Black & Veatch Hong Kong Limited

Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works - Environmental Team

Monthly Environmental Monitoring and Audit Report for February 2019

(version 2.0)

Approved By	(Environmental Team Leader)
REMARKS:	

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

WELLAB accepts no responsibility for changes made to this report by third parties.

WELLAB LIMITED Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2898 7388 Fax: (852) 2898 7076 Website: www.wellab.com.hk

TABLE OF CONTENTS

	Pa	ige
EXE	CUTIVE SUMMARY	. 1
Intro	duction	1
Envi	ronmental Monitoring and Audit Progress	. 1
Brea	ches of Action and Limit Levels	2
Futur	e Key Issues	4
-		_
1	INTRODUCTION	5
Purp	ose of the report	. 5
Struc	ture of the report	. 5
2	CONTRACT INFORMATION	6
Back	ground	6
Cont	ground ract Organisation	0
Cons	truction Programme	0
Sum	mary of Construction Works Undertaken During Reporting Month	7
Statu	s of Environmental Licences. Notification and Permits	7
2		
3	AIR QUALITY MONITORING	9
Mon	itoring Requirements	9
Mon	itoring Location	9
Mon	itoring Equipment	9
Mon	itoring Parameters, Frequency and Duration	9
Mon	itoring Methodology and QA/QC Procedure	10
1-hou	ar and 24-hour TSP Air Quality Monitoring	10
Resu	Its and Observations	12
Even	t and Action Plan	13
4	NOISE MONITORING	14
Mon	itoring Requirements	14
Mon	itoring Location	14
Mon	itoring Equipment	14
Moni	itoring Parameters, Frequency and Duration	14
Mon	itoring Methodology and QA/QC Procedures	15
Main	tenance and Calibration	15
Resu	Its and Observations	16
Even	t and Action Plan	16
5	WATER QUALITY MONITORING	17
Moni	itoring Requirements	17
Mon	itoring Locations	17
Moni	itoring Equipment	17
Mon	itoring Parameters, Frequency	19
Mon	itoring Methodology	20
Instr	umentation	20
Oper	ating/Analytical Procedures	20
Labo	ratory Analytical Methods	20
QA/Q	QC Requirements	21
Main	tenance and Calibration	21
Resu	Its and Observations	21
Even	t and Action Plan	23

6 ECOLOGICAL MONITORING	24
Monitoring Requirements (Avifauna Monitoring)	24
Monitoring Requirements	24
Monitoring Frequency	24
Monitoring Location	24
Monitoring Methodology	24
Monitoring Day	25
Monitoring Result	25
Comparison of the Survey Result to the EIA Report	26
7 ENVIRONMENTAL SITE INSPECTION	28
Site Audits	28
Implementation Status of Environmental Mitigation Measures	28
Solid and Liquid Waste Management Status	30
8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)	31
Summary of Exceedances	31
Summary of Notification of Summons and Successful Prosecution	31
9 FUTURE KEY ISSUES	32
Key Issues in the Coming Month	32
Monitoring Schedule for the Next Month	32
Construction Programme for the Next Month	32
10 CONCLUSIONS AND RECOMMENDATIONS	33
Conclusions	33
Recommendations	34

LIST OF TABLES

- Table I
 Summary Table for Monitoring Activities in the Reporting Month
- Table II
 Summary Table for Events Recorded in the Reporting Month
- Table 2.1Key Contacts of the Contract
- Table 2.2
 Status of Environmental Licences, Notification and Permits
- Table 3.1
 Location for Air Quality Monitoring Locations
- Table 3.2Air Quality Monitoring Equipment
- Table 3.3
 Impact Dust Monitoring Parameters, Frequency and Duration
- Table 3.4
 Summary Table of 1-hour TSP Monitoring Results during the Reporting Month
- Table 3.5Summary Table of 24-hour TSP Monitoring Results during the Reporting
Month
- Table 3.6Observation at Dust Monitoring Stations
- Table 4.1Location for Noise Monitoring Locations
- Table 4.2Noise Monitoring Equipment
- Table 4.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 4.4Summary Table of Noise Monitoring Results during the Reporting Month
- Table 4.5Observation at Noise Monitoring Stations
- Table 5.1
 Location for Marine Water Quality Monitoring Locations
- Table 5.2Types of Sampling Bottles and Preservation Methods
- Table 5.3Water Quality Monitoring Equipment
- Table 5.4Water Quality Monitoring Parameters and Frequency
- Table 5.5Methods for Laboratory Analysis for Water Samples
- Table 5.6
 Summary of Water Quality Exceedances
- Table 5.7Proposed change Action and Limit Levels for Water Quality
- Table 6.1Number of Birds Observed
- Table 6.2Number of Bird-flights of the Six Species
- Table 6.3Comparison between EIA Report in 2010 and Bird Survey in 2019
- Table 7.1Observations and Recommendations of Site Audit
- Table 7.2Quantities of Waste Generated in the Reporting Month

LIST OF FIGURE

- Figure 1 Site Layout Plan
- Figure 2 Locations of Air Quality Monitoring Stations
- Figure 3 Locations of Noise Monitoring Stations
- Figure 4 Locations of Water Quality Monitoring Stations
- Figure 5 Location of Ecological Monitoring
- Figure 6 Flight Line of All Birds Species
- Figure 7 Flight Line of All Birds from EIA Report

LIST OF APPENDICES

- Appendix A Construction Programme
- Appendix B Action and Limit Levels
- Appendix C Copies of Calibration Certificates
- Appendix D Environmental Monitoring Schedules
- Appendix E 1-hour TSP Monitoring Results
- Appendix F 24-hour TSP Monitoring Results
- Appendix G Noise Monitoring Results
- Appendix H Water Quality Monitoring Results
- Appendix I Quality Control Reports for Laboratory Analysis
- Appendix J Weather Condition
- Appendix K Event Action Plans
- Appendix L Summary of Exceedance
- Appendix M Site Audit Summary
- Appendix N Updated Environmental Mitigation Implementation Schedule
- Appendix O Waste Generation in the Reporting Month
- Appendix P Complaint Log
- Appendix Q Summary of Successful Prosecutions

EXECUTIVE SUMMARY

Introduction

1. This is the 2nd monthly Environmental Monitoring and Audit (EM&A) Report prepared for the project "Contract No. YL/2017/03 – Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works" (hereinafter called the "Contract"). This report documents the findings of EM&A Works conducted in February 2019.

