuring Range)
前置放大器(2239842)		2025-03-12/中国计量院	频率响应: ±0.1dB	10Hz~50kHz
声校准器(2218291)	4GC23001017-00	05/2025-01-29/賽宝(广州)	1級	94dB, 124dB@ (1000 Hz)
数字多用表(3146A63487)	4GC23000695-00	01/2024-10-25/賽宝(广州)	直流电压: ±0.01%; 直流电流: ±0.01%; 交流电压: ± 0.1%; 电阻: ±0.01%; 頻率: ±0.01%	
功率放大器(2536312)	4GC23000907-00	01/2024-12-14/賽宝(广州)	失真度: ≤0.2%; 頻率响应 ; ±0.2dB	20Hz~50kHz
PULSE分析系统(3160-1 00186)	GFJGJL10012310 304/fri	07106/2024-10-24/航空	頻率:Uni=0.001%,k=2;电压: Uni=0.10%,k=2	頻率:0.001Hz-51.2kHz, 电压:(1×10 ⁵ -30)V
正弦信号发生器(243165 6)	SXE202301878/20	024-11-21/广东计量院	频率响应MPE±0.IdB	10Hz~50kHz
信号发生器(389052)	4GC24000402-00	01/2025-05-13/賽室(广州)	1. 衰减器: 10dB改变量± 0.05dB, 1dB改变量±0.02dB, 0.1dB改变量±0.01dB; 2, 950.1%; 4. 絕率±0.25%; 5, 猝发音,持续时间±1%	100kHz, 3.频率: 10Hz
机合腔(3081703)	SXE202483019/20	026-02-04/广东计量院	失真度: <2%。耦合端一致 性: ±0.3dB, 短期谭移: < 0.5dB, 工作有效声压级: ≥ 80dB	10Hz~20kHz
实验室标准传声器(2246 093)	GFJGJL10012403 304所	06537/2025-03-17/航空	LSW	10Hz~25kHz
计量测源性声明(Me	trological Trace	ability Declaration):	to deple the ent	
被校准器		设备名称 Standard Name		源证书编号 rtificate No.
被校准器 Instrume		Standard Name	Institute/Ce	rtificate No.
被校准器		Standard Name 前置放大器	Institute/Ce 中国计量院/L	rtificate No. Ssx2024-02588
被校准器		Standard Name 前置放大器 声校准器	Institute/Ce 中国计量院/L 航空304所/GFJG	rtificate No. Ssx2024-02588 JL1001230304185
被校准器 Instrume	ent	Standard Name 前置放大器 声校准器 数字多用表	Institute/Ce 中国计量院儿 航空304所/GFJG 广东计量院/L	rtificate No. Ssx2024-02588 JL1001230304185 BN202260767
被校准器	ent	Standard Name 前置放大器 声校准器 数字多用表 功率放大器	Institute/Ce 中国计量院儿 航空304所/GFJG 广东计量院儿 航空304所/GFJG	rtificate No. Ssx2024-02588 JL1001230304185 BN202260767 JL1001231007106
被校准器 Instrume	ent	Standard Name 前置放大器 声校准器 数字多用表 功率放大器 PULSE分析系统	Institute/Ce 中国计量院儿 航空304所/GFJG 广东计量院儿 航空304所/GFJG 航空304所/GFJG	rtificate No. Ssx2024-02588 JL 1001230304185 JBN202260767 JL 1001231007106 JL 1001231007106
被校准器 Instrume	ent	Standard Name 前置放大器 声校准器 数字多用表 功率放大器	Institute/Ce 中国计量统化 航空304所/GFJG 广东计量院化 航空304所/GFJG 航空304所/GFJG 广东计量院/S	rtificate No. Ssx2024-02588 JL1001230304185 BN202260767 JL1001231007106

第2页共6页


Calibration Certificate of Sound Level Meter

第 3 页,共 6 页 Page of

证书编号(Certificate No.): 2HB24001410-0001 3.2 其它级量程 (Other Range) 頻率(Frequency): 1000Hz 标准声级 指示声级 误差 允许误差 (Indication) (Limit) (k-2)(Standard) (Error) (dB) (dB) (dB) (dB) (dB) 130.1 0.1 ±0.8 0.3 130.0 129.0 129.1 0.1 ±0.8 0.3 0.3 128.0 128.1 0.1 ±0.8 0.3 127.0 127.1 0.1 ±0.8 126.0 0.0 ±0.8 0.3 126.0 ±0.8 0.3 125.0 125.0 0.0 120.0 119.9 -0.1 ±0.8 0.3 ±0.8 0.3 110.0 0.0 110.0 0.3 100.0 99,9 -0.1 ±0.8 0.3 90.0 90.0 80.0 80.0 0.0 0.3 70.0 70.0 0.0 ±0.8 0.3 60.0 0.0 ±0.8 0.3 60.0 0.3 50.0 0.0 ± 0.8 50.0 0.3 39.9 ± 0.8 40.0 -0.1 35.0 35.1 0.1 0.3 34.0 34.1 0.1 ±0.8 0.3 33.1 0.1 ±0.8 0.3 33.0 0.3 32.1 0.1 ±0.8 32.0 31.1 0.1 0.3 ±0.8 31.0 30.0 30.1 0.1 0.3 第 5 页,共 6 页 Page of 数据页(Data sheet) ID: 071288

Calibration Certificate of Sound Level Meter

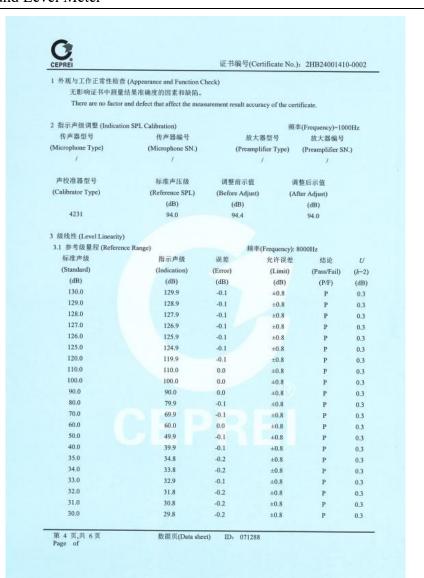
DIRECTIONS

1. 本机构是国家市场监管总局授权建立的法定计量检定机构:"国家环境综合试验设备计量站",国 家国防科工局授权建立的"国防科技工业4412二级计量站",本机构质量管理体系符合ISO/IEC 17025:2017标准的要求。

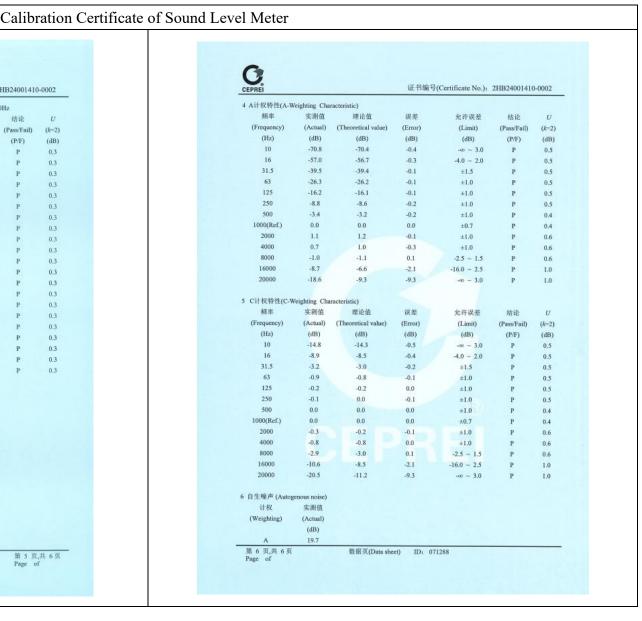
This laboratory is the legal metrological institute authorized by the State Administration for Market Regulation. It is the "Nation Metrology Station of Combined Environmental Testing Equipment". It is the "No. 4412 Class 2 Metrology Station of Science, Technology and Industry for National Defense" authorized by the State Administration of Science, Technology and Industry for National Defense. The quality management system of this laboratory is in accordance with the ISO/IEC 17025:2017.

- 2. 本证书中的数据可溯源到国际单位制(SI)单位和/或社会公用计量标准。 The data of the certificate is traceable to the International system of Units (SI) and/or the public metrological
- 3. 本次校准的技术依据及CNAS认可范围(Reference documents and CNAS accredited scopes):
- * JJG 188-2017 声级计检定规程: Sound pressure level: (20-130)dB; Frequency Weighting: (20-130)dB, (10 Hz~20kHz)
- 详知内容请查看CNAS网站中注册编号为L13344的证书附件。超出范围的内容未被认可。其结果/结论所依据的合格评定活动不在认可 视图序。(Please see the attachment of certificate No. L13344 at CNAS website for details, beyond which is not accredited, the assessment activities on which the results/conclusions are based are outside the scope of accreditation.)
- 4. 本次校准所使用的主要测量标准及溯源性声明(The main measurement standards used during the

名 称	证书号/有效期/溯源单位		測量范围
(Description)	(Certificate No./Due Date/Traceability to)	(Specification)	(Measuring Range)
		频率响应: ±0.1dB	10Hz~50kHz
	4GC23001017-0005/2025-01-29/賽宝(广州)		94dB, 124dB@ (1000 Hz)
)	4GC23000695-0001/2024-10-25/賽宝(广州)	流: ±0.01%; 交流电压: ± 0.1%; 电阻: ±0.01%; 頻 率: ±0.01%	
功率放大器(2536312)	4GC23000907-0001/2024-12-14/賽宝(广州)	失真度: ≤0.2%; 頻率响应 : ±0.2dB	20Hz~50kHz
	GFJGJL1001231007106/2024-10-24/航空 304所	频率:Uref=0.001%,k=2;电压; Uref=0.10%,k=2	频率:0.001Hz~51.2kHz, 电压:(1×10 ⁵ ~30)V
正弦信号发生器(243165 6)	SXE202301878/2024-11-21/广东计量院	频率响应MPE±0.1dB	10Hz~50kHz
信号发生器(389052)	4GC24000402-0001/2025-05-13/賽宝(广州)	1.衰减器: 10dB改变量± 0.05dB。1dB改变量±0.02dB 。0.1dB改变量±0.01dB; 2. 级率响应±0.1dB; 3.5失真度 ≤0.1%; 4.頻率±0.25%; 5. 释发音,持续时间±1%	100kHz, 3.頻率: 10Hz
楊合腔(3081703)	SXE202483019/2026-02-04/广东计量院	失真度: <2%, 耦合周一致 性: ±0.3dB, 短期漂移: < 0.5dB, 工作有效声压级; ≥ 80dB	10Hz~20kHz
	GFJGJL1001240306537/2025-03-17/航空 304所	LS銀	10Hz~25kHz


外部机构/溯源证书编号 被校准器具 设备名称 Instrument Institute/Certificate No. 前置放大器 中国计量院/LSsx2024-02588 航空304所/GFJGJL1001230304185 声校准器 数字老用表 广东计量院/DBN202260767 功率放大器 航空304所/GFJGJL1001231007106 Sound Level Meter PULSE分析系统 航空304所/GFJGJL1001231007106 正弦信号发生器 广东计量院/SXE202301878 航天514所/GFJGJL1004240400235 信号发生器 耦合腔 广东计量院/SXE202483019