Environmental Monitoring and Audit Progress

2. A summary of the monitoring activities in this reporting month is listed in **Table I** below:

Table I Summary Table for Monitoring Activities in the Reporting Month

Parameter(s)	Date(s)
1-hr TSP Monitoring	1 st , 4 th , 9 th , 15 th , 21 th , 27 th February 2019
24-hr TSP Monitoring	4 th , 8 th , 14 th , 20 th , 26 th February 2019
Noise Monitoring	1 st , 4 th , 15 th , 21 st , 27 th February 2019
Water Quality Monitoring	1 st , 4 th , 9 th , 11 th , 13 th , 15 th , 19 th , 21 nd , 23 th , 25 th , 28 th February 2019
Ecological Monitoring (Avifauna Monitoring)	16 th February 2019
Environmental Site Inspection	1 st , 8 th , 13 th , 22 th February 2019

Breaches of Action and Limit Levels

3. Summary of the environmental exceedances of the reporting month is tabulated in **Table II**.

 Table II
 Summary Table for Events Recorded in the Reporting Month

Environmental Monitoring	Parameter	No. of non- project related Exceedance		Total No. of non-project related Exceedance	No. of Exceedance related to the Construction Activities of this Contract		Total No. of Exceedance related to the Construction Activities of	
		Action Level	Limit Level		Action Level	Limit Level	this Contract	
Air Quality	1-hr TSP	0 0		0	0	0	0	
	24-hr TSP	0	0	0	0	0	0	
Noise	Leq(30min)	0	0	0	0	0	0	
	Dissolved Oxygen	oxygen 0		2	0	0	0	
Water Quality	Turbidity	2	5	7	0	0	0	
	Suspended Solids (SS)	0	7	7	0	0	0	

1-hour TSP Monitoring

4. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedances were recorded.

24-hour TSP Monitoring

5. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedances were recorded.

Construction Noise

6. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Water Quality

- 7. An updated Baseline Monitoring Report was submitted to incorporate the revised Action/Limit level to avoid causing false alarm for water quality monitoring.
- 8. Water monitoring station IS6 was found dried out in the monitoring period, thus, no monitoring was conducted. The water monitoring will resume once there is water flow at IS6. Other water quality monitoring was conducted as scheduled in the reporting month .Two (2) Limit Level non-project related exceedances for dissolved oxygen. Two (2) Action Level non-project related exceedances and Five (5) Limit Level non-project related exceedances (7) Limit Level non-project related exceedances were recorded for turbidity. Seven (7) Limit Level non-project related exceedances were recorded for suspended solids. After investigation, all exceedances are non-project related.

Ecological Monitoring

<u>Avifauna</u>

9. Avifauna monitoring was conducted as scheduled in the reporting month. No significant impact was identified.

Mammals

- No construction works associated with the site formation and establishment works in the Ecological Area were conducted in the reporting month according to EP-477/2013 condition 2.7(h). Therefore, no monitoring of mammals was conducted in the reporting month.
- 11. No construction works of the temporary noise barriers at Ha Wan Tsuen Road and Lok Ma Chau Road were conducted in the reporting month according to EP-477/2013 condition 2.7(h). Therefore, no ecological monitoring was conducted in the reporting month.

Complaint Log

12. No environmental complaint was received in the reporting month.

Notification of Summons and Successful Prosecutions

13. No notification of summons and successful prosecution was received in the reporting month.

Reporting Changes

14. This report has been developed in compliance with the reporting requirements for the first monthly EM&A Report as required by the EM&A Manual for Development of Lok Ma Chau Loop (EM&A Manual).

Future Key Issues

- 15. Major site activities for the coming reporting month will include:
 - (a) Construction of land decontamination treatment plant;
 - (b) Excavation of top soil for land decontamination works at hot spot LD-001;
 - (c) Erection of 3m green fence;
 - (d) Installation of prefabricated vertical drains and strip drain;
 - (e) Piling for temporary bridge;
 - (f) Establishment of nursery areas for reed bed.
 - (g) Site clearance at Ecological Area Zone

1 INTRODUCTION

1.1 Wellab Limited (Wellab) was appointed by the Black & Veatch Hong Kong Limited (BV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme for Contract No. YL/2017/03 – Development of Lok Ma Chau Loop" Land Decontamination and Advance Engineering Works (hereinafter called the "Contract").

Purpose of the report

1.2 This is the 2nd EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme in February 2019.

Structure of the report

1.3 The structure of the report is as follows: Section 1: Introduction - purpose and structure of the report.

Section 2: **Contract Information** - summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.

Section 3: **Air Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 4: **Noise Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 5: **Water Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 6: **Ecological Monitoring** - summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.

Section 7: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting month.

Section 8: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.

Section 9: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 10: Conclusions and Recommendation

2 CONTRACT INFORMATION

Background

- 2.1 The Lok Ma Chau Loop (the Loop) was once within the administrative boundary of Shenzhen Municipal Government and now becomes a part of Hong Kong Special Administrative Region (HKSAR) as a result of the trading of Shenzhen River. As mentioned in the Policy Address in 2007, the HKSAR Government would cooperate with the Shenzhen authorities to develop the land resources of the loop to meet the development needs in the future, as well as to consolidate the strategic position of both Hong Kong and Shenzhen in the Pan-Pearl River Delta Region.
- 2.2 The Loop development is a Designated Project (DP) under Schedule 3 of the Environmental Impact Assessment (EIA) Ordinance (Cap. 499). In October 2013, the EIA Report for the Loop development was approved by DEP pursuant to the EIA Ordinance. The Environmental Permit (EP) was also granted in November 2013.
- 2.3 Land decontamination and advance engineering works (Advance Works) under Contract No. YL/2017/03 are to pave way for the ensuing site formation and infrastructure works within the Loop.
- 2.4 **Figure 1** shows the layout of the Contract and the scope of the Contract works comprises the following major items:
 - Land decontamination treatment within the Loop in accordance with the Contamination Assessment Report/ Remedial Action Plan of the EIA Report;
 - Construction of temporary access to the Loop (comprising an approximately 60metre-long temporary vehicular bridge across the old ShenZhen River meander), minor improvements works to Ha Wan Tsuen East Road and other ancillary works;
 - Establishment of and Ecological Area zone of about 12.8 ha within the Loop;
 - Construction of temporary noise barriers and miscellaneous road works along Lok Ma Chau Road;
 - Ground treatment works to the first batch of land parcels within the Loop for development of building and associated facilities for Phase 1 of the Hong Kong-Shenzhen innovation and Technology Park, and for development of the western electricity substation.
 - Implementation of environmental mitigation measures and other ancillary works.