第 2 页,共 6 页 Page of


Page of

Calibration Certificate of Sound Level Meter

接種市級 指示声級 误差 允许误差 結论 (Standard) (Indication) (Error) (Limit) (Pass/Fail) (Jass/Fail) (接種 接示 接示 接接 免許 発音 発音 接 接 接 接 接 接 接 接 接	标准声級 指示声級 误差 允许误差 结论 (Standard) (Indication) (Error) (Limit) (Pass/Fail) (A (dB) (dB) (dB) (dB) (dB) (PF) (d 130.0 129.9 -0.1 ±0.8 P (d 129.0 128.9 -0.1 ±0.8 P (d 127.0 126.9 -0.1 ±0.8 P (d 128.0 129.9 -0.1 ±0.8 P (d 129.0 119.9 -0.1 ±0.8 P (d 120.0 119.9 -0.1 ±0.8 P (d 120.0 119.9 -0.1 ±0.8 P (d 120.0 100.0 0.0 ±0.8 P (d 100.0 100.0 0.0 ±0.8 P (d 100.0 100.0 0.0 ±0.8 P (d 100.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	CEPREI		(Certificate No.):)-0002
(Standard) (Indication) (Error) (Limit) (Pass/Fail) (O (dB) (dB) (dB) (dB) (PF) (C 130.0 129.9 -0.1 ±0.8 P 129.0 128.9 -0.1 ±0.8 P 128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 100.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 90.0 50.0 0.0 ±0.8 P 90.0 50.0 0.0<	(Standard) (Indication) (Error) (Limit) (Pass/Fail) (dB) (dB) (dB) (dB) (dB) (P/F) (dB) (dB) (dB) (P/F) (dB) (dB) (dB) (P/F) (dB) (dB) (P/F) (dB) (dB) (P/F) (dB) (dB) (dB) (P/F) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB	(Standard) (Indication) (Error) (Limit) (Pass/Fall) (k (dB) (dB) (dB) (dB) (dB) (P/F) (d 130.0 129.9 -0.1 ±0.8 P (d 129.0 128.9 -0.1 ±0.8 P (d 127.0 126.9 -0.1 ±0.8 P (d 127.0 126.9 -0.1 ±0.8 P (d 127.0 126.9 -0.1 ±0.8 P (d 125.0 124.9 -0.1 ±0.8 P (d 125.0 124.9 -0.1 ±0.8 P (d 120.0 119.9 -0.1 ±0.8 P (d 120.0 110.0 0.0 ±0.8 P (d 100.0 100.0 ±0.8 P (d 100.0 100.0 ±0.8 P (d 100.0 100.0 ±0.8 P (d 100.0 50.0 ±0.8 P (d 100.0 ±0.8 P	3.2 其它级量程 (Other Range)	and the same and			,
(dB) (dB) (dB) (dB) (PF) (130.0 129.9 -0.1 ±0.8 P 129.0 128.9 -0.1 ±0.8 P 128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 100.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 100.0 ±0.8 P 100.0 100.0 ±0.8 P 100.0 50.0 0.0 ±0.8 P 100.0 50.0 50.0 50.0 0.0 ±0.8 P 100.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	(dB) (dB) (dB) (dB) (dB) (P/F) (dB) (130.0 129.9 -0.1 ±0.8 P 129.0 128.9 -0.1 ±0.8 P 128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 100.0 100.0 ±0.8 P 100.0 ±0.8 P 100.0 100.0 ±0.8 P 100.0 ±0.0 ±0.8 P 100.0 ±0.0 ±0.8 P 100.0 ±0.0 ±0.8 P 100.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.	(dB) (dB) (dB) (dB) (PF) (dB) (PF) (dB) (130.0					
130.0 129.9 -0.1 ±0.8 P 129.0 128.9 -0.1 ±0.8 P 128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 90.0 0.0 ±0.8 P 90.0 90.0 90.0 0.0 ±0.8 P 90.0 90.0 90.0 0.0 ±0.8 P 90.0 90.0 90.0 90.0 90.0 ±0.8 P 90.0 90.0 90.0 90.0 90.0 ±0.8 P 90.0 90.0 90.0 90.0 90.0 90.0 ±0.8 P 90.0 90.0 90.0 90.0 90.0 90.0 ±0.8 P 90.0 90.0 90.0 90.0 90.0 90.0 ±0.8 P	130.0 129.9 -0.1 ±0.8 P 129.0 128.9 -0.1 ±0.8 P 128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 100.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 90.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 33.0 33.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 33.0 29.8 -0.2 ±0.8 P	130.0 129.9 -0.1 ±0.8 P 129.0 128.9 -0.1 ±0.8 P (128.0 127.9 -0.1 ±0.8 P (127.0 126.9 -0.1 ±0.8 P (127.0 126.9 -0.1 ±0.8 P (125.0 124.9 -0.1 ±0.8 P (125.0 124.9 -0.1 ±0.8 P (10.0 110.0 110.0 0.0 ±0.8 P (10.0 100.0 100.0 ±0.8 P (10.0 100.0 0.0 ±0.8 P (10.0 50.0 50.0 50.0 50.0 ±0.8 P (10.0 50.0 50.0 50.0 ±0.8 P (10.0 50.0 50.0 50.0 ±0.8 P (10.0 50.0 50.0 ±0.8 E (10.0 50.0 50.0 ±0.8 E (10.0 ±0.8 ±0.8 E (10.0 ±0.8 ±0.8 E (10.0 ±0.8 ±0.8 ±0.8 ±0.8 E (10.0 ±0.8 ±0.8 ±0.8 ±0.8 E (10.0 ±0.8 ±0.8 ±0.8 ±0.8 ±0.8 E (10.0 ±0.8 ±0.8 ±0.8 ±0.8 ±0.8 ±0.8 E (10.0 ±0.8 ±0.8 ±0.8 ±0.8 ±0.8 ±0.8 ±0.8 ±					
129.0 128.9 -0.1 ±0.8 P 128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 ±0.8 P 100.0 ±0.8 P 100.0 ±0.8 P 60.0 50.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 50.0 50.0 50.0 50.0 50.0 50.8 P	129.0 128.9 -0.1 ±0.8 P 128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 50.0 50.0 50.0 50.0 ±0.8 P 100.0 50.0 ±0.8 P 100	129.0 128.9 -0.1 ±0.8 P (128.0 127.9 -0.1 ±0.8 P (128.0 127.9 -0.1 ±0.8 P (127.0 126.0 -0.1 ±0.8 P (126.0 125.9 -0.1 ±0.8 P (125.0 124.9 -0.1 ±0.8 P (125.0 124.9 -0.1 ±0.8 P (120.0 110.0 110.0 0.0 ±0.8 P (100.0 100.0 ±0.8 P (100.0 100.0 ±0.8 P (100.0 100.0 ±0.8 P (100.0 ±0.					0.
128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 50.0 50.0 0.0 ±0.8 P 50.0 50.0 50.0 50.0 50.0 ±0.8 P 50.0 50.0 50.0 50.0 ±0.8 P 50.0 50.0 50.0 50.0 ±0.8 P 50.0 50.0 50.0 50.0 50.0 ±0.8 P	128.0 127.9 -0.1 ±0.8 P 127.0 126.9 -0.1 ±0.8 P 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 50.0 50.0 0.0 ±0.8 P 50.0 50.0 50.0 50.0 50.0 ±0.8 P 50.0 50.0 50.0 50.0 50.0 ±0.8 P	128.0 127.9 -0.1 ±0.8 P (127.0 127.0 126.9 -0.1 ±0.8 P (127.0 126.9 -0.1 ±0.8 P (128.0 P (128.0 125.9 -0.1 ±0.8 P (128.0 P (128.0 125.0 124.9 -0.1 ±0.8 P (128.0 P (1					0.
. 127.0 126.9 -0.1 ±0.8 P . 126.0 125.9 -0.1 ±0.8 P . 125.0 124.9 -0.1 ±0.8 P . 120.0 119.9 -0.1 ±0.8 P . 110.0 110.0 0.0 ±0.8 P . 110.0 100.0 0.0 ±0.8 P . 100.0 90.0 90.0 0.0 ±0.8 P . 80.0 80.0 0.0 ±0.8 P . 60.0 60.0 0.0 ±0.8 P . 60.0 60.0 0.0 ±0.8 P . 70.0 0 50.0 0.0 ±0.8 P . 60.0 50.0 50.0 0.0 ±0.8 P . 60.0 50.0 50.0 0.0 ±0.8 P . 60.0 50.0 50.0 50.0 ±0.8 P . 60.0 50.0 ±0.8 P . 60.0 50.0 ±0.8 P . 60.0 ±0	127.0	127.0 126.9 -0.1 ±0.8 P (126.0 125.9 -0.1 ±0.8 P (126.0 125.9 -0.1 ±0.8 P (126.0 125.0 124.9 -0.1 ±0.8 P (120.0 119.9 -0.1 ±0.8 P (120.0 110.0 110.0 0.0 ±0.8 P (120.0 100.0 100.0 0.0 ±0.8 P (120.0 100.0 ±0.8 P (120.0 ±0.					0.
. 126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 90.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P	126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 0.0 ±0.8 P 100.0 0.0 ±0.8 P 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 P 30.0 29.8 -0.2 ±0.8 P	126.0 125.9 -0.1 ±0.8 P 125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 60.0 50.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 60.0 50.0 50.0 0.0 ±0.8 P 60.0 50.0 50.0 0.0 ±0.8 P 60.0 35.0 34.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 60.0 30.8 P 60.0 30.8 P 60.0 50.0 50.0 0.0 ±0.8 P 60.0 50.0 50.0 50.0 50.0 ±0.8 P 60.0 50.0 50.0 50.0 50.0 ±0.8 P 60.0 ±					0.
125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 110.0 100.0 0.0 ±0.8 P 100.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 32.0 31.8 -0.2 ±0.8 P	125.0 124.9 -0.1 ±0.8 P 120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 100.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	125.0					0.
120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 100.0 100.0 -0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 333.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P	120.0 119.9 -0.1 ±0.8 P 110.0 110.0 0.0 ±0.8 P 100.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 66.0 60.0 0.0 ±0.8 P 40.0 ±0.8 P 40.0 ±0.8 P 40.0 ±0.8 P 35.0 50.0 0.0 ±0.8 P 40.0 ±0.8 P 35.0 50.0 0.0 ±0.8 P 35.0 50.0 0.0 ±0.8 P 35.0 ±0.8 P	120.0 119.9 -0.1 ±0.8 P 0 110.0 110.0 110.0 0.0 ±0.8 P 0 100.0 100.0 0.0 ±0.8 P 0 0 100.0 0.0 ±0.8 P 0 0 0 0 ±0.8 P 0 0 0 0 ±0.8 P 0 0 0 0 ±0.8 P 0 0 0 ±					0.
110.0 110.0 0.0 ±0.8 P 100.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	110.0 110.0 0.0 ±0.8 P 100.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 66.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	110.0 110.0 0.0 ±0.8 P 0 0 100.0 100.0 100.0 0.0 ±0.8 P 0 0 0 0 0.0 ±0.8 P 0 0 0 0 0.0 ±0.8 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0.
100.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 66.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	100.0 100.0 0.0 ±0.8 P 90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	100.0 100.0 0.0 ±0.8 P 0.0 80.0 80.0 80.0 0.0 ±0.8 P 0.0 60.0 50.0 0.0 ±0.8 P 0.0 60.0 50.0 0.0 ±0.8 P 0.0 60.0 50.0 0.0 ±0.8 P 0.0 50.0 50.0 50.0 0.0 ±0.8 P 0.0 50.0 50.0 50.0 50.0 50.0 50.0 50.					0.
90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	90.0 90.0 0.0 ±0.8 P 80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	90.0 90.0 0.0 ±0.8 P 0.0 80.0 70.0 ±0.8 P 0.0 60.0 50.0 0.0 ±0.8 P 0.0 60.0 50.0 ±0.8 P 0.0 50.0 50.0 0.0 ±0.8 P 0.0 50.0 50.0 ±0.8 P 0.0 50.0 ±0.8 P 0.0					0.
80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 +0.2 ±0.8 P 31.0 29.8 -0.2 ±0.8 P	80.0 80.0 0.0 ±0.8 P 70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P					0.
70.0 70.0 0.0 ±0.8 P 60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	70.0 70.0 70.0 70.0 0.0 ±0.8 P 60.0 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.0 32.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0	70.0 70.0 0.0 ±0.8 P 60.0 60.0 60.0 0.0 ±0.8 P 60.0 50.0 50.0 0.0 ±0.8 P 60.0 40.0 ±0.8 P 60.0 50.0 1.0 ±0.8 P 60.0 1.0 ±0.					0.
60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P	60.0 60.0 0.0 ±0.8 P 50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	60.0 60.0 0.0 ±0.8 P 0.0 50.0 0.0 ±0.8 P 0.0 40.0 40.0 0.0 ±0.8 P 0.0 55.0 35.0 34.9 -0.1 ±0.8 P 0.0 35.0 33.0 32.8 -0.2 ±0.8 P 0.0 32.0 31.8 -0.2 ±0.8 P 0.0 31.0 30.8 -0.2 ±0.8 P 0.0 30.0 29.8 -0.2 ±0.8 P 0.0 55.0 P 0.0					0.
50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	50.0 50.0 0.0 ±0.8 P 40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 33.0 33.9 -0.1 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	50.0 50.0 0.0 ±0.8 P 0 40.0 40.0 0.0 ±0.8 P 0 35.0 34.9 -0.1 ±0.8 P 0 34.0 33.9 -0.1 ±0.8 P 0 33.0 32.8 -0.2 ±0.8 P 0 31.0 30.8 -0.2 ±0.8 P 0 31.0 29.8 -0.2 ±0.8 P 0 30.0 29.8 -0.2 ±0.8 P 0					0.
40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	40.0 40.0 0.0 ±0.8 P 35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	40.0 40.0 0.0 ±0.8 P 0.0 35.0 34.9 -0.1 ±0.8 P 0.0 34.0 33.9 -0.1 ±0.8 P 0.0 33.0 32.8 -0.2 ±0.8 P 0.0 32.0 31.8 -0.2 ±0.8 P 0.0 31.0 30.8 -0.2 ±0.8 P 0.0 30.0 29.8 -0.2 ±0.8 P 0.0 30.0 29.8 -0.2 ±0.8 P 0.0 30.0 29.8 -0.2 ±0.8 P 0.0 30.0 9 0.0 50.8 P 0.					0.
35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	35.0 34.9 -0.1 ±0.8 P 34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 +0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	35.0 34.9 -0.1 ±0.8 P (34.0 33.9 -0.1 ±0.8 P (33.0 32.8 -0.2 ±0.8 P (32.0 31.8 -0.2 ±0.8 P (31.0 30.8 -0.2 ±0.8 P (30.0 29.8 -0.2 ±0.8 P (0.
34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	34.0 33.9 -0.1 ±0.8 P 33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	34.0 33.9 -0.1 ±0.8 P (0.3 33.0 32.8 -0.2 ±0.8 P (0.3 32.0 31.8 -0.2 ±0.8 P (0.3 31.0 30.8 -0.2 ±0.8 P (0.3 30.0 29.8 +0.2 ±0.8 P (0.3 30.0 29.8 +0.2 ±0.8 +0.2 ±0.8 P (0.3 30.0 29.8 +0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±					0.
33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	33.0 32.8 -0.2 ±0.8 P 32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	33.0 32.8 -0.2 ±0.8 P 0 32.0 31.8 -0.2 ±0.8 P 0 31.0 30.8 -0.2 ±0.8 P 0 30.0 29.8 -0.2 ±0.8 P 0				P	0.
32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P	32.0 31.8 -0.2 ±0.8 P 31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	32.0 31.8 -0.2 ±0.8 P (31.0 30.8 -0.2 ±0.8 P (30.0 29.8 -0.2 ±0.8 P (0.
31.0 30.8 -0.2 ±0.8 P	31.0 30.8 -0.2 ±0.8 P 30.0 29.8 -0.2 ±0.8 P	31.0 30.8 -0.2 ±0.8 P (30.0 29.8 -0.2 ±0.8 P (0.
	30.0 29.8 -0.2 ±0.8 P	30.0 29.8 -0.2 ±0.8 P					0.
20.0							0.
		CEPREI					

Catalogue of Sound Calibrator

For microphone calibration NC-74

How to use

Carefully insert the microphone all the way into the coupler of the NC-74. Then simply turn the power on to apply a constant sound pressure level to the diaphragm of the microphone.