Contract Organisation

- 2.5 Different parties with different levels of involvement in the Contract organization include:
 - Consultant Black & Veatch Hong Kong Ltd. (B&V)
 - Contractor Sang Hing- Kuly Joint Venture (SKJV)
 - Environmental Team (ET) Wellab Ltd. (Wellab)
 - Independent Environmental Checker (IEC) Jacky Leung (Nature & Technologies (HK) Ltd.)

Donty	Polo	Contact Borgon	Dhone No	For No	
Party	Kole	Contact Person	Phone No.	rax no.	
CEDD	Project Proponent	Mr. Cheung Biu, Jonathan	2417 6356	2412 0358	
Black & Veatch	Consultant	Mr. Victor Go	2601 3988		
Contractor	Project Director	Mr. Alan Sung			
(SKJV)	Environmental Officer	Mr. David Nam		2452 5170	
Wellab	Environmental Team Leader	Dr. Priscilla Choy	2898 7388	2898 7076	
Nature & Technologies (HK) Ltd	Independent Environmental Checker	Mr. Jacky Leung	2877 3122	2511 0922	

2.6 The key personnel contact names and numbers are summarized in Table 2.1.

Key Contacts of the Contract Table 2.1

Construction Programme

2.7 A copy of Contractor's construction programme is provided in **Appendix A**.

Summary of Construction Works Undertaken During Reporting Month

- 2.8 The major site activities undertaken in the reporting month included:
 - (a) Formation of haul road;
 - (b) Construction of land decontamination treatment plant;
 - Excavation of top soil for land decontamination works at hot spot LD-001; (c)
 - (d) Erection of 3m green fence;
 - Installation of prefabricated vertical drains and strip drain; (e)
 - Piling for temporary bridge; (f)
 - Establishment of nursery areas for reed bed. (g)

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Contract is presented in Table 2.2.

Table 2.2 Status of Environmental Licences, Notification and Permits								
Donmit / Licongo No	Valid	Status						
rernint / License No.	From	То	Status					
Environmental Permit (EP)								
EP-477/2013	22/12/2013	N/A	Valid					
Consruction Noise Permit (CNP)								
Notification pursuant to Air Pollut	Notification pursuant to Air Pollution Control (Construction Dust) Regulation							
435754	15/8/2018	N/A	Receipt acknowledged by					
			EPD					
Billing Account for Construction V	Vaste Disposal							
7031266	16/08/2018		Valid					
Registration of Chemical Waste Pr	oducer							
WPN 5213-542-S4120-01	08/08/2018		Valid					
Effluent Discharge License under	Water Pollution Conti	rol Ordinance						

3 AIR QUALITY MONITORING

Monitoring Requirements

- 3.1 In accordance with the EM&A Manual, impact 1-hour TSP and 24-hour TSP monitoring were conducted to monitor the air quality for the Contract. **Appendix B** shows the established Action/Limit Levels for the air quality monitoring works.
- 3.2 Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was conducted for at least once every 6 days at 4 air quality monitoring stations.

Monitoring Location

3.3 Impact air quality monitoring was conducted at the 4 monitoring stations under the Contract, as shown in **Figure 2**. **Table 3.1** describes the locations of the air quality monitoring stations.

1 able 5.1 Location for Air Quality Monitoring Location	Table 3.1	Location	for Air	Quality	Monitoring	Locations
---	-----------	----------	---------	---------	------------	-----------

Monitoring Stations	Location
DMS-1	Village House along Ha Wan Tsuen Road
DMS-2A (see Note 1)	Village House along Lok Ma Chau Road
DMS-3	Village House along Border Road
DMS-4A (see Note 2)	Hong Kong Police Force, Lok Ma Chau Operation Base
	at Horn Hill

Notes:

1. Monitoring at DMS-2 (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (DMS-2A) was proposed.

2. Proposed replacement monitoring location for ASR MTL-20 – Village house in Ma Tso Lung (DMS-4A) as no work will be conducted near ASR MTL-20 due to exclusion of the original ECR.

Monitoring Equipment

3.4 **Table 3.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix C**.

Table 5.2 All (
Equipment	Model and Make	Quantity
1 hour TSP Dust Mater	Met One Instruments Model No.:	7
1-nour TSP Dust Meter	AEROCET-831	/
HVS Sampler	TISCH Model: TE-5170	4
Calibrator	TISCH Model: TE-5025A	1
Wind Anomometer	DAVIS Model: Vantage Vantage PRO2	1
wind Anemometer	6152CUK	1

Table 3.2Air Quality Monitoring Equipment

Monitoring Parameters, Frequency and Duration

3.5 **Table 3.3** summarizes the monitoring parameters and frequencies of impact dust monitoring during the course of the Contract activities. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 3.3	Impact Dust Duration	Mo	onitoring	Parameters,	Frequency	and
Parameters			Frequen	cy		
1-hr TSP			Three tin	nes / 6 days		
24-hr TSP			Once / 6	days		

Monitoring Methodology and QA/QC Procedure

<u>1-hour and 24-hour TSP Air Quality Monitoring</u>

Instrumentation

3.6 High volume Samplers (HVS) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 3.7 The following guidelines were adopted during the installation of HVS:
 - A horizontal platform with appropriate support was provided to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission and access to the monitoring stations have been obtained to set up the samplers; and
 - a secured supply of electricity was provided to operate the samplers.

Filters Preparation

- 3.8 A HOKLAS accredited laboratory, Wellab Ltd., was responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for monitoring team.
- 3.9 All filters, which were prepared by Wellab Ltd., were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature

was around 25 °C and not variable by more than \pm 3 °C; the relative humidity (RH) was < 50% and not variable by more than \pm 5%. A convenient working RH was 40%.

3.10 Wellab Ltd. has a comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

- 3.11 Operating/analytical procedures for the air quality monitoring were highlighted as follows:
 - Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 m3/min. and 1.4 m3/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
 - The power supply was checked to ensure the sampler worked properly.
 - On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
 - The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
 - The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
 - The shelter lid was closed and secured with the aluminum strip.
 - The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
 - After sampling, the filter was removed and kept in a clean and tightly sealed plastic bag. The filter paper was then be returned to the HOKLAS laboratory (Wellab Ltd.) for reconditioning in the humidity-controlled chamber followed by accurate weighting by an electronic balance with a readout down to 0.1mg. The elapsed time was also recorded.
 - Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.12 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - All HVS were calibrated (five point calibration) using Calibration Kit prior to the commencement of the baseline monitoring and thereafter at bi-monthly intervals.

Results and Observations

3.13 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in **Table 3.4** and **3.5** respectively. Detailed monitoring results and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E and F** respectively.