The performance of the NC-74 is suitable for calibration of high-precision sound level meters. The unit is compact, lightweight, and easy to use. Two IEC LR6 (size AA) alkaline batteries will power the unit for more than 30 hours of continuous use at room temperature.

Atmospheric pressure compensation principle

The NC-74 incorporates a sensor that detects atmospheric pressure. Based on the information provided by the sensor, the CPU controls the signal amplitude. This allows the unit to always provide the correct output for achieving constant sound pressure level, regardless of fluctuations in atmospheric pressure.

Using the 1/2-inch adapte

To allow calibration of sound level meter microphones with 1 inch diameter, the 1/2-inch microphone adapter can be removed, 1/2-inch microphones are calibrated with the adapter

Applicable standards	JIS C1515:2004 Class 1	
Suitable microphones	1-inch microphones	IEC 61094-1 Type LS1P UC-27 UC-25 UC-34
	1/2-inch microphones	IEC 61094-1 Type LS2aP UC-69 UC-57 UC-53A UC-52 UC-26 UC-30 UC-31 UC-31 UC-33P
Nominal sound pressure level	94 dB	
Sound pressure level tolerance	±0.3 dB	
Nominal frequency	1 kHz	
Frequency tolerance	±1.0 % or less	
Power requirements	IEC LR6 (size AA) alkal	line battery X 2
Dimensions, mass	Approx. 49 (H) × 80 (W Approx. 200 g (including	
Supplied accessories	Case X 1 IEC LR6 (size AA) alkal	

* Specification subject to change without notice.

3-20-41, Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan Tel: +81-42-359-7888 Fax: +81-42-359-7442 http://www.rion.co.jp/english/

How to use the adapter

To use the sound calibrator with 1-inch diameter microphones, remove the 1/2-inch microphone adapter

■ 1/2-inch microphones

To use the sound calibrator with 1/2-inch diameter microphones, the supplied 1/2-inch microphone adapter must be in place.

■ 1/4-inch microphones To use the sound calibrator with 1/4-inch diameter microphones, use the supplied 1/2-inch microphone adapter together with the optional

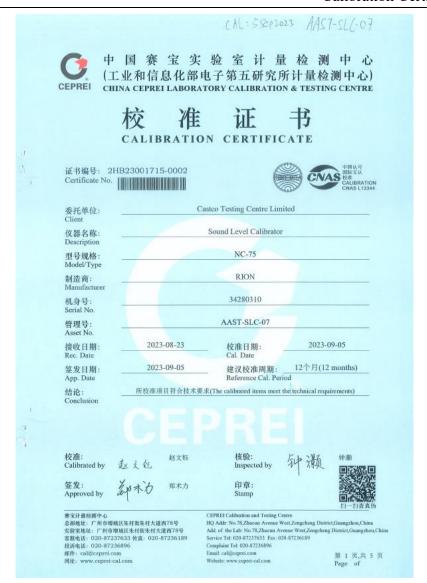
1/4-inch adapter.

Applicable standards	IEC 60942: 2017 classrt, ANSIJASA S1.40-2006 classrt, JIS C 1515: 2004 class 1, CE marking, WEEE directive, Chinese RolfS
Supported microphones	Microphones made by RIGN and microphones made by oth manufacturem that meet the IEC 61094-4 size specification 1-inch microphones (with supplied adapter) 14-inch microphones (with supplied adapter) 14-inch microphones (with optional adapter)
Nominal pound pressure level	94 dB
Sound pressure level identice	Max. a0.50 dB
Nominal hequency	1 000 Hz
Frequency tolerance	Max. ad. 1%
THD + noise	Max. 1.0 % (22.4 Hz to 22.4 kHz)
Dimensions and weight	Approx. 42 mm (H) x 77 mm (W) x 70 mm (D), approx. 350
Power supply	IEC LR6 (size AA) alkaline baftery x 2 IEC LR6 (size AA) nickel-hydride rechargeable baftery ("aneloop pro" supported) x 2
Dattery We	50 hours or more (using two alkaline batteries, continuous us
	50 hours or more (using two nickel-hydride rechargeable batteries (eneloop pro), continuous use)
Supplied accessories	Soft case k 1, 10-inch microphone adapter x 1, 600 LR6
	jaine AA) alkaline battery x 2, hand strag s 1, JCSS Calibration Certificate x 1

0

Soft case

UCSS 1950 CC, 12TL is fromglyinded by the JCSS which alless IMEMIC 17020 also as connectation restricted and closure fits an administration or commission of COPE (1970) and (19


Windows is a trademark of Microsoft Corporation.
 Specifications subject to change without notice.

Tel: +81-42-359-7888 Fax: +81-42-359-7442

This product is environment-trendly. It does not include toxic chemicals on our policy. This suitlet is privided with environmentally blendly UV ink.

Calibration Certificate of Sound Calibrator

DIRECTIONS

1. 本机构质量管理体系符合ISO/IEC 17025:2017标准的要求,获得中国合格评定国家认可委员会(CNAS) 认可, 认可证书号为: CNAS L13344。

This laboratory quality management system meets the ISO/IEC 17025:2017 and is accredited by the China National Accreditation Service for Conformity Assessment, No. CNAS L13344.

2. 本机构出具的数据均可溯源到国际单位制(SI)单位和社会公用计量标准。

The data issued by this laboratory is traceable to International system of Units (SI) and national primary standards.

3. 本次校准的技术依据及CNAS认可范围(Reference documents and CNAS accredited scopes): * IJG 176-2022 声校准器检定规程: Sound Pressure Level: 94dB、104dB、114dB、124dB(63Hz-8kHz): 94dB . 104dB., 114dB.(31.5Hz~16kHz); Frequency: 31.5Hz~16kHz; Harmonic Distortion: 0.1%~10%; (20Hz~

20kHz) 详细许等薄查着CNAS网络中往用脑号为L13344的证书附件、超出范围的内容未被认可、其结果结论所依据的合格评定活动不在认可 范围内。(Please see the attachment of certificate No. L13344 at CNAS website for death, beyond which is not accredited, the conformity assessment activities on which the resultivoculations are based are united the scope of accreditation.)

4. 本次校准所使用的主要测量标准(The main measurement standards used during the calibration):

名称 (Description)	证书号/有效期/溯源单位 (Certificate No./Duc Date/Traceability to)	技术指标 (Specification)	減量范围 (Measuring Range)
		LSS	10Hz~25kHz
前置放大器(2239843)	GFJGJL1001230304185/2024-03-22/航空 304所	類率响应: ±0.1dB	(10~50000) Hz
4)	514所	±0.03%,R; ±1=10 ³ ; f: ± 0.01%	DCV ₁ 10 ₀ N~1000V; DCI ₁ 1pA~1A; ACV ; (10 ₀ N~700V) @ (1Hz~2MHz); ACI ₁ (100pA~1A) @ (10 Hz~100kHz); R; 10 _p Q~1GΩ; F ₁ 1Hz~10 MHz
PULSE分析系统(3160-1 06540)	4GC23000528-0009/2024-08-16/賽宝(广州)	频率:Uni=0.001%,k=2;电压: Uni=0.10%,k=2	频率:0.001Hz~51.2kHz, 电压:(1×10 ³ ~30)V

5. 校准地点(The calibration place):

广州市增城区朱村街朱村大道西78号9栋110室

环境条件(Environmental conditions): 温度(Temperature): 21.2℃ 相对湿度(Relative Humidity): 60%

7. 本证书中给出的扩展不确定度依据JJF1059.1-2012《测量不确定度的评定与表示》评定,由合成标 准不确定度乘以包含概率约为95%时对应的包含因子k得到。

The extended uncertainty given in this certificate is evaluated according to JJF1059.1-2012 "Evaluation and Expression of Uncertainty in Measurement", and is calculated by multiplying the combined standard uncertainty by the coverage factor k which corresponding to the coverage probability about 95%.

8. 证书中"P"、"合格"代表"测量结果在允许范围内", "F"、"不合格"代表"测量结果不在允许范围 内","N/A"代表"不适用或技术指标暂时无法确认等"。本证书报告的结论仅供参考,使用人员应结合实际测量的要求合理使用,如考虑测量结果测量不确定度的影响等。

"P" and "Pass" in this certificate stand for "Low Limit≤the measured value ≤High Limit", "F" and "Fail" stand for "the The sum of the state of the sta them reasonably according to the actual measurement requirements, such as considering the impact of measurement

9. 建议校准周期是本实验室依据本证书报告的技术依据和仪器设备常规使用条件给出的建议,供委托方参考。委托方可以根据实际使用情况自行决定样品的校准周期。

第3页,共5页 Page of

证书编号(Certificate No.): 2HB23001715-0002 1 外观与工作正常性检查 (Appearance and Function Check) 无影响证书中测量结果准确度的因素和缺陷。 There are no factor and defect that affect the measurement result accuracy of the certificate. 2 声压级 (Sound Pressure Level) 接受限 结论 规定声压级 测量声压级 声压级差的绝对值 (Prescribed SPL) (Measured SPL) (Absolute value of SPL) (Limit) (k-2)(dB) (dB) (dB) (dB) 0.10 0.10 ≤0.25 93.90 3 頻率 (Frequency) Urel 接受限 结论 规定频率 测量频率 赖率误差的绝对值 (k=2)(Limit) (Pass/Fail) (Prescribed Fre.) (Absolute value of Fre.) (%) (Hz) (Hz) (%) (%) 0.10 0.00 ≤0.70 1000.0 1000 4 总失真+噪声 (Distortion and noise) Urel 规定声压级 规定频率 总失真+噪声 接受限 结论 (Pass/Fail) (k=2) (Distortion and noise) (Limit) (Prescribed SPL) (Measured Fre.) (Hz) (%) (%) (dB) ≤2.50 5.0 0.60 94 1000 第5页,共5页 数据页(Data sheet) ID: 013393 Page of

Calibration Certificate of Sound Calibrator

T 共享 号(Condismo No.)。 http://oni.iio.nooi

说 明 DIRECTIONS

1. 本机构是国家市场监管总局授权建立的法定计量检定机构:"国家环境综合试验设备计量站",国家国防科工局授权建立的"国防科技工业4412二级计量站",本机构质量管理体系符合ISO/IEC 17035-2017标准的原理。

This laboratory is the legal metrological institute authorized by the State Administration for Market Regulation. It is the "Nation Metrology Station of Combined Environmental Testing Equipmens". It is the "No. 4412 Class 2 Metrology Station of Science, Technology and Industry for National Defense" authorized by the State Administration of Science, Technology and Industry for National Defense. The quality management system of this laboratory is in accordance with the ISO/IEC (2005-2012).

- 2. 本证书中的数据可溯源到国际单位制 (SI) 单位和/或社会公用计量标准。
- The data of the certificate is traceable to the International system of Units (SI) and/or the public metrological standards.
- 3. 本次校准的技术依据及CNAS认可范围(Reference documents and CNAS accredited scopes):
- JIG 176-2022 声校准器检定规程: Sound Pressure Level: 94dB. 104dB. 114dB. 124dB(63Hz~8kHz): 94dB. 104dB. 114dB.(31.5Hz~16kHz): Frequency: 31.5Hz~16kHz): Harmonic Distortion: 0.1%~10%. (20Hz~20kHz)
- 。详细内容请查看CNAS网站中注册编号为L13344的证书解件。超出范围的内容未被认可。其结集结论所依据的合格评定活动不在认可范围内。(Please see the attachment of certificate No. L13344 at CNAS websit for details, beyond which is not accredited, the conformity assessment activities on which the result/conclusions are based are cutside the escope of accreditation.)
- 4. 本次校准所使用的主要测量标准及溯源性声明(The main measurement standards used during the

車: ±0.01% 计量溯源性声明(Metrological Traceability Declaration):

被校准器具 Instrument	设备名称 Standard Name	外部机构/溯源证书编号 Institute/Certificate No.
	实验室标准传声器	航空304所/GFJGJL1001240306537
	前置放大器	中国计量院/LSsx2024-02588
Sound Level Calibrator	PULSE分析系统	航空304所/GFJGJL1001231007106
	数字多用表	广东计量院/DBN202260767

- 校准地点(The calibration place): 广州市增城区朱村街朱村大道西78号9栋110室
- 6. 环境条件(Environmental conditions): 温度(Temperature): 24.2°C 相对湿度(Relative Humidity): 62% 其它(Other): /
- 本证书中给出的扩展不确定度依据JJF1059.1-2012《測量不确定度评定与表示》评定,由合成标准 不确定度乘以包含概率约为95%时对应的包含因子k得到。

The extended uncertainty given in this certificate is evaluated according to JF-1059.1-2012 "Evaluation and Expression of Uncertainty in Measurement", and is calculated by multiplying the combined standard uncertainty by the coverage factor & which corresponding to the coverage probability about 95%.

第 2 页,共 4 页 Page of

Catalogue of Air Flow Meter (TSI TA440)

SPECIFICATIONS

Velocity

Range (TA410) 0 to 20 m/s (0 to 4,000 ft/min) Range (TA430, TA440) 0 to 30 m/s (0 to 6,000 ft/min) Accuracy (TA410)162 ±5% of reading or ±0.025 m/s (±5 ft/min), whichever is greater

Accuracy (TA430, TA440)¹⁶² ±3% of reading or ±0.015 m/s (±3 ft/min), whichever is greater Resolution 0.01 m/s (1 ft/min)

Duct Size (TA430, TA440)

Dimensions 1 to 635 cm in increments of 0.1 cm (1 to 250 inches in increments of 0.1 in.)

Volumetric Flow Rate (TA430, TA440)

Actual range is a function of velocity, and duct size Range

Temperature

Range (TA410, TA430) -18 to 93°C (0 to 200°F) Range (TA440) -10 to 60°C (14 to 140°F) Accuracy³ ±0.3°C (±0.5°F) Resolution 0.1°C (0.1°F)

Relative Humidity (TA440 only)

Range Accuracy⁴ ±3% RH Resolution 01% RH

Wet Bulb Temperature (TA440 only)

Range Resolution 0.1°C (0.1°F)

Dew Point (TA440 only)

-15 to 49°C (5 to 120°F) Resolution 0.1°C (0.1°F)

Instrument Temperature Range

Operating (Electronics) 5 to 45°C (40 to 113°F) Model TA410, TA430 -18 to 93°C (0 to 200°F) Model TA440 -10 to 60°C (14 to 140°F) -20 to 60°C (-4 to 140°F)

Data Storage Capabilities (TA430, TA440)

Logging Interval (TA430, TA440)

1 second to 1 hour

Storage

Time Constant (TA430, TA440)

User selectable

External Meter Dimensions

Meter Weight with Batteries

0.27 kg (0.6 lbs.)

Meter Probe Dimensions

Probe Length 101.6 cm (40 in.) Probe Diameter of Tip 7.0 mm (0.28 in.) Probe Diameter of Base 13.0 mm (0.51 in.)

8.4 cm x 17.8 cm x 4.4 cm (3.3 in. x 7.0 in. x 1.8 in.)

Articulating Probe Dimensions

Articulating Section Length 19.7 cm (7.8 in.) Diameter of Articulating Knuckle 9.5 mm (0.38 in.)

Power Requirements

Four AA-size batteries or AC adapter

	TA410	TA430, TA430-A	TA440, TA440-A
Velocity range 0 to 20.00 m/s (0 to 4000 ft/min)	+		
Velocity range 0 to 30.00 m/s (0 to 6000 ft/min)		+	+
Temperature	+	+	+
Flow		+	+
Humidity, wet bulb, dew point			+
Probe	Straight	Straight or -A articulated	Straight or -A articulated
Variable time constant		+	+
Manual data logging		+	+
Auto save data logging			+
Statistics		+	+
Review data		+	+
LogDat2 downloading software		+	+
Free Certificate of Calibration	+	+	+

emperature compensated over an air temperature range of 5 to 65°C (40 to 150°F). The accuracy statement begins at 30 ft/min through 4000 ft/min (0.15 m/s through 20 m/s) for the Model TA410, and 30 ft/min through 6,000 ft/min (0.15 m/s through 30 m/s) for Models TA430 and TA440.

Accuracy with instrument case at 25°C (77°F), add uncertainty of 0.03°C/°C (0.05°F/°F)

for change in instrument temperature.

*Accuracy with probe at 25°C (77°F). Add uncertainty of 0.2% RH/°C (0.1% RH/°F) for change in probe temperature. Includes 1% hysteresis.

Airflow Instruments, TSI Instruments Ltd. Visit our website at www.airflowinstruments.co.uk for more information

P/N 2980548 Rev D (A4) ©2014 TSI Incorporated

Calibration Certificate of Air Flow Meter

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong

Tel: +852 25680106 Email: info@callab.com.hk Fax: +852 30116194 Website: www.callab.com.hk

Calibration Certificate No.: CC0242312 Information provided by customer

Customer: Castco Testing Centre Limited 33, On Kui Street, Fanling, N.T. Address:

Equipment identification provided by customer

Model No. Serial No. Assigned equipment No. Equipment Description Manufacturer AIRFLOW TA440 TA4401232005 AAST-FLOW-02 Air Velocity Monitor TSI

Certificate Information

Date of Receipt: 15 December 2023 18 December 2023 Date of Calibration: Due Date of Calibration: N/A SOP-112 Calibration Procedure:

Calibration Condition: Adjustment: Appearance: Remark:

21.3°C, 56%RH, 1014hPa

Good

Reference Equipment Identification

Serial No Equipment Description 9535 Hot Wire Anemometer

Expiration Date

T95351316004 11 August 2024

Result of Calibration

Air Velocity

Technical Reference Doc.	Technical Requirement	Uncertainty (%)	Error (m/s)	Measured Reading (m/s)	Reference Reading (m/s)
Mfr's Spec.	±5%	3.6	0.00	0.99	0.99
Mfr's Spec.	±5%	3.6	0.01	2.03	2.02
Mfr's Spec.	±5%	3.6	-0.03	4.98	5.01
Mfr's Spec.	±5%	3.6	0.11	8.07	7.96

Notes: The estimated expanded uncortainties have been calculated in "Evaluation and expression of uncortainty in measurement" and give an internal estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Note2: The standard b) and instruments used in the disliberation are traceast to institution or international recognized standard and are calibrated on a schedular to maintain the

accuracy and good condition.

Note3: The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the

Notest: The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received

Calibrated By: Top

Checked and Approved By:

Company Chop:

Wing Cheng

Lower Xe Warren Yeung

Certificate Issue Date: 19 December 2023

*** End of Certificate ***

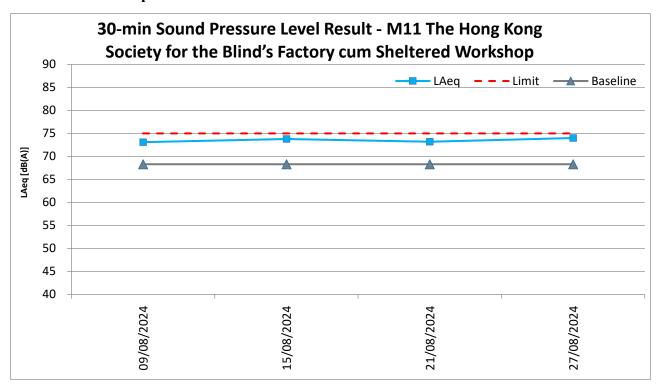
1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited 2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0242312

Page 1 of 1

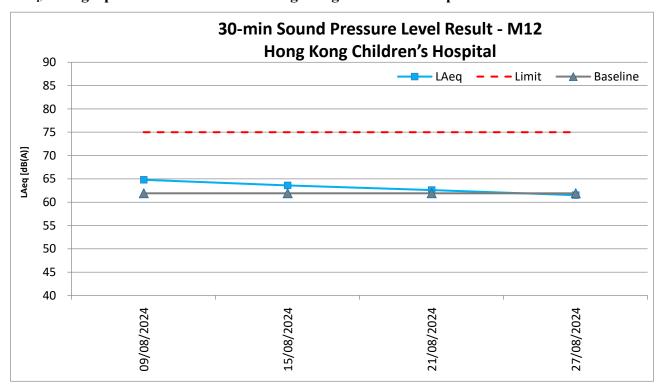
Appendix L – Noise monitoring results and graphic	cal presentation

M11 - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop


D.	T (0C)	XX7 .1	Measured Noise Level at M11, dB(A)							*
Date Temp (°C)		Weather	Time			Baseline	\mathcal{L}_{Aeq}	L_{A10}	L_{A90}	Limit
09/08/2024	32.2	Sunny	11:09	-	11:39	68.3	73.1	76.7	65.6	75
15/08/2024	30.6	Cloudy	13:28	-	13:58	68.3	73.8	78.1	66.8	75
21/08/2024	28.5	Cloudy	10:11	-	10:41	68.3	73.2	77.4	66.4	75
27/08/2024	31.5	Sunny	15:24	-	15:54	68.3	74.0	77.9	66.1	75
Maximum				74.0						
			Minimum			73.1				
			Average			73.5				

NOTE: Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. 30-min noise monitoring at M11 were conducted on the ground floor with orienting to the Project site. ET will resume the impact monitoring once the alternative monitoring location for M11 is confirmed.

M12 - Hong Kong Children's Hospital


5	 (0.0)	***	Measured Noise Level at M12, dB(A)							
Date Temp (o		Weather	Т	ìi	ne	Baseline	L _{Aeq}	L _{A10}	L _{A90}	Limit
09/08/2024	32.2	Sunny	14:18	-	14:48	61.9	64.8	67.1	62.2	75
15/08/2024	30.6	Cloudy	10:07	-	10:37	61.9	63.6	65.2	61.5	75
21/08/2024	28.5	Cloudy	14:44	-	15:14	61.9	62.6	64.3	60.7	75
27/08/2024	31.5	Sunny	9:54	-	10:24	61.9	61.5	62.6	60.1	75
			Maximum				64.8			
			Minimum			61.5				
			Average			63.3				

 $L_{Aeq, 30-min}$ graphical results of M11 - The Hong Kong Society for the Blind's Factory cum Sheltered Workshop

NOTE: Due to the relocation of The Hong Kong Society for the Blind's Factory cum Sheltered Workshop (M11), the premises owner rejected ET to conduct impact monitoring since 1 Sept 2022. 30-min noise monitoring at M11 were conducted on the ground floor with orienting to the Project site. ET will resume the impact monitoring once the alternative monitoring location for M11 is confirmed.

LAeq, 30-min graphical results of M12 - Hong Kong Children's Hospital

Appendix M – Event and Action Plan for noise

E4						
Event	ET	IEC	Supervisor / ER	Contractor		
Action Level being exceeded	 Notify Supervisor / ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, Supervisor / ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified.) 	1. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures submitted by the Contractor and advise the ER accordingly; 3. Advise the Supervisor / ER on the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified.)	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified.) 	 Submit noise mitigation proposal to IEC and Supervisor / ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified.) 		
Limit Level being exceeded	1. Inform IEC, Supervisor /ER, Contractor and EPD; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contract's working procedure; 6. Discuss remedial measures required with the IEC, Contractor and Supervisor /ER; 7. Assess effectiveness of	1. Discuss the potential remedial actions with Supervisor /ER, ET and Contractor; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the Supervisor /ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified.)	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures; 5. If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and Supervisor /ER within 3 working days of notification; Implement the agreed proposal; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the Supervisor /ER until the exceedance is abated. (The above actions should be 		

Event		Act	tion			
Event	ET	IEC	Supervisor / ER	Contractor		
	Contractor's remedial		exceedance until the	taken within 2 working days		
	actions and keep IEC,		exceedance is abated.	after the exceedance is		
	EPD, and Supervisor /ER		(The above actions should be	identified.)		
	informed of the results;		taken within 2 working days after			
	8. If exceedance stops, cease		the exceedance is identified.)			
	additional monitoring.					
	(The above actions should be					
	taken within 2 working days					
	after the exceedance is					
	identified.)					

Appendix N – Event and Action Plan	for Landscape and Visual Impact

Event		Acı	tion	
Event	ET	IEC	Supervisor / ER	Contractor
Design Check	1. Check final design conforms to the requirements of EP and prepare report.	Check report. Recommend remedial design if necessary.	Undertake remedial design if necessary.	
Non-conformity on one occasion	 Identify Source. Inform IEC and Supervisor /ER. Discuss remedial actions with IEC, Supervisor /ER and Contractor. Monitor remedial actions until rectification has been completed. 	 Check report. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise Supervisor /ER on effectiveness of proposed remedial measures. Check implementation of remedial measures. 	Notify Contractor. Ensure remedial measures are properly implemented.	Amend working methods. Rectify damage and undertake any necessary replacement.
Repeated Non-conformity	 Identify Source. Inform IEC and Supervisor /ER. Increase monitoring frequency. Discuss remedial actions with IEC, Supervisor /ER and Contractor. Monitor remedial actions until rectification has been completed. If non-conformity stops, cease additional monitoring. 	Contractor on possible remedial measures.	Notify Contractor. Ensure remedial measures are properly implemented.	Amend working methods. Rectify damage and undertake any necessary replacement.

Appendix O – Waste Flow Table

Appendix I - Monthly Summary Waste Flow Table

Name of Department: CEDD Contract No.: ED/2018/01

Monthly Summary Waste Flow Table for August 2024

	Ac	tual Quantitie	s of Inert C&D	Materials Gene	rated Monthl	y		Actual Quantities	of C&D Wastes	s Generated Month	nly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg) (in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	2.311	0.111			2.311					-	0.184
Feb	2.232	0.177			2.232						0.173
Mar	2.893	0.032			2.893			0.051			0.259
Apr	3.482	0.016	_		3.482						0.238
May	2.899	0.595	_		2.899						0.143
Jun	1.610	0.248			1.610	1.106				-	0.190
Sub-total	15.427	1.179	-		15.427	1.106		0.051		1	1.187
July	2.088	0.272	_		2.088	6.397					0.371
Aug Sep	4.620	0.451	• • • • • • • • • • • • • • • • • • •		4.620	4.188					0.330
Oct Nov											
Dec	00 105	4.000			00 105	11.001	2	0.054			4.000
Total	22.135	1.902	=		22.135	11.691		0.051		-	1.888
ATTACA MARKATAN ATTACA	Page 1			and a facility of the state of	100000000000000000000000000000000000000	Materials to	be Generate	ed from the Contra	50. FO S	-	Name and Administration
Total Quantit Generated	y Hard Rock and Broken Con				Impo	ned Fill	Metals	Paper / cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m	oo' (in '00	(in '0	00m³) (in '000	(in 'C	000m³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
320.000	27.000	10.2	200 41.	000 320.0	00 10	.000	420.000	2.000	4.000	0.300	10.000

Notes: (1) The performance targets are given in ER Appendix 8I Clause 14 and the EM&A Manual

The waste flow table shall also include C&D materials to be imported for use at the Site

⁽³⁾ Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material and water barrier

⁽⁴⁾ The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000m³ (ER Part 8 Clause 8.7.5(d)(ii) refers)

⁽⁵⁾ Assume inert C&D materials density and non-inert C&D materials are 1.9 ton/m³ and 1.5 ton/m³

Appendix P – Environmental Mitigation Implementation Schedule(EMIS)

EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status
S3.2		8 times daily watering of the work site with active dust emitting	^
		activities.	
S3.2	S4.8	Implementation of dust suppression measures stipulated in Air	^
		Pollution Control (Construction Dust) Regulation. The following	
		mitigation measures, good site practices and a comprehensive dust	
		monitoring and audit programme are recommended to minimize	
		cumulative dust impacts.	
		- Stockpiling site(s) should be lined with impermeable sheeting	^
		and bunded. Stockpiles should be fully covered by	
		impermeable sheeting to reduce dust emission.	
		- Misting for the dusty material should be carried out before	٨
		being loaded into the vehicle.	
		- Any vehicle with an open load carrying area should have	^
		properly fitted side and tail boards.	
		- Material having the potential to create dust should not be loaded	^
		from a level higher than the side and tail boards and should be	
		dampened and covered by a clean tarpaulin.	
		- The tarpaulin should be properly secured and should extent at	^
		least 300 mm over the edges of the sides and tailboards. The	
		material should also be dampened if necessary, before	
		transportation.	
		- The vehicles should be restricted to maximum speed of 10 km	^
		per hour and confined haulage and delivery vehicle to	
		designated roadways insider the site. On- site unpaved roads	
		should be compacted and kept free of lose materials.	
		- Vehicle washing facilities should be provided at every vehicle	^
		exit point.	
		- The area where vehicle washing takes place and the section of	٨
		the road between the washing facilities and the exit point should	
		be paved with concrete, bituminous materials or hardcores.	
		- Every main haul road should be scaled with concrete and kept	^*
		clear of dusty materials or sprayed with water so as to	
		maintain the entire road surface wet.	
		- Every stock of more than 20 bags of cement should be covered	^
		entirely by impervious sheeting placed in an area sheltered on	
		the top and the three sides.	
		- Every vehicle should be washed to remove any dusty materials	٨
		from its body and wheels before leaving the construction sites.	

EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status
S3.3		Use of quiet PME, movable barriers for Asphalt Paver, Breaker,	^
		Excavator and Hand-held breaker and full enclosure for Air	
		Compressor, Bar Bender, Concrete Pump, Generator and Water	
		Pump.	
S3.3		Good Site Practice:	
S3.3		- Only well-maintained plant should be operated on-site and	^*
		plant should be serviced regularly during the construction	
		program.	
		- Silencers or mufflers on construction equipment should be	^
		utilized and should be properly maintained during the	
		construction program.	
		- Mobile plant, if any, should be sited as far away from NSRs as	^
		possible.	
		- Machines and plant (such as trucks) that may be in intermittent	^
		use should be shut down between works periods or should be	
		throttled down to a minimum.	
		- Plant known to emit noise strongly in one direction should,	^
		wherever possible, be orientated so that the noise is directed	
		away from the nearby NSRs.	
		- Material stockpiles and other structures should be effectively	٨
		utilized, wherever practicable, in screening noise from on-site	
		construction activities.	
		- Scheduling of Construction Works during School	N/A
		Examination Period	

Implementatio	n Schedule for \	Water Quality Measures	
EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status
S3.4		Construction Runoff	^
		Exposed soil areas should be minimised to reduce the potential for	
		increased siltation, contamination of runoff, and erosion.	
		Construction runoff related impacts associated with the above	
		ground construction activities can be readily controlled through the	
		use of appropriate mitigation measures which include:	
S3.4		- use of sediment traps.	٨
S3.4		- adequate maintenance of drainage systems to prevent flooding	^
		and overflow.	

EIA for KTD Development	EIA for KTD - Roads D3A		Environmental Protection Measures / Mitigation Measures	Status
Ref.	& D4A Ref.			
	S5.8	-	Surface run-off from construction sites should be discharged	^
			into storm drains via adequately designed sand/silt removal	
			facilities such as sand traps, silt traps and sedimentation basins.	
	S5.8	-	Channels or earth bunds or sand bag barriers should be provided	^
			on site to properly direct stormwater to such silt removal	
			facilities. Perimeter channels should be provided on site	
			boundaries where necessary to intercept storm run-off from	
			outside the site so that it will not wash across the site. Catchpits	
			and perimeter channels should be constructed in advance of site	
			formation works and earthworks.	
	S5.8	-	Silt removal facilities, channels and manholes should be	٨
			maintained and the deposited silt and grit should be removed	
			regularly, at the onset of and after each rainstorm to prevent	
			local flooding. Any practical options for the diversion and	
			re-alignment of drainage should comply with both engineering	
			and environmental requirements in order to provide adequate	
			hydraulic capacity of all drains. Minimum distance of 100 m	
			should be maintained between the discharge points of	
			construction site run-off and the existing saltwater intakes.	
	S5.8	_	Earthworks final surfaces should be well compacted and the	^
			subsequent permanent work or surface protection should be	
			carried out immediately after the final surfaces are formed to	
			prevent erosion caused by rainstorms. Appropriate drainage like	
			intercepting channels should be provided where necessary.	
	S5.8	_	Measures should be taken to minimize the ingress of rainwater	^
	55.0		into trenches. If excavation of trenches in wet seasons is	
			necessary, they should be dug and backfilled in short sections.	
			Rainwater pumped out from trenches or foundation excavations	
	05.0		should be discharged into storm drains via silt removal facilities.	^
	S5.8	-	Open stockpiles of construction materials (e.g. aggregates,	^
			sand and fill material) on sites should be covered with tarpaulin	
			or similar fabric during rainstorms.	
	S5.8	-	Manholes (including newly constructed ones) should always be	^
			adequately covered and temporarily sealed so as to prevent silt,	
			construction materials or debris from getting into the drainage	
			system, and to prevent storm run-off from getting into foul	
			sewers. Discharge of surface run-off into foul sewers must	
			always be prevented in order not to unduly overload the foul	

EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status
		sewerage system.	
	S5.8	- Good site practices should be adopted to remove rubbish and	٨
		litter from construction sites so as to prevent the rubbish and	
		litter from spreading from the site area. It is recommended to	
		clean the construction sites on a regular basis.	
S3.4		Construction site should be provided with adequately designed	٨
		perimeter channel and pre-treatment facilities and proper	
		maintenance. The boundaries of critical areas of earthworks should	
		be marked and surrounded by dykes or embankments for flood	
		protection. Temporary ditches should be provided to facilitate runoff	
		discharge into the appropriate watercourses, via a silt retention pond.	
		Permanent drainage channels should incorporate sediment basins or	
		traps and baffles to enhance deposition rates. The design of efficient	
		silt removal facilities should be based on the guidelines in Appendix	
		A1 of ProPECC PN 1/94.	
S3.4	S5.8	Ideally, construction works should be programmed to minimise	^
		surface excavation works during the rainy season (April to	
		September). All exposed earth areas should be completed as soon as	
		possible after earthworks have been completed, or alternatively,	
		within 14 days of the cessation of earthworks where practicable.	
		If excavation of soil cannot be avoided during the rainy season, or at	
		any time of year when rainstorms are likely, exposed slope surfaces	
		should be covered by tarpaulin or other means.	
		If excavation in soil cannot be avoided in these months or at any	
		time of year when rainstorms are likely, for the purpose of	
		preventing soil erosion, temporary exposed slope surfaces should be	
		covered e.g. by tarpaulin, and temporary access roads should be	
		protected by crushed stone or gravel, as excavation proceeds.	
		Intercepting channels should be provided (e.g. along the crest / edge	
		of excavation) to prevent storm runoff from washing across exposed	
		soil surfaces. Arrangements should always be in place in such a way	
		that adequate surface protection measures can be safely carried out	
		well before the arrival of a rainstorm.	
S3.4		Sediment tanks of sufficient capacity, constructed from pre-formed	^
		individual cells of approximately 6 to 8 m ³ capacity, are	
		recommended as a general mitigation measure which can be used	
		for settling surface runoff prior to disposal. The system capacity is	
		flexible and able to handle multiple inputs from a variety of sources	

		Water Quality Measures	T
EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status
		and particularly suited to applications where the influent is pumped.	
S3.4		Open stockpiles of construction materials (for examples, aggregates,	^
		sand and fill material) of more than 50 m ³ should be covered with	
		tarpaulin or similar fabric during rainstorms. Measures should be	
		taken to prevent the washing away of construction materials, soil,	
		silt or debris into any drainage system.	
S3.4		Manholes (including newly constructed ones) should always be	^
		adequately covered and temporarily sealed so as to prevent silt,	
		construction materials or debris being washed into the drainage	
		system and storm runoff being directed into foul sewers.	
S3.4		Precautions to be taken at any time of year when rainstorms are	٨
		likely, actions to be taken when a rainstorm is imminent or forecast,	
		and actions to be taken during or after rainstorms are summarised in	
		Appendix A2 of ProPECC PN 1/94. Particular attention should be	
		paid to the control of silty surface runoff during storm events.	
S3.4		Oil interceptors should be provided in the drainage system and	NA
		regularly cleaned to prevent the release of oils and grease into the	
		storm water drainage system after accidental spillages. The	
		interceptor should have a bypass to prevent flushing during periods	
		of heavy rain.	
S3.4	S5.8	Wheel Washing Water	^
		All vehicles and plant should be cleaned before leaving a	
		construction site to ensure no earth, mud, debris and the like is	
		deposited by them on roads. An adequately designed and located	
		wheel washing bay should be provided at every site exit, and	
		wash-water should have sand and silt settled out and removed at	
		least on a weekly basis to ensure the continued efficiency of the	
		process. The section of access road leading to, and exiting from, the	
		wheel-wash bay to the public road should be paved with sufficient	
		backfall toward the wheel-wash bay to prevent vehicle tracking of	
		soil and silty water to public roads and drains.	
S3.4		Drainage	٨
-		It is recommended that on-site drainage system should be installed	
		prior to the commencement of other construction activities.	
		Sediment traps should be installed in order to minimise the sediment	
		loading of the effluent prior to discharge into foul sewers. There	
		should be no direct discharge of effluent from the site into the sea.	
S3.4		All temporary and permanent drainage pipes and culverts provided	^

Implementation	n Schedule for V	Water Quality Measures	
EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status
		to facilitate runoff discharge should be adequately designed for the	
		controlled release of storm flows. All sediment control measures	
		should be regularly inspected and maintained to ensure proper and	
		efficient operation at all times and particularly following rain	
		storms. The temporarily diverted drainage should be reinstated to its	
		original condition when the construction work has finished or the	
		temporary diversion is no longer required.	
S3.4		All fuel tanks and storage areas should be provided with locks and	٨
		be located on sealed areas, within bunds of a capacity equal to 110%	
		of the storage capacity of the largest tank, to prevent spilled fuel oils	
		from reaching the coastal waters of the Victoria Harbour WCZ.	
S3.4	S5.8	Sewage Effluent	٨
		Construction work force sewage discharges on site are expected to	
		be connected to the existing trunk sewer or sewage treatment	
		facilities. The construction sewage may need to be handled by	
		portable chemical toilets prior to the commission of the on-site	
		sewer system. Appropriate numbers of portable toilets should be	
		provided by a licensed contractor to serve the large number of	
		construction workers over the construction site. The Contractor	
		should also be responsible for waste disposal and maintenance	
		practices.	
		Notices should be posted at conspicuous locations to remind the	
		workers not to discharge any sewage or wastewater into the	
		surrounding environment. Regular environmental audit of the	
		construction site will provide an effective control of any	
		malpractices and can encourage continual improvement of	
		environmental performance on site. It is anticipated that sewage	
		generation during the construction phase of the project would not	
		cause water pollution problem after undertaking all required	
		measures.	
S3.4		Stormwater Discharges	٨
		Minimum distances of 100 m should be maintained between the	
		existing or planned stormwater discharges and the existing or	
		planned seawater intakes	
S3.4		Debris and Litter	٨
		In order to maintain water quality in acceptable conditions with	
		regard to aesthetic quality, contractors should be required, under	
		conditions of contract, to ensure that site management is optimised	

EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status
		and that disposal of any solid materials, litter or wastes to marine	
		waters does not occur.	
	S5.8	Boring and Drilling Water	^
		Water used in ground boring and drilling for site investigation or	
		rock / soil anchoring should as far as practicable be re-circulated	
		after sedimentation. When there is a need for final disposal, the	
		wastewater should be discharged into storm drains via silt removal	
		facilities.	
	S5.8	Acid Cleaning, Etching and Pickling Wastewater	NA
		Acidic wastewater generated from acid cleaning, etching, pickling	
		and similar activities should be neutralized to within the pH range	
		of 6 to 10 before discharging into	
		foul sewers.	
	S5.8	Effluent Discharge	^
		There is a need to apply to EPD for a discharge licence for discharge	
		of effluent from the construction site under the WPCO. The	
		discharge quality must meet the requirements specified in the	
		discharge licence. All the runoff and wastewater generated from the	
		works areas should be treated so that it satisfies all the standards	
		listed in the TM-DSS. Minimum distance of 100 m should be	
		maintained between the discharge points of construction site effluent	
		and the existing seawater intakes and the planned WSR mentioned in	
		S5.3.1 as appropriate. The beneficial uses of the treated effluent for	
		other on-site activities such as dust suppression, wheel washing and	
		general cleaning etc., can minimise water consumption and reduce	
		the effluent discharge volume. If monitoring of the treated	
		effluent quality from the works areas is required during the	
		construction phase of the Project, the monitoring should be carried	
		out in accordance with the relevant WPCO licence which is under	
	CE O	the ambit of regional office (RO) of EPD.	^
	S5.8	Accidental Spillage Contractor must register as a chemical wester producer if chemical	, ,
		Contractor must register as a chemical waste producer if chemical	
		wastes would be produced from the construction activities. The	
		Waste Disposal Ordinance (Cap 354) and its subsidiary regulations	
		in particular the Waste Disposal (Chemical Waste) (General)	
		Regulation, should be observed and complied with for control of	
		chemical wastes.	
		Any service shop and maintenance facilities should be located on	

Implementation Schedule for Water Quality Measures				
EIA for KTD Development Ref.	velopment - Roads D3A			
		hard standings within a bunded area, and sumps and oil interceptors		
		should be provided. Maintenance of vehicles and equipment		
		involving activities with potential for leakage and spillage should		
		only be undertaken within the areas appropriately equipped to		
		control these discharges.		
	S5.8	Disposal of chemical wastes should be carried out in compliance	٨	
		with the Waste Disposal Ordinance. The Code of Practice on the		
		Packaging, Labelling and Storage of Chemical Wastes published		
		under the Waste Disposal Ordinance details the requirements to deal		
		with chemical wastes. General requirements are given as follows:		
		- Suitable containers should be used to hold the chemical wastes		
		to avoid leakage or spillage during storage, handling and		
		transport.		
	S5.8	- Chemical waste containers should be suitably labelled, to notify	٨	
		and warn the personnel who are handling the wastes, to avoid		
		accidents.		
	S5.8	- Storage area should be selected at a safe location on site and	٨	
_		adequate space should be allocated to the storage area.		