Table 3.4	Summary	Table	of	1-hour	TSP	Monitoring	Results	during	the
	Reporting	Month							

Monitoring	Concentration (µg/m3)		Action	Limit Level,	
Station	Average	Range	Level, µg/m ²	μg/m ²	
DMS – 1	126.9	42.2 - 302.2	353		
DMS – 2A	109.3	62.0 - 190.5	370	500	
DMS – 3	123.4	59.5 - 236.2	351	500	
DMS - 4A	112.8	65.1 - 210.3	350		

Table 3.5	Summary	Table o	of 24-hour	TSP	Monitoring	Results	during	the
	Reporting	Month						

Monitoring	Concentration (µg/m3)		Action	Limit Level, µg/m³	
Station	Average	Average Range			
DMS – 1	69.1	46.7 - 127.6	184		
DMS - 2A	70.9	56.0 - 85.6	166	260	
DMS – 3	62.8	50.6 - 82.3	166	200	
DMS - 4A	43.4	24.2 - 87.7	152		

- 3.14 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedances were recorded.
- 3.15 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedances were recorded.
- 3.16 According to our field observations, the major dust source identified at the designated air quality monitoring stations in the reporting month are as follows:

Table 3.6Obset	ervation at Dust Monitoring Stations
Monitoring Station	Major Dust Source
DMS-1	Excavator, Dump truck, Backhoe, Crane, Drill rig, Road traffic
DMS-2A	Road traffic
DMS-3	Excavator, Dump Truck
DMS-4A	Road traffic

- 3.17 The wind speed and wind direction were recorded by the installed Wind Anemometer set at DMS-4A. The location is shown in **Figure 3**.
- 3.18 The wind data for the reporting month is summarized in Appendix J.

Event and Action Plan

3.19 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

4 NOISE MONITORING

Monitoring Requirements

4.1 In accordance with EM&A Manual, four noise monitoring stations, namely NMS-1, NMS-2, NMS-3 and NMS-4A were selected for impact monitoring for the Contract. Impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. **Appendix B** shows the established Action and Limit Levels for the noise monitoring works.

Monitoring Location

4.2 Impact noise monitoring was conducted at the 4 monitoring stations under the Contract, as shown in **Figure 3**. **Table 4.1** describes the locations of the noise monitoring stations.

Table 4.1	Location for Noise Monitoring Stations
-----------	--

Monitoring Stations	Location
NMS-1	Village house in Ha Wan Tsuen
NMS-2	Village house along existing Ha Wan Tsuen East Road
NMS-3	Village house along Border Road
NMS-4A(see Note 1)	Hong Kong Police Force, Lok Ma Chau Operation Base
	at Horn Hill

Notes:

1. Proposed replacement monitoring location for NSR MTL-20 – Village house in Ma Tso Lung (DMS-4A) as no work will be conducted near NSR MTL-20 due to exclusion of the original ECR.

Monitoring Equipment

4.3 **Table 4.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix C**.

Table 4.2	Noise Moni	itoring Equipment	
Equ	ipment	Model and Make	Qty.
Integrating So	ound Level Meter	SVAN955, SVAN957	2
Ca	librator	SV 30A	1

Monitoring Parameters, Frequency and Duration

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3	Noise Monitoring	Parameters, Frequency and	nd Duration
Monitoring Stations	Parameter	Period	Frequency
NMS-1 NMS-2 NMS-3 NMS-4A	$\begin{array}{c} L_{10}(30 \text{ min.}) \text{ dB}(A) \\ L_{90}(30 \text{ min.}) \text{ dB}(A) \\ L_{eq}(30 \text{ min.}) \text{ dB}(A) \text{ (as six consecutive } L_{eq, 5min} \\ \text{ readings)} \end{array}$	0700-1900 hrs on normal weekdays	Once per week

Monitoring Methodology and QA/QC Procedures

- The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting : A
 - time weighting : Fast
 - $time measurement : L_{eq}(30 min.) dB(A) (as six consecutive L_{eq, 5min} readings) during non-restricted hours (i.e. 0700-1900 hrs on normal weekdays)$
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- During the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Maintenance and Calibration

- 4.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 4.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 4.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

4.8 The noise monitoring results are summarized in **Table 4.4**. Detailed monitoring results and graphical presentations of noise monitoring are shown in **Appendix G**.

Table	4.4	Summary	Table	of	Noise	Monitoring	Results	during	the	Reporting
		Month	l							

Monitoring Station	Noise Level, I		
Monitoring Station	Average	Range	Limit Level
NMS-1	56.8	39.0 - 59.5	
NMS-2	71.7	65.8 - 73.7	$75 dD(\Lambda)$
NMS-3	53.1	47.1 - 55.8	75 UD(A)
NMS-4A	50.4	49.1 - 51.6	

Remark: +3dB(A) Façade correction included

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 4.10 According to our field observations, the major noise source identified at the designated noise monitoring stations in the reporting month are as follows:

Table 4.5 Ubs	ervation at Noise Monitoring Stations
Monitoring Station	Major Noise Source
NMS-1	Mobile crane, Dump trucks, Backhoe, Band Drain, Drill rig, Road traffic
NMS-2	Road traffic
NMS-3	Road traffic
NMS-4A	N/A

Table 4.5 Observation at Noise Monitoring Stations

Event and Action Plan

4.11 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

5 WATER QUALITY MONITORING

Monitoring Requirements

- 5.1 According to EM&A Manual, impact water quality monitoring shall be carried out three days per week during the construction period. The interval between two sets of monitoring will not be less than 36 hours.
- 5.2 Replicate in-situ measurements and samples collected from each independent sampling event shall be collected to ensure a robust statistically interpretable database.
- 5.3 Impact water quality monitoring was conducted at three depths (i.e. 1m below surface, mid-depth and 1m above seabed, except where the water depth less than 6m, mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored) Dissolved oxygen (DO) concentration, DO saturation, Suspended solids (SS), turbidity, pH, salinity and temperature were monitored in accordance with the requirements set out in the EM&A Manual.
- 5.4 **Appendix B** shows the established Action/Limit Levels for the water quality monitoring works.

Monitoring Locations

5.5 Impact water quality monitoring was conducted at 7 monitoring stations under the Contract which are summarized in **Table 5.1**. The location of monitoring station are shown in **Figure 4**.