Implementation Schedule for Waste Management Measures				
EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status	
S3.5		Good Site Practices		
		It is not anticipated that adverse waste management related impacts		
		would arise, provided that good site practices are adhered to.		
		Recommendations for good site practices during construction		
		activities include:		
S3.5		- Nomination of an approved person, such as a site manager, to	٨	
		be responsible for good site practices, arrangements for		
		collection and effective disposal to an appropriate facility, of all		
		wastes generated at the site.		
	S6.7	- Prepare a Waste Management Plan, which becomes a part of the	٨	
		Environmental Management Plan, in accordance with the		
		requirements stipulated in ETWB TC(W) No. 19/2005,		
		approved by the Engineer/Supervising Officer of the Project		
		based on current practices on construction sites.		
S3.5	S6.7	- Training of site personnel in proper waste management and	٨	
		chemical waste handling procedures.		

EIA for KTD Development - Roads D3A			
Ref. S3.5	& D4A Ref. S6.7	- Provision of sufficient waste disposal points and regular	^
33.3	30.7	collection for disposal.	
S3.5	S6.7	- Appropriate measures to minimise windblown litter and dust	^
55.5	50.7	during transportation of waste by either covering trucks or by	
		transporting wastes in enclosed containers.	
S3.5		- A recording system for the amount of wastes generated,	^
55.5		recycled and disposed of (including the disposal sites).	
	S6.7	- Regular cleaning and maintenance programme for drainage	^
	50.7	systems, sumps and oil interceptors.	
	S6.7	- Training should be provided to workers about the concepts of	^
	50.7	site cleanliness and appropriate waste management procedures,	
		including waste reduction, reuse and recycle.	
S3.5		Waste Reduction Measures	
55.5		Good management and control can prevent the generation of a	
		significant amount of waste. Waste reduction is best achieved at the	
		planning and design stage, as well as by ensuring the	
		implementation of good site practices. Recommendations to achieve	
		waste reduction include:	
S3.5	S6.7	- Sort C&D waste from demolition of the remaining structures to	NA
55.5	50.7	recover recyclable portions such as metals.	1111
S3.5	S6.7	- Segregation and storage of different types of waste in different	^
55.5	50.7	containers, skips or stockpiles to enhance reuse or recycling of	
		materials and their proper disposal.	
S3.5	S6.7	- Encourage collection of aluminium cans, PET bottles and paper	^
55.5	50.7	by providing separate labelled bins to enable these wastes to be	
		segregated from other general refuse generated by the work	
		force.	
S3.5		- Any unused chemicals or those with remaining functional	^
55.5		capacity should be recycled.	
S3.5	S6.7	- Proper storage and site practices to minimise the potential for	^
20.0	20.7	damage or contamination of construction materials.	
S3.5		Construction and Demolition Materials	
-2.0		Mitigation measures and good site practices should be incorporated	
		in the contract document to control potential environmental impact	
		from handling and transportation of C&D material. The mitigation	
		measures include:	
S3.5		- Where it is unavoidable to have transient stockpiles of C&D	^
~3.0		material within the Project work site pending collection for	

EIA for KTD Development Ref. EIA for KTD - Roads D3A & D4A Ref.		lopment - Roads D3A	
		disposal, the transient stockpiles shall be located away from	
		waterfront or storm drains as far as possible.	
S3.5		- Open stockpiles of construction materials or construction	^
		wastes on-site should be covered with tarpaulin or similar	
		fabric.	
S3.5		- Skip hoist for material transport should be totally enclosed by	^
		impervious sheeting.	
S3.5		- Every vehicle should be washed to remove any dusty materials	^
		from its body and wheels before leaving a construction site.	
S3.5		- The area where vehicle washing takes place and the section of	^
		the road between the washing facilities and the exit point should	
		be paved with concrete, bituminous materials or hardcores.	
S3.5		- The load of dusty materials carried by vehicle leaving a	^
		construction site should be covered entirely by clean	
		impervious sheeting to ensure dust materials do not leak from	
		the vehicle.	
S3.5		- All dusty materials should be sprayed with water prior to any	^
		loading, unloading or transfer operation so as to maintain the	
		dusty materials wet.	
S3.5		- The height from which excavated materials are dropped should	^
		be controlled to a minimum practical height to limit fugitive	
		dust generation from unloading.	
S3.5		- When delivering inert C&D material to public fill reception	^
		facilities, the material should consist entirely of inert	
		construction waste and of size less than 250mm or other sizes	
		as agreed with the Secretary of the Public Fill Committee. In	
		order to monitor the disposal of the surplus C&D material at	
		the designed public fill reception facility and to control fly	
		tipping, a trip-ticket system as stipulated in the ETWB TCW	
		No. 31/2004 "Trip Ticket System for Disposal of Construction	
		and Demolition Materials" should be included as one of the	
		contractual requirements and implemented by an	
		Environmental Team undertaking the Environmental	
		Monitoring and Audit work. An Independent Environmental	
		Checker should be responsible for auditing the results of the	
		system.	
	S6.7	- Plan and stock construction materials carefully to minimize	٨
		amount of waste generated and avoid unnecessary generation	

Implementatio	Implementation Schedule for Waste Management Measures				
EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	3A			
		of waste.			
S3.5		Chemical Waste	٨		
		After use, chemical wastes (for example, cleaning fluids, solvents,			
		lubrication oil and fuel) should be handled according to the Code of			
		Practice on the Packaging, Labelling and Storage of Chemical			
		Wastes. Spent chemicals should be collected by a licensed collector			
		for disposal at the CWTF or other licensed facility, in accordance			
		with the Waste Disposal (Chemical Waste) (General) Regulation.			
	S6.7	Separation of chemical wastes for special handling and appropriate	^		
		treatment.			
S3.5		General Refuse	۸		
		General refuse should be stored in enclosed bins or compaction units			
		separate from C&D material. A licensed waste collector should be			
		employed by the contractor to remove general refuse from the site,			
		separately from C&D material. Effective collection and storage			
		methods (including enclosed and covered area) of site wastes would			
		be required to prevent waste materials from being blown around by			
		wind, wastewater discharge by flushing or leaching into the marine			
		environment, or creating odour nuisance or pest and vermin			
		problem.	_		

Implementation Schedule for Landscape and Visual Measures					
EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status		
S3.8.12		All existing trees should be carefully protected during construction.	٨		
S3.8.12		Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	NA		
S3.8.12		Control of night-time lighting.	٨		
S3.8.12		Erection of decorative screen hoarding.	٨		
	S7.9	Construction Site Control - CM1 - Minimized construction area and contractor's temporary works areas.	^		
		- CM2- Control of night-time lighting and glare by hooding all lights.	^		
L		- CM3 - Erection of decorative mesh screens or construction	^		

Implementation Schedule for Landscape and Visual Measures				
EIA for KTD Development Ref.	EIA for KTD - Roads D3A & D4A Ref.	Environmental Protection Measures / Mitigation Measures	Status	
		hoardings around works areas in visually unobtrusive colours.		
		- CM4 - Reduction of construction period to practical minimum.	٨	
		- CM5 - Limitation of / Ensuring no run-off into surrounding landscape and adjacent seawater areas.	۸	
		- CM6 - Temporary or advance landscape should be provided along the temporary access roads to the Cruise Terminal until such time as road D3 is open.	NA	

Remarks:			
^	Compliance of mitigation measure.	X	Non-compliance of mitigation measure.
N/A	Not Applicable at this stage.	•	Non-compliance but rectified by the contractor.
N/A(1)	Not observed.		
*	Recommendation was made during site audit	#	Recommendation was made during audit and to be
	but improved/rectified by the contractor.		improved/ rectified by the contractor.

Mitigation Measures undertaken by the Contractor for site inspections

Date:	15 August 2024	Date:	15 August 2024
Mitigation Measures:	The stock of more	Mitigation Measures:	The silt curtains were
	than 20 bags of		deployed around the
	cement materials on		Harbour step.
	sites were covered.		_

Date:	22 August 2024	Date:	29 August 2024	
Mitigation Measures:	The accumulated	Mitigation Measures:	Haul road was sprayed	
	waste collection was		with water to maintain	
	cleared regularly by		the entire road surface	
	workers.		wet.	

Appendix Q – Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution

Reporting Month: August 2024

Contract No.	Record of Complaint (Yes/No)	Record of Warning (Yes/No)	Notification of Summons and Successful Prosecutions (Yes/No)
ED/2018/01	No	No	No

Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions up to reporting month

Contract No.	Record of Complaint	Record of Warning	Notification of Summons and Successful Prosecutions
ED/2018/01	17	0	0

Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status		
C0001	A dust complaint was referred from the Contractor on 21 Oct 2020 regarding a public complaint via 1823 hotline (Case no. 3-6518939602) on 20 Oct 2020.	was not covered properly. 3. Haul road was not wetted. 4. Materials transported on trucks were not provided with mechanical covers.	 Investigation Based on the information provided by the Contractor on 22 Oct 2020, the water sprinklers system was sprayed every 15 minutes with 70 seconds interval automatically. For the area that water sprinklers system was not covered, manual water spraying was provided. Dump trucks were covered with mechanical cover after loading the materials. The stockpile area was covered by the tarpaulin during night time. Based on the monitoring results on 16 Oct 2020, the 1-hour and 24-hour TSP results were below the Action Levels and Limit Levels. Regular site inspection was conducted by ET on 22 Oct 2020, no adverse observation against the dust impact was recorded. Action taken As per the Contractor, the water sprinkler are now adjusted to start at 8:00am and end at 6:00pm for Monday to Saturday while from 8:00am to 5:00pm on Sunday. Water spraying are set with 5-minute time interval with duration 30-60 seconds. Recommendations To minimize the impact for air quality, mitigation measures should be enhanced specially in dry seasons are recommended:	- Closed-out on 5 Nov 2020 No further complaint was received.		
C0002	A dust complaint was referred from the Contractor on 8 Sep 2021 through E-Mail regarding a complaint	Complaint of dust problem at the pavement of Muk Tai Street near Sports	Investigation As per contractor, part of the complaint area was within the site boundary of the project. 1. Manual water spraying was provided. 2. The exposed surface and stockpile areas were covered by the impermeable	 Closed-out on 4 Oct 2021. No further complaint was received. 		

Complaint	Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status			
	received by EPD (EPD ref.: K19/RE/00021205-21) on 7 Sep 2021.	Park.	Action taken The exposed surface and stockpile area was covered by the impermeable tarpaulin sheet. Recommendations There was no direct evidence showing that the dust nuisance was caused by the contractor at the complaint area, however the contractor is recommended to implement the following measures to minimize the impact for air quality: 1. Ensure stockpiling sites should be lined with impermeable sheeting and bunded. 2. Stockpiles should be fully covered by impermeable sheeting at all time except during working process. 3. Ensure the work fulfill the relevant statutory requirements on control of air pollution. 4. Take necessary measures to minimize the environmental nuisance arising from the construction site.				
C0003	A water discharge complaint was referred from the Contractor on 10 Dec 2021 through E-Mail regarding a complaint received by EPD (ref.: K19/RE/00029046-21) on 9 Dec 2021.	Complaint of muddy water being discharged into the sea of To Kwa Wan Typhoon Shelter via a DSD outfall near the roundabout of Shing Fung Road.	 Investigation Joint site inspection was conducted by ER, IEC, ET and the contractor on 14 Dec 2021, no adverse observation against the water impact was recorded. 1. There was no muddy water discharge to DSD outfall near the roundabout of Shing Fung Road. 2. The sandbag with layers and filter were provided at the manholes. Action taken - Sandbags and filter were used to block the manholes. - Manholes had been adequately covered and replace the filter frequently. Recommendations There was no direct evidence showing that the water nuisance was caused by the contractor at the complaint area. 	 Closed-out on 5 Jan 2022. No further complaint was received. 			

Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out I Status		
			Some of muddy water generated from wheel washing might be flow to the outfall inside the site boundary, however the contractor had taken the mitigation measure by using sandbag and filter to ease the nuisance. The contractor is recommended to implement the following measures to minimize the impact for waste water: 1. Enhance the sandbag with several layers instead of one layer only and replace the filter frequently. 2. Modify the wheel washing area such that the muddy water will be directly flow to the pit and then waste water treatment facility. 3. Take necessary measures to minimize the environmental nuisance arising from the construction site.			
C0004	A dust complaint was received by EPD on 16 Dec 2022. Contractor received Notification of Environmental Complaints from EPD (ref.: K19/RE/00029136-22) by E-Mail on 22 Dec 2021.	Complaint of mud/ silt being brought out by vehicles from the project site casing mud/silt accumulation on Shing Fung Road.	 Investigation Regular site inspection was conducted by ET on 29 Dec 2022. 1. As per the Contractor, mud / slit generated from nearby construction sites might be brought to Shing Fung Road roundabout. 2. No adverse observation against the dust impact was recorded during site inspection. Action taken 1. Watering manually frequently. 2. Haul Road surfaces were wetted by water truck. 3. Wheel washing for the trucks and vehicles before leaving the project site. Recommendations To minimize the impact for air quality, mitigation measures should be enhanced specially in dry seasons are recommended: 1. Increase the frequency and duration for automatic water spraying system. 2. Main haul road and the area that water sprinklers system was not covered in the construction site should be wetted by water trucks or manually in regular basis. 3. Regular wash and clean the share haul road and roundabout in Shing Fung 	 Closed-out Jan 2023. No complaint received. 	on 13 further was	

Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status		
			 Wheel washing for the trucks and vehicles before leaving the project site. The muddy water after the wheel washing should be directed to sedimentation tank and wastewater treatment facility before discharging to gully. Ensure stockpiling sites should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting at all time except during working process. Dusty materials transported on truck shall be covered. 			
C0005	A noise complaint was received by EPD on 21 Dec 2022. Contractor received Notification of Environmental Complaints from EPD	Complaint of construction noise arising from the project site near Shing Kai Road and Muk Tai Street continued to	 Investigation Regular site inspection was conducted by ET and the Contractor on 29 Dec 2022 1. The complaint was project-related as construction noise arose from the project site near Shing Kai Road and Muk Tai Street. 2. Status of CNPs in the work area near Shing Kai Road and Muk Tai Street were checked and all of them were valid. However, the CNPs only cover the period up to 2300. 	- After six months of receiving the complaint, there was no further action		
	(EPD ref.: K19/RE/00029422-22)	01:30 am on 21 Dec 2022.	Construction Noise PermitValid FormValid TillGW-RE1297-2210 Dec 202208 Jun 2023	from EPD.		
	on 22 Dec 2022.		GW-RE1299-22 17 Dec 2022 15 Jun 2023	- Closed-out on		
	IEC received the notification on 22 Dec 2022 from EPD and forwarded the notification to CEDD, Contractor, ER and ET on same day.		Actions taken 1. Refresher training about CNP was provided to the labour on 22 Dec 2022. 2. No construction activities were allowed in the restricted hours for those areas without valid CNP. Recommendations To minimize the impact of construction noise, the following mitigation measures are recommended: 1. Provide regular training about CNP and other environmental issues to staff. 2. Regularly check the status of ALL CNP and other environmental permits.	29 Jun 2024.		
C0006	A dust complaint was received by EPD on 6	Complaint of construction	Investigation Site inspections were conducted by ET on 26 Jan 2023 and joint site inspection	- Closed-out on 16 Mar 2023.		

Complaint Log for ED/2018/01					
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status	
	Dec 2022. Contractor (POC) received Notification of Environmental Complaints from EPD (ref.: K19/RE/00027862-22) by E-Mail on 7 Dec 2022. IEC received the notification on 19 Jan 2023 and forwarded the notification to CEDD, ER and ET on same day.	dust arising from construction sites along Shing Fung Road.	was conducted by Contractor (POC), ER, ET and IEC on 8 Feb 2023. 1. The concerned area (roundabout) is the common road for public vehicles. In addition, construction vehicles from several nearby construction sites also use the concerned road, especially a lots of dump trucks. 2. Construction vehicles from Contractor (POC) project site are not allowed leaving the site to Shing Fung Road directly as the exit was blocked by barriers since 21 Jan 2023. 3. Worker of sub-contractor from Contractor (POC) wetted the part of the concerned road surface during the site inspection on 8 Feb 2023 to suppress dust emission. 4. No construction works was observed on 26 Jan 2023 and no adverse observation against the dust impact were found during the site inspection on both dates. Action taken 1. Haul Road surfaces were wetted manually and washed the dusty water barrier regularly. 2. Wheel washing for the trucks and vehicles before leaving the project site directly through Shing Fung Road exit. 3. Construction vehicles from Contractor (POC) are not allowed leaving the site to Shing Fung Road directly as the exit was blocked by barriers since 21 Jan 2023. Recommendations There was no direct evidence showing that the dust nuisance was caused by the contractor at the complaint area, however Contractor (POC) is recommended to implement the following measures to minimize the impact for air quality: 1. Main haul road and the area that water sprinklers system was not covered in the construction site should be wetted manually in regular basis. 2. Regular wash the share haul road and roundabout in Shing Fung Road. 3. Wheel washing for the trucks and vehicles before leaving the project site. The muddy water after the wheel washing should be directed to sedimentation tank and wastewater treatment facility before discharging to		

Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status		
			gully. 4. Dusty materials transported on truck shall be covered.			
C0007	A dust complaint was received by EPD on 19 Jan 2023. Contractor (POC) received Notification of Environmental Complaints from EPD (ref.: K19/RE/00001988-23) by E-Mail on 2 Feb 2023. IEC received the notification on 2 Feb 2023 and forwarded the notification to CEDD, ER and ET on the same day.	dusty environment at the new road connecting Shing Fung Road and Shing Kai Road caused by vehicles from	 Investigation Joint site inspection was conducted by Contractor (POC), ER, ET and IEC on 8 Feb 2023. 1. The concerned area (new road connecting Shing Fung Road & Shing Kai Road) has been open for public vehicles (not only project related vehicles) since 31 Dec 2022. 2. Construction vehicles from POC are not allowed leaving the site to Shing Fung Road directly with barriers blocked since 21 Jan 2023. 3. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction activities since 4 Feb 2023. 4. Worker of sub-contractor from Contractor (POC) wetted the part of the concerned road surface during the site inspection on 8 Feb 2023 to suppress dust emission. 5. No adverse observation against the dust impact were found during the site inspection along the new road. Action taken 1. Haul Road surfaces were wetted manually and washed the dusty water barrier regularly. 2. Wheel washing for the trucks and vehicles before leaving the project site. 3. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction activities since 4 Feb 2023. Recommendations There was no direct evidence showing that the dust nuisance was caused by the contractor at the complaint area, however Contractor (POC) is recommended to implement the following measures to minimize the impact for air quality: 	- Closed-out on 16 Mar 2023.		
			1. Main haul road and the area that water sprinklers system was not covered in			

Complaint	Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status			
			the construction site should be wetted by water trucks or manually in regular basis. 2. Regular wash the share haul road in Shing Fung Road. 3. Wheel washing for the trucks and vehicles before leaving the project site. The muddy water after the wheel washing should be directed to sedimentation tank and wastewater treatment facility before discharging to gully. 4. Dusty materials transported on truck shall be covered.				
C0008	A dust complaint was received by EPD on 13 Feb 2023. Contractor (POC) received the Notification of Environmental Complaints from EPD (ref.: K19/RE/00003909-23) by E-Mail on 17 Feb 2023 and forwarded the E-mail to ER, ET and IEC on same day.	silt / mud accumulation on the new road connecting Shing Fung Road and Shing Kai Road caused by vehicles from construction	 Investigation Joint site inspection was conducted by Contractor (POC), ER, ET and IEC on 23 Feb 2023 and regular site inspection was conducted by Contractor (POC), ER and ET on 2 Mar 2023. The concerned area (new road connecting Shing Fung Road & Shing Kai Road) has been open for public vehicles (not only project related vehicles) since 31 Dec 2022. Vehicles from nearby construction sites also used the concerned road. Those are the possible sources of dust nuisance. Construction vehicles from POC are not allowed leaving the site to Shing Fung Road directly with barriers blocked since 21 Jan 2023. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction activities since 4 Feb 2023. As per Contractor (POC), EPD conducted site visit on 16 Feb 2023. No adverse observation against the dust / muddy water impact were found during the site inspection on both dates. Action taken Construction vehicles from Contractor (POC) are not allowed leaving the site to Shing Fung Road directly as the exit was blocked by barriers since 21 Jan 2023. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction 	- Closed-out on 29 Mar 2023.			

Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status		
			3. Haul Road surfaces were wetted manually and washed the dusty water barrier regularly. 4. Wheel washing for the trucks and vehicles before leaving the project site. 5. As per instruction from CEDD and AECOM, road washing along the new road (connecting Shing Fung Road and Shing Kai Road) and Shing Fung Road by water truck was conducted once a week as follow: Date			
C0009	A dust complaint was received by EPD on 15 Feb 2023. Contractor (POC) received the Notification of Environmental	Complaint of mud / silt being brought out by vehicles from construction site at Shing Fung Road roundabout	Investigation Joint site inspection was conducted by Contractor (POC), ER, ET and IEC on 23 Feb 2023 and regular site inspection was conducted by Contractor (POC), ER and ET on 2 Mar 2023. 1. The concerned area (new road connecting Shing Fung Road & Shing Kai Road) has been open for public vehicles (not only project related vehicles) since 31 Dec 2022. Vehicles from nearby construction sites also used the concerned road. Those are the possible sources of dust nuisance.	- Closed-out on 29 Mar 2023.		

Complaint	Complaint Log for ED/2018/01							
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status				
•	Date of Complaint Complaints from EPD (ref.: K19/RE/00004280-23) by E-Mail on 22 Feb 2023 and forwarded the E-mail to ER, ET and IEC on same day.		 Investigation / Actions taken / Recommendations Construction vehicles from POC are not allowed leaving the site to Shing Fung Road directly with barriers blocked since 21 Jan 2023. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction activities since 4 Feb 2023. As per Contractor (POC), EPD conducted site visit on 16 Feb 2023. No adverse observation against the dust impact were found during the site inspection on both dates. Construction vehicles from Contractor (POC) are not allowed leaving the site to Shing Fung Road directly as the exit was blocked by barriers since 21 Jan 2023. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction activities since 4 Feb 2023. Haul Road surfaces were wetted manually and washed the dusty water barrier regularly. Wheel washing for the trucks and vehicles before leaving the project site. 					
			5. As per instruction from CEDD and AECOM, road washing along the new road (connecting Shing Fung Road and Shing Kai Road) and Shing Fung Road by water truck was conducted once a week as follow: Date					

Complaint	Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status			
C0010	A dust and muddy water	Complaint of	 contractor at the complaint area, however Contractor (POC) is recommended to implement the following measures to minimize the impact for air quality: Main haul road and the area that water sprinklers system was not covered in the construction site should be wetted by water trucks or manually in regular basis. Regular wash the share haul road in Shing Fung Road. Dusty materials transported on truck shall be covered. 	Closed out on 6 Apr			
Coord	A dust and muddy water complaint was received by Hotline 1823 on 9 Mar 2023. ER received the transfer from the Hotline 1823 on 9 Mar 2023 and forwarded the E-mail to Contractor (POC), ET and IEC on same day.	dusty environment at the new road (connecting Shing Fung Road and Shing	 Joint site inspection was conducted by Contractor (POC), ER, and ET on 16 Mar 2023 and 23 Mar 2023. The concerned area (new road connecting Shing Fung Road & Shing Kai Road) has been open for public vehicles (not only project related vehicles) since 31 Dec 2022. Vehicles from nearby construction sites also used the concerned road. Those are the possible sources of dust nuisance. Construction vehicles from POC are not allowed leaving the site to Shing Fung Road directly with barriers blocked since 21 Jan 2023. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction activities since 4 Feb 2023. The sandbags were provided around the manholes. No adverse observation against the dust / muddy water impact were found during the site inspection on both dates. Action taken Construction vehicles from Contractor (POC) are not allowed leaving the site to Shing Fung Road directly as the exit was blocked by barriers since 21 Jan 2023. Contractor (POC) has restricted the construction vehicles from nearby construction site (Gammon site) using this site entrance for any construction activities since 4 Feb 2023. Haul Road surfaces were wetted manually and washed the dusty water barrier regularly. Wheel washing for the trucks and vehicles before leaving the project site. 	- Closed-out on 6 Apr 2023.			

Complaint	Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status			
			5. As per instruction from CEDD and AECOM, road washing along the new road (connecting Shing Fung Road and Shing Kai Road) and Shing Fung Road by water truck was conducted once a week as follow: Date				
C0011	A muddy water complaint was received by EPD on 9 Mar 2023. Contractor (POC) received the Notification of Environmental Complaints from EPD (ref.: K19/RE/00004280-23)	Complaint of water being sprayed onto vehicles passing by and mud / silt being washed into roadside gully near Shing Fung Road roundabout.	 Investigation Joint site inspection was conducted by Contractor (POC), ER and ET on 23 Mar 2023. 1. The concerned area (new road connecting Shing Fung Road & Shing Kai Road) has been open for public vehicles (not only project related vehicles) since 31 Dec 2022. Vehicles from nearby construction sites also used the concerned road. Those are the possible sources of dust / mud / silt nuisance. 2. The sandbags were provided around the manholes. 3. No adverse observation against the muddy water impact were found during the site inspection on both dates. 	- Closed-out on 6 Apr 2023.			

Complaint	Complaint Log for ED/2018/01						
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status			
	by E-Mail on 22 Feb 2023 and forwarded the E-mail to ER, ET and IEC on same day.		Action taken 1. As per Contractor (POC), no manually road surfaces watering on Shing Fung Road after receiving complaint (16 Mar 2023). 2. As per instruction from CEDD and AECOM, road washing along the new road (connecting Shing Fung Road and Shing Kai Road) and Shing Fung Road by water truck was conducted once a week as follow: Date				
C0012	A dust complaint was received by EPD on 31 May 2023. Contractor (POC) received the Notification of Environmental Complaints from EPD (ref.: K19/RE/00013488-23) by E-Mail on 6 June	silt / mud accumulation on the new road connecting Shing Fung Road and Shing Kai Road caused by vehicles from construction site	Joint site inspection was conducted by Contractor (POC), ER and ET on 8 June 2023. 1. As per Mr. Tony Tang from POC, the concerned area was the section of Shing Fung Road at the entrance of Gammon site accommodation.	- Closed-out on 19 June 2023.			