Table 5.1	Location for Marine Water Quality Monitoring Locations
Monitoring Stations	Description
CS1	Control Station at Old Shenzhen River Meander
IS1	Impact Station at Old Shenzhen River Meander
IS2	Impact Station at Old Shenzhen River Meander
IS4	Impact Station at Ping Hang Stream
CS5	Control Station at south of Lung Hau Road
IS6	Impact Station near Lung Hau Road
BS1	Impact Station at Old Shenzhen River Meander

Monitoring Equipment

Instrumentation

5.6 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

5.7 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:

- a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
- a temperature of 0-45 degree Celsius.
- 5.8 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.9 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.10 Salinity compensation was built-in in the DO equipment.

<u>Turbidity</u>

5.11 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. The turbidity measurement was carried out on split water sample collected from the same depths of suspended solids samples.

<u>Sampler</u>

5.12 A water sampler, consisting of a transparent Polyvinyl Chloride (PVC) of a capacity of not less than two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth. In addition, a sampling cup attached to a fixed or extendable rod was also used for sampling at the monitoring station with shallow water.

Water Depth Detector

5.13 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

<u>рН</u>

5.14 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

<u>Salinity</u>

5.15 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Sample Container and Storage

5.16 Following collection, water samples for laboratory analysis were stored in high density

polythene bottles (250ml/1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and shipment to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination works were started within 24 hours after collection of the water samples. Sufficient volume of samples was collected to achieve the detection limit.

5.17 **Table 5.2** also summarizes the type of sampling bottles and preservation method for laboratory testing.

Table 5.2Type	ble 5.2 Types of Sampling Bottles and Preservation Methods		
Parameters to be tested	Preservation	Type of Sample Container	
Total Suspended Solids	Refrigerate	1 liter plastic bottle	

Calibration of In Situ Instruments

- 5.18 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 5.19 For the on site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 5.20 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 5.21 The equipment used for impact water quality monitoring is shown in **Table 5.3** and copies of the calibration certificates are shown in **Appendix C**. All the monitoring equipment complied with the requirements set out in the EM&A Manual.

Tuble 5.5 Water Quality Monitoring Equipment			
Equipment	Model and Make	Qty	
Sonar Water Depth Detector	Garmin Fishfinder 140	2	
Multi-parameter Water Quality System	YSI EXO	2	

Table 5.3	Water Quality Monitoring Equipment
	water Quality Monitoring Equipment

Monitoring Parameters, Frequency

5.22 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring. The water quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 5.4	Water Quality Monitoring Parameters and Frequency			
Monitoring Stations	Parameters, unit	Depth	Frequency	
CS1, IS1, IS2, IS4, CS5, IS6, BS1	 Temperature(°C) pH(pH unit) turbidity (NTU) water depth (m) salinity (ppt) dissolved oxygen (DO) (mg/L and % of saturation) suspended solids (SS) (mg/L) 	 3 water depths: 1m below water surface, mid-depth and 1m above river bed. If the water depth is less than 3m, mid- depth sampling only. If water depth less than 6m, mid-depth may be omitted. 	• 3 days per week during the construction period of the Contract	

5.23 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Methodology

Instrumentation

5.24 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Operating/Analytical Procedures

5.25 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

Laboratory Analytical Methods

5.26 The testing of all parameters was conducted by Wellab Ltd. (HOKLAS Registration No.083) for the water samples and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, reporting limit and detection limit are provided in Table 5.5.

Determinant	Instrumentation	Analytical Method	Limit of Reporting	Detection Limit
Suspended Solid (SS)	Weighing	APHA 17ed 2540 D	2.5 mg/L	0.5 mg/L

Table 5.5Methods for Laboratory Analysis for Water Samples

QA/QC Requirements

Decontamination Procedures

5.27 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.28 All sampling bottles were labelled with the sample I.D, laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.29 The laboratory determination works were started as soon as possible after collection of the water samples.

Quality Control Measures for Sample Testing

- 5.30 The sample testing and following quality control programme were performed by Wellab Ltd. for every batch of 20 samples:
 - \diamond One method blank;and
 - \diamond One set of quality control (QC) samples.

Maintenance and Calibration

5.31 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme.

Results and Observations

5.33 The monitoring results and graphical presentation of water quality at the monitoring stations is shown in **Appendix H.**

5.34 The summary of exceedance record in reporting month is shown in **Appendix L** and summarized in the **Table 5.6**.

Table 5.0	51	illillial y Ul	water Quar	ity Exceedance	65
Station	Exceedance Level	DO	Turbidity	SS	Total No. of non- project related Exceedance
	Action Level		13/02/19 25/02/19		2
IS1	Limit Level	19/02/19 25/02/19	15/02/19 23/02/19	13/02/19 15/02/19 23/02/19	7
	Action Level				
IS2	Limit Level		21/02/19 23/02/19	21/02/19 23/02/19	4
IS4	Action Level Limit Level				
BS1	Action Level Limit Level		23/02/19	21/02/19 23/02/19	3
Tatal	Action Level	0	2	0	2
Total	Limit Level	2	5	7	14

Table 5.6Summary of Water Quality Exceedances

- 5.35 An updated Baseline Monitoring Report was submitted to incorporate the revised Action/Limit level to avoid causing false alarm for water quality monitoring.
- 5.36 Water monitoring station IS6 was found dried out in the monitoring period, thus, no monitoring was conducted. The water monitoring will resume once there is water flow at IS6. Other water quality monitoring was conducted as scheduled in the reporting month .Two (2) Limit Level non-project related exceedances for dissolved oxygen. Two (2) Action Level non-project related exceedances and Five (5) Limit Level non-project related exceedances were recorded for turbidity. Seven (7) Limit Level non-project related exceedances were recorded for suspended solids. After investigation, all exceedances are non-project related.
- 5.37 According to the investigation, the exceedances are considered not due to the Contract due to the following reasons:
 - 1) No water-based construction activity was conducted;
 - 2) No pollution discharge from land-based construction activity was observed;
 - 3) The exceeded result were similar or within the range of baseline monitoring results
 - 4) On 21/2/2019, influx of muddy water was observed from Shenzhen River (Mainland China) to old Shenzhen River meander (Hong Kong) during the monitoring which caused the dispersion of riverbed sediment to the monitoring station.
 - 5) On 25/2/2019, green color of river water was observed, it is considered due to rapid growth of algae that caused high turbidity and led to decrease in dissolved oxygen level.

Event and Action Plan

5.38 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

6 ECOLOGICAL MONITORING

Monitoring Requirements (Avifauna Monitoring)

Monitoring Requirements

- 6.1 As required under Section 11.4.1.1 of the EM&A Manual, a flight line corridor survey is required from the beginning of work until 12 months after the establishment of the Ecological Area or completion of work on the Western Connect Road, whichever is the later.
- 6.2 The purpose of the survey is to identify the number and species composition of birds using the flight line and monitor if any impact from construction works.

Monitoring Frequency

6.3 Flight line survey is required to be carried out on monthly basis.

Monitoring Location

6.4 The flight line corridor survey work should be carried out at the LMC Lookout, according to Section 11.4.1.1 of the EM&A Manual. The location at LMC Lookout is shown in **Figure 5.**

Monitoring Methodology

- 6.5 Flight lines of birds through the area were surveyed once monthly at LMC Lookout, adjacent to LMC Loop.
- 6.6 Observations were carried out at LMC Lookout for two hours from 30 minutes before sunrise in the early morning.
- 6.7 During the survey, the surveyor marked on a standard map the estimated location of the flight path used by waterbird species, birds of prey or other larger species of conservation interest passing through the area. Flights involving short hops from point to point were not recorded. The focus was on the flight line corridor over LMC Loop or the southwest section of LMC Meander.
- 6.8 During the survey, species generally commensal with man (e.g. Black-collared Starling), common and widespread in HK (e.g. Crested Myna) or small in size and not prone to following flight lines en masse (e.g. Barn Swallow) were ignored in order to concentrate on species of conservation interest and/or those prone to using flight lines (e.g. large waterbirds).
- 6.9 For each observation of birds in flight, the number, the species and their height above the ground was recorded. Height above the ground was estimated in relation to the level of LMC Loop and adjacent fish pond area, and/or the location of the observer.
- 6.10 Given the difficulty of accurately measuring height above ground from a distance, three

height classes were used: 10m, 20m and 30m or above. In practice, this means birds were assigned to ranges of 5-15m (10m height class), 15-25m (20m height class) and 25m or above (30m height class). Approximate heights of observation points were 40m at LMC Lookout.

- 6.11 Flight line locations marked on the maps were then overlain by a 100m grid, each square having a unique number.
- 6.12 The number of birds of each species passing through each 100m square (the number of "bird-flights") and their height above ground were then entered into an Excel spreadsheet. These data were then mapped, and on the figures produced a greater intensity of colour indicates a higher number of birds, as shown in **Figure 6**.

Monitoring Day

6.13 The flight line survey was carried out on 16th February 2019. The survey started at 6:25 am (sunrise time at 6:55 am) and lasted for 2 hours. The weather was clear and sunny during the entire survey.

Monitoring Result

6.14 A total of 1600 birds, in 10 species, were recorded during the survey in the reporting month. The 10 species included Great Cormorant, Little Egret, Great Egret, Grey Heron, Black-faced Spoonbill, Chinese Pond Heron, Pied Kingfisher, Collared Crow, Purple Heron and Black Kite. **Table 6.1** shows the summary of the number of birds observed in this Survey.

Table 6.1 Number of birds recorded in February 2019

Species	Number of birds
Great Cormorant 鸕鷀	1318
Little Egret 小白鷺	136
Great Egret 大白鷺	115
Grey Heron 蒼鷺	13
Black-faced Spoonbill 黑臉琵鷺	7
Chinese Pond Heron 池鷺	5
Pied Kingfisher 斑魚狗	2
Collared Crow 白頸鴉	2
Purple Heron 草鷺	1
Black Kite 黑鳶	1

6.15 The total number of bird-flights (number of birds of each species passing through each 100m square) observed across all 100m grid squares was 15735. **Table 6.2** shows the number of bird-flights for the ten species respectively.

Table 6.2Number of bird-flights of	the ten species
Species	Total Bird-Flight
Great Cormorant 鸕鷀	13106
Little Egret 小白鷺	1231
Great Egret 大白鷺	1104
Grey Heron 蒼鷺	120
Black-faced Spoonbill 黑臉琵鷺	70
Chinese Pond Heron 池鷺	48
Pied Kingfisher 斑魚狗	20
Collared Crow 白頸鴉	20
Purple Heron 草鷺	8
Black Kite 黑鳶	8

- 6.16 **Figure 6** illustrating the location of recorded flight lines. 6 flight lines can be distinguished and identified, which was listed below:
 - 1. Along the Meander
 - 2. Across the fish ponds on the south of the Meander.
 - 3. Across the fish ponds beside the LMC Lookout point
 - 4. Directly on top of construction site
 - 5. Along Ecological Area Zone
 - 6. Along the Shenzhen River.
 - 7. Across the fish ponds beside the LMC Lookout point and continue flying towards SW.
- 6.17 Flight line of Little Egret, Great Egret and Great Cormorant were mostly located over LMC Meander and adjacent areas. For other species, the number of individual birds or flock observed were too little to provide significant result.
- 6.18 Little Egret were more likely to pass through the area of LMC loop than other species. For Great Egret and Great Cormorant, they were more concentrated along the LMC Meander.
- 6.19 The majority of bird flights were at the height of 30m.

Comparison of the Survey Result to the EIA Report

6.20 The comparison of species number was summarized in **Table 6.3**. No species mentioned in the Table 6.3 which were not recorded in the EIA Report.

Table 6.3 Comparison of the Survey Result to the EIA Rep			
Species	Numbers in Feb 2010	Numbers in Feb 2019	
Great Cormorant 鸕鷀	1370	1318	
Little Egret 小白鷺	23	136	
Great Egret 大白鷺	289	115	
Grey Heron 蒼鷺	5	13	
B-f Spoonbill 黑臉琵鷺	3	7	

Species	Numbers in Feb 2010	Numbers in Feb 2019
Chinese Pond Heron 池鷺	0	5

^{6.21} In comparison with the flight line distribution mentioned in the EIA report, the result of this survey showed a similar distribution, which means a concentration of flight line from the southwest side of the Lok Ma Chau Loop to the northeast along the Meander. The distribution of flight line usage in this survey and the EIA report was shown in **Figure 6** and **Figure 7** respectively.

7 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 7.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Contract site. The summaries of site audits are attached in **Appendix M**.
- 7.2 Site audits were conducted on 1st, 8th, 13th and 22nd February 2019 by ET after the commencement of construction works for the Contract. A joint site audit with the representative with ER, the Contractor, IEC and the ET was carried out on 13th February 2019. The details of observations during site audit can refer to **Table 7.1**.

Implementation Status of Environmental Mitigation Measures

- 7.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the EMIS is provided in **Appendix N**.
- 7.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 7.1**.