Complaint	t Log for ED/2018/01			
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status
t Ref. No.	2023 and forwarded the E-mail to ER, ET and IEC on same day.	Complaint	4. No adverse observation against the dust impact were found during the site inspection. Action taken 1. As per instruction from CEDD and AECOM, road washing along the new road (connecting Shing Fung Road and Shing Kai Road) and Shing Fung Road by water truck was conducted twice a week start from 11 May 2023. Date Road Washing by 19 May 2023 Sweeper truck with water spraying truck 23 May 2023 Sweeper truck with water spraying truck 25 May 2023 Sweeper truck with water spraying truck 2 June 2023 Sweeper truck with water spraying truck 6 June 2023 Sweeper truck with water spraying truck 9 June 2023 Sweeper truck with water spraying truck 13 June 2023 Sweeper truck with water spraying truck 2. Wheel washing for the vehicles before leaving the construction site. Recommendations There was no direct evidence showing that the dust nuisance was caused by the contractor at the complaint area, however Contractor (POC) is recommended to implement the following measures to minimize the impact for air quality: 1. Regular wash the share haul road in Shing Fung Road and Shing Kai Road. 2. Dusty materials transported on truck should be covered.	Status
C0013	A water complaint was received by EPD on 19 June 2023. Contractor (POC) received the Notification of Environmental	- Complaint of muddy water being discharged into Kai Tak Approach Channel on 18 Jun	 Investigation Joint site inspection was conducted by Contractor (POC), ER and ET on 6 Jul 2023. 1. As per Mr. Tony Tang from POC, the concerned area was the section of Shing Fung Road at the nearby channel. 2. Heavy raining was recorded on 18 Jun 2023. The recorded rainfall was 35.8mm (sourced from manned weather station of Hong Kong Observatory at https://www.hko.gov.hk/en/cis/dailyExtract.htm?y=2023&m=6). The 	- Closed-out on 2 Aug 2023.

Complaint	t Log for ED/2018/01			
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status
	Complaints from EPD (ref.: K19/RE/00014944-23) by E-Mail on 29 June 2023 and forwarded the E-mail to ER, ET and IEC on 4 July 2023.	2023 Complaint of construction work being conducted on the Sunday of 18 Jun 2023.	implication of heavy rainfall storm runoff might wash across the exposed soil surfaces which was direct muddy water discharge. This is the possible source of water nuisance. 3. As per Mr. Tony Tang from POC, no construction work was conducted on 18 Jun 2023. Based on the attendance record, 6 employees including 4 watchman, labourer and driver, were on site on 18 Jun 2023 and they were not involved in the construction work. In the joint site inspection, no construction work was conducted on the nearby channel. 4. No adverse observation against the muddy water impact were found during the site inspection on 14 and 20 June 2023, and 6 July 2023. The sedimentation tank and wastewater treatment plant are operating efficiently during the site inspection. Action taken 1. The ditch is maintained regularly and excavated deeper by workers. 2. Pumps are placed at the ditch to prevent flooding and overflow. 3. Enhanced training for site workers to prevent flushing during heavy rain by placing pumps in the ditch to prevent flooding and overflow during periods of heavy rain during Tool- Box-Talk training. Recommendations There was no direct evidence showing that the muddy water nuisance was caused by the contractor at the complaint area, however Contractor (POC) is recommended to implement the following measures to minimize the impact for water quality: 1. Regular cleaning and maintenance drainage systems at the nearby Kai Tak Approach Channel.	

Complaint	Log for ED/2018/01			
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status
C0014	A polluting discharge complaint was received by EPD on 16 October 2023. Contractor (POC) received the Notification of Environmental Complaints from EPD (ref.: K19/RE/00024581-23) by E-Mail on 19 October 2023 and forwarded the E-mail to ER, ET and IEC on 21 October 2023.	- Complaint of polluting discharge from the construction site of Stage 4 Infrastructur e at the Former Runway and South Apron, Kowloon City ("illegal discharge from kai tak 6577 construction site the main contractor should be hip hing)	Investigation Joint site inspection was conducted by Contractor (POC), ER and ET on 26 October 2023. 1. The concerned area is near at Former Runway and South Apron, Kowloon City. Those are the possible sources should be illegal discharge from Kai Tak 6577 construction site which the main contractor should be hip hing. The possible source of polluting discharge does not come from the Contractor (POC). 2. No adverse observation against the muddy water impact were found during the site inspection on dates. No surface runoff is observed, and the sedimentation tank and wastewater treatment plant were implemented normally. Action taken 1. As per Contractor (POC), no wastewater generated at concerned area and ensure fulfil the conditions stipulated in the valid WPCO licence after receiving complaint (16 October 2023). The effluent discharge has been implemented properly. 2. The silt curtain has been installed around the construction activities at the concerned area. (referring to Photo 2) The sedimentation tank and wastewater treatment has been implemented properly. 3. The pump has been installed and collected sewage at the channel which can minimize water quality impacts and prevent overload the foul sewage system. (referring to Photo 3) The channel and ditches have been clear after receiving complaint. Recommendations Recommendations Recommendations Recommended to implement the following measures to minimize the impact for water quality:	- Closed-out on 15 November 2023.

Complaint	Log for ED/2018/01			
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status
			 The silt removal facilities, channels and manholes should be maintained regularly. The silt curtain and equipment should be properly maintained. 	

Date of Complaint (Ref. No. Date of Complaint (Ref. No. Ref. No. Ref. No. Complaint (Ref. No. Ref.	Complaint	Log for ED/2018/01				
received by EPD on 12 December 2023. Contractor (POC) received the Notification of Environmental Complaints from EPD (ref.: KI9/RE/00030287-23) by E-Mail on 19 December 2023. December 2023. Las per the email clarified by Mr. Tony Tang from POC on 20 December 2023, the concerned area (section of Shing Fung Road) was the junction of Road D3 and gate 2A& 2B. The new road connecting Shing Fung Road & Shing Kai Road) has been open for public vehicles (not only project related vehicles) since 31 December 2023. December 2023. The new road connecting Shing Fung Road & Shing Kai Road) has been open for public vehicles from nearby construction sites also used the concerned road. Those are the possible sources of dust / silt nuisance. The non-project of stockpiles is founded near the concerned road during the site inspection. 3. As per Mr. Tony Tang from POC, recycled water was used in wheel washing machine near the entrance of Gammon site. The washing facilities and regular road watering are implemented. 4. No adverse observation against the dust impact were found during the site inspection. The washing facilities and dust control measures are implemented properly. Action taken 1. As per instruction from CEDD and AECOM, road washing along the new road (connecting Shing Fung Road and Shing Kai Road) and Shing Fung Road by water truck was conducted once per week in December 2023.		Date of Complaint	*	Investiga	tion / Actions taken / Recommendations	
I Date I Koad Washing by	C0015	received by EPD on 12 December 2023. Contractor (POC) received the Notification of Environmental Complaints from EPD (ref.: K19/RE/00030287-23) by E-Mail on 19 December 2023 and forwarded the E-mail to ER, ET and IEC on	of construction dust nuisance on Shing Fung	Joint site inspection was December 2023. 1. As per the email 2023, the concern of Road D3 and g 2. The new road co open for public December 2022. concerned road. The non-project the site inspection 3. 3. As per Mr. To washing machin facilities and regi 4. No adverse obsessite inspection. implemented pro 1. As per instruction new road (conn Fung Road by v	clarified by Mr. Tony Tang from POC on 20 December ned area (section of Shing Fung Road) was the junction gate 2A& 2B. Innecting Shing Fung Road & Shing Kai Road) has been vehicles (not only project related vehicles) since 31 Vehicles from nearby construction sites also used the Those are the possible sources of dust / silt nuisance. of stockpiles is founded near the concerned road during in. Inny Tang from POC, recycled water was used in wheel the near the entrance of Gammon site. The washing allar road watering are implemented. Ervation against the dust impact were found during the The washing facilities and dust control measures are perly. Action taken on from CEDD and AECOM, road washing along the ecting Shing Fung Road and Shing Kai Road) and Shing	- 17 January 2024

Complaint	Log for ED/2018/01							
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investig	Investigation / Actions taken / Recommendations				
			07 December 2023	Sweeper truck with water spraying truck				
			16 December 2023	Sweeper truck with water spraying truck				
			21 December 2023	Sweeper truck with water spraying truck				
			29 December 2023	Sweeper truck with water spraying truck				
			2. Wheel washing	g for the vehicles before leaving the construction site.				
			Recommendations					
			There was no direct evid	dence showing that the dust nuisance was caused by the				
			contractor at the compla	aint area, however Contractor (POC) is recommended to				
			implement the following	g measures to minimize the impact for air quality:				
			1. Regular wash the sh	are haul road in Shing Fung Road and Shing Kai Road.				
			2. Dusty materials tran	sported on truck should be covered.				

Complaint	Log for ED/2018/01											
Complain t Ref. No.	Date of Complaint	Description of Complaint		Investigation / Actions taken / Recommendations					Close-Out D Status	ate /		
C0016	A dust complaint was received by Hotline 1823 on 20 May 2024. ER (AECOM) and Contractor (POC) received the transferred from Hotline 1823 (Case No. 3-8226038234) on 20 May 2024 and forwarded the E-mail to ET, and IEC on same day.	- The dust emission generated from a excavator near EVA No. 10 which affecting the surroundin g residents. The complaina nt also expressed doubt the effectivene ss of implement ation of	Join 23 N	stockping referring nuisand 2. As per 2024, the EVA Month of the EVA Month	omplaint ling wor ag to Attace. the emains he concerns to the dust earest sum (location Mr. Tong from 2 n (Near Iton no manuals site action the no more than to the normal site action to the	is not rks from achment 2 defends area The POC truisance arrounding ons referring Tang fit 2 May 2 EVA No. atter there tivities. (Idenonitoring sults were	directly nearby of Those ar Mr. Tony (section of proposed) gresident ng to Attac rom POC, 024 to sp 10) within is any lo ocations regresults o	project-reconstruction the possible of Tang from to implement to the	lated sind n sites. (ible source m POC or ing Road) ment mea concerned l provide at the c ur to supp unloading Attachmen	ce C&D flocations es of dust a 21 May was near sures for area is a worker oncerned oress dust of dusty at 3) hour and	- Closed-out June 2024	on 04
		environme				M3	AM	4(A)	Al	M7		
		ntal manageme			1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP		
		ne system.		Measured result	44 -48	42	56-63	/	53 – 57	54		
				$(\mu g/m^3)$								

	Log for ED/2018/01		1							1	
Complain t Ref. No.	Date of Complaint	Description of Complaint								Close-Out Date / Status	
t Ref. 1vo.		Complaint		Action	297	182	326	187	315	181	Status
				Level	271	102	320	107	313	101	
			-	(μg/m³)	500	260	500	260	500	260	
				Limit	500	260	500	260	500	260	
				Level							
				$(\mu g/m^3)$							
								ımental 1	manageme	nt system	
			j	implement	ed has bee	en review	ed.				
			7.	No adverse	observatio	n against t	he dust im	pact were f	found during	g the site	
			j	inspection.	The dust of	control m	easures ar	e impleme	ented prope	erly.	
				(referring t	o Attachn	nent 4)					
				on taken							
				Regularly m					ment (PME)	to ensure	
			1	no dark smo	oke emissio	on. (refer t	o Attachm	ent 3).			
			2.	Arrange to	cover the s	tockpile w	ith tarpaul	in sheet to	prevent dus	t emission.	
				(refer to Att	achment 3)					
			3.	Arrange res	ources to	spray wate	r during e	xcavator lo	ading and u	inloading of	
				dusty mater	rial which	have inc	luding fill	material a	and sub-bas	se. (refer to	
				Attachment	3)						
			Reco	ommendatio	<u>ons</u>						
			Ther	re was no d	irect evide	ence showi	ng that the	e dust nuis	ance was ca	used by the	
			cont	ractor at the	e complair	nt area, ho	wever Cor	ntractor (PC	OC) is recor	nmended to	
			impl	lement the f	ollowing n	neasures to	minimize	the impact	t for air qual	lity:	

	Log for ED/2018/01			
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status
			1. The share haul road in Shing Fung Road should be washed regularly.	
			2. Dust mitigation control should be done at the work site 8 times per day.	
			3. Stockpiling sites should be lined with impermeable sheeting and bunded.	
			4. Stockpiles should be fully covered by impermeable sheeting to reduce dust	
			emission.	

Complaint	Log for ED/2018/01			
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status
C0017	A waste management complaint was received by Hotline 1823 on 25 May 2024. The public complaint is received via 1823 (Case No.: 3-8234938050) on 25 May 2024 and forwarded by CEDD on 27 May 2024, and forwarded to ER, Contractor, ET and IEC.	- Rodent problem at the junction of Shing Kai Road & Shing Fung Road	Investigation Joint site inspection was conducted by Contractor (POC), ER, IEC and ET on 30 May 2024. 1. Accumulation of waste was found in the concerned area, the grade road (Shing Kai Road to NSR) and the junction of Road D3 (Shing Kai Road Junction). (refer to Photo Record 7 of Attachment 3) 2. No trace of rats was found during inspection but flies were present. (refer to Photo Record 6 of Attachment 3) 3. Waste management measures were not implemented properly. There were no sufficient waste disposal points and regular dispose of waste at the concerned area (refer to Photo Record 8 of Attachment 3). 4. The complaint was project-related as improper disposal of waste could lead to occurrence of rats. Action taken 1. Poisonous rat bait was placed within the site boundary (refer to Photo Record 2,3,4 of Attachment 3). 2. Workers received regular briefing about proper waste management (refer to Photo Record 5 of Attachment 3). 3. The general waste was collected and removed after site inspection on 30 May 2024. (refer to Photo Record 9 and 10 of Attachment 3). Recommendations There was related evidence showing that the waste nuisance at the concerned area was caused by the Contractor (POC). However, it is recommended to	- Closed-out on C June 2024

Complaint	Log for ED/2018/01			
Complain t Ref. No.	Date of Complaint	Description of Complaint	Investigation / Actions taken / Recommendations	Close-Out Date / Status
	Date of Complaint	-	Investigation / Actions taken / Recommendations implement the following measures to minimize the impact of waste accumulation 1. Multiple waste disposal points should be set up for proper waste storage. 2. Frequency of waste cleaning and collection should be increased to prevent waste accumulation. 3. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle.	