Table 7.1	.1 Observations and Recommendations of Site Audit			
Parameters	Date	Observations and Recommendations	Follow-up	
	13/2/2019	The soak away method from the wetsep tank is not recommended, Contractor should implement an alternate system to discharge water according to discharge license.	Rectification/improvement was not observed during the follow-up audit session, follow-up action will be reported in the next monthly report.	
Water Quality	13/2/2019	Cut-off drain near the temporary bridge should be enhanced.	Rectification/improvement was not observed during the follow-up audit session, follow-up action will be reported in the next monthly report.	
	13/2/2019	The tires of dump trucks after using the wheel wash facility were observed muddy, Contractor should improve the wheel washing facility.	Rectification/improvement was not observed during the follow-up audit session, follow-up action will be reported in the next monthly report.	
	11/1/2019	3m high olive green fence shall be erected around the construction area	Improvement was observed during follow-up audit session on 8 February 2019.	
Ecology	25/1/2019	Indication operating hours for PMEs near site office was established, but the indicator near the decontamination zone 2 is yet to be set up. Contractor was reminded to ensure there is a clear indicator within 100m of meander.	Improvement was observed during follow-up audit session on 22 February 2019.	
	04/1/2019	The PVD installation equipment was observed without NRMM label. Contractor was reminded to display it conspicuously during operation.	Improvement was observed during follow-up audit session on 1 February 2019.	
	04/1/2019	The Contractor was reminded to provide watering at least once per hour on the exposed work sites and haul road for dust suppression.	Rectification/improvement was not observed during the follow-up audit session, follow-up action will be reported in the next monthly report.	
Air Quality	01/2/2019	Stockpile shall be covered properly with impervious material to avoid dust generation	Rectification was observed during follow-up audit session on 22 February 2019.	
	13/2/2019	Cement mixing machine should be carried out in an enclosed system.	Rectification was observed during follow-up audit session on 22 February 2019.	
	13/2/2019	Hoarding should be provided along the site area near the temp. bridge.	Rectification/improvement was not observed during the follow-up audit session, follow-up action will be reported in the next monthly report.	
Noise	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾	
Waste / Chemical Management	18/1/2019	Chemical containers near the wetsep shall be stored properly.	Rectification was observed during follow-up audit session on 22 February 2019.	

Parameters	Date	Observations and Recommendations	Follow-up
	08/2/2019	The setup of chemical waste storage area was observed not complying with the EPD requirement. The Contractor was reminded to review the relevant requirement to modify it.	Rectification was observed during follow-up audit session on 22 February 2019.
	13/2/2019	A number of drip trays were observed filled with sediments and should be sealed.	Rectification/improvement was not observed during the follow-up audit session, follow-up action will be reported in the next monthly report.
	22/2/2019	Chemical containers should be stored properly with drip try to avoid any on site contamination	Follow up action will be reported in the next monthly report.
Landscape & Visual Impact	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Permits/Licences	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Other	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾

Remark: N/A⁽¹⁾ No major environmental deficiency was identified during the site inspection in the reporting month.

Solid and Liquid Waste Management Status

7.5 The amount of waste generated by the activities of the project in the reporting month and cumulative quantity are shown **Table 7.2**.

Table 7.2	Quantities of Wast	e Generated in the Re	porting Month

Waste Type		Quantity this month	Cumulative Quantity-to- Date	Disposal/Dumping Grounds
Inert .	C&D materials disposed [in m ³]			
	C&D materials recycled [in m ³]	2000	17000	Haul road
Non- inert	C&D materials disposed [in kg]			
	C&D materials recycled [in kg]			
	Chemical waste disposed [in kg]			

7.6 The detail of amount of waste generated by the activities of the project during the reporting month is shown in **Appendix O**.

8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)

Summary of Exceedances

- 8.1 Summary of exceedance is provided in **Appendix L**.
- 8.2 No Action/Limit Level exceedance was recorded for air quality and construction noise.
- 8.3 Two (2) Limit Level non-project related exceedances for dissolved oxygen. Two (2) Action Level non-project related exceedances and Five (5) Limit Level non-project related exceedances were recorded for turbidity. Seven (7) Limit Level non-project related exceedances were recorded for suspended solids. After investigation, all exceedances are non-project related.

Summary of Environmental Complaint

8.4 No environmental related complaints were received in the reporting month. The Complaint Log is attached in **Appendix P**.

Summary of Notification of Summons and Successful Prosecution

8.5 There was no prosecution or notification of summons received since the Contract commencement. Summary of successful prosecution as attached in **Appendix Q**.
9 FUTURE KEY ISSUES

Key Issues in the Coming Month

- 9.1 Major site activities for the coming reporting month will include:
 - (a) Construction of land decontamination treatment plant;
 - (b) Excavation of top soil for land decontamination works at hot spot LD-001;
 - (c) Erection of 3m green fence;
 - (d) Installation of prefabricated vertical drains and strip drain;
 - (e) Piling for temporary bridge;
 - (f) Establishment of nursery areas for reed bed.
 - (g) Site clearance at Ecological Area Zone

Monitoring Schedule for the Next Month

9.2 The tentative environmental monitoring schedule for the next month is shown in **Appendix D**.

Construction Programme for the Next Month

9.3 A tentative construction programme is provided in Appendix A.

10 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 10.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken in February 2019 in accordance with EM&A Manual.
- 10.2 No Action /Limit Level exceedance was recorded for air quality and construction noise.
- 10.3 An updated Baseline Monitoring Report was submitted to incorporate the revised Action/Limit level to avoid causing false alarm for water quality monitoring.
- 10.4 Water monitoring station IS6 was found dried out in the monitoring period, thus, no monitoring was conducted. The water monitoring will resume once there is water flow at IS6. Other water quality monitoring was conducted as scheduled in the reporting month .Two (2) Limit Level non-project related exceedances for dissolved oxygen. Two (2) Action Level non-project related exceedances and Five (5) Limit Level non-project related exceedances were recorded for turbidity. Seven (7) Limit Level non-project related exceedances were recorded for suspended solids. After investigation, all exceedances are non-project related.
- 10.5 Avifauna monitoring was carried out on 16th February 2019. No adverse impact was noticeable from general observations.
- 10.6 Environmental site inspection was conducted on 1st, 8th, 13th, 22nd February 2019 by ET in the reporting month.
- 10.7 There was no environmental complaints, no notification of summons and successful prosecution received in the reporting month.
- 10.8 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

10.9 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures such as water spray on all haul roads, stockpiles, dry surfaces and during unloading of material.
- To cover stockpile of dusty material by impervious material
- To avoid dark smoke emitted from the PMEs.
- NRMM labels should be properly displayed on PMEs during operation.

Noise Impact

- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers, if necessary.

Water Impact

- To prevent any surface runoff discharge into meander or stream.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To remove the sand or dusty material away from the meander or stream.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To review the capacity of de-silting facilities for discharge.

Ecology Impact

- To continuously set up the 3m high olive green fence around the construction site.
- To set up a clear signal around the site to indicate the restricted operation time for PMEs near 100m of meander

Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum or chemical containers on site.

FIGURE(S)

PWP ITEM No. 748CL-DEVELOPMENT OF LOK MA CHAU LOOP : LAND DECONTAMINATION AND ADVANCE ENGINEERING WORKS

R:\Sketch-WDO\W1\W1-008\W1-008.dgn

APPENDIX A CONSTRUCTION PROGRAMME

Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works

Project Programme of the Works Rev.2 (Data Date : 28 Aug 2018)

ID	6	Activity	Task Name	Duration Time risk	Start	Finish Float	Predecessors	2018		a lan Fahlan Andar Lu	2019	
1	•	000000	Project Programme of the Works	1461 days?	Fri 22/6/18	Tue 21/6/22 0 days?				c Jan Feb Mar Apr May Ju		
2				1 day?	Fri 22/6/18	Fri 22/6/18 0 days?		Ч				
3		100000	1. Contract Key Dates	1461 days	Fri 22/6/18	Tue 21/6/22 0 days						
4		110000	1.1 Date for Commencement of the Works	0 days	Fri 22/6/18	Fri 22/6/18 0 days						
6		120000	Completion of land decontamination works within the FA zone and ground	0 days	Sat 22/6/19 Sat 22/6/19	Sat 22/6/19 0 days	4FS+366 days					
			treatment areas		,.,.,.						•	
7		122000	Completion of the temporary vehicular bridge across the old Shenzhen River	0 days	Sat 22/6/19	Sat 22/6/19 0 days	4FS+366 days			4	•	
			meander									
8		123000	Completion of Ecological Area within the Loop	0 days	Sun 21/6/20	Sun 21/6/200 days	4FS+/31 days					•
10		131000	Portion A	0 days	Fri 22/6/18	Fri 22/6/18 0 days						
11		132000	Portion B	0 days	Fri 22/6/18	Fri 22/6/18 0 days						
12		133000	Portion C	0 days	Fri 22/6/18	Fri 22/6/18 0 days		• •				
13		140000	1.4 Section Completion of the Works	1461 days	Fri 22/6/18	Tue 21/6/22 0 days						
14		141000	Section I - works in the Portion A	1096 days	Fri 22/6/18	Mon 21/6/21 0 days						
15		142000	Section II - works in the Portion B	1096 days	Fri 22/6/18	Mon 21/6/21 0 days						
16		143000	Section III - decontamination work in the Portion B and the Portion C	1096 days	Fri 22/6/18	Mon 21/6/21 0 days						
17		144000	Section IV - ground treatment works and associated works in the Portion C	1096 days	Fri 22/6/18	Mon 21/6/21 0 days						
18		145000	Section V - all landscape softworks	1096 days	Fri 22/6/18	Mon 21/6/21 0 days						
19		146000	Section VI - all establishment and further establishment work in the Portion	1461 days	Fri 22/6/18	Tue 21/6/22 0 days						
			В									
20												
21		200000	2. Preliminary Works	180 days	Fri 22/6/18	Tue 18/12/18 5 days				•		
22		201000	Subcontracting submission and approval	90 days	Fri 22/6/18	Wed 19/9/18 5 days						
23		202000	Design and approval of Hoarding & Fencing	75 days	Fri 22/6/18	Tue 4/9/18 20 days	4					
24		203000	Construction of Hoarding & Fencing for Site Offices	21 days	Inu 11/10/18 Eri 6/7/19	Wed 31/10/18 53 days	23,22FS+21 days					
25		204000	Set up Engineer's Office	90 days	Thu 20/9/18	Tue 18/12/18 5 days	2233+14 days					
27		206000	Set up Contractor's Site Office	90 days	Thu 20/9/18	Tue 18/12/18 5 days	26SS					
28		207000	Submission and construction of Project Signboard	45 days	Thu 4/10/18	Sat 17/11/18 36 days	23,22FS+14 days	_				
29		208000	Initial topographic survey	120 days	Fri 22/6/18	Fri 19/10/18 65 days	4					
30		209000	Prepare, submit & Approve ICE	90 days	Fri 22/6/18	Wed 19/9/18 95 days	4					
31		210000	Prepare, Submit Draft Safety Plan	14 days	Fri 22/6/18	Thu 5/7/18 171 days	4	I				
32		211000	Review & Approve Safety Plan	35 days	Fri 22/6/18	Thu 26/7/18 150 days	4					
33		212000	Prepare, Submit, Approve Environmental Management Plan	21 days	Fri 22/6/18	Thu 12/7/18 164 days	4					
34		213000	Prepare Submit & Approve Traffic Consultant	45 uays	Fri 22/6/18	Sat 21/7/18 0 days	4					
36		214000	Prepare and Submit Smart Card System	30 days	Fri 22/6/18	Sat 21/7/18 155 days	4					
37		216000	Site Liaison Group	90 days	Fri 22/6/18	Wed 19/9/18 95 days						
38		217000	Permit Application for Temporary Access along Border Road	45 days	Fri 22/6/18	Sun 5/8/18 140 days	4					
39		218000	Forming of temporary Access Road for Pedestrian	45 days	Fri 22/6/18	Sun 5/8/18 95 days						
40		219000	Installation of 3M-high Olive Green Fence along major reed marsh area	45 days	Mon 6/8/18	Wed 19/9/18 95 days	39					
41		220000	Searching for Otter holts / dens and Herpetofaunal species	90 days	Fri 22/6/18	Wed 19/9/18 95 days						
42		299999	Complete all preliminary items	0 days	Tue 18/12/18	Tue 18/12/18 5 days	23,24,25,26,27,28,29,30,31	L,3		ĥ		
43		300000	3 Section L of the works - Works in the Portion A	1096 days	Eri 22/6/18	Mon 21/6/21 0 days						
45		301000	Tree survey and submission	45 days	Fri 22/6/18	Sun 5/8/18 126 days	10.11					
46		302000	Application for XP	150 days	Fri 22/6/18	Sun 18/11/18 0 days	35SS			┢		
47		303000	Prepare TTA for TMLG and approval from TD and RMO	60 days	Thu 20/9/18	Sun 18/11/18 0 days	46SS+90 days,35	─	×	+-		
48		304000	Application of Traffic Advice and Road Work Advice	21 days	Mon 19/11/18	Sun 9/12/18 0 days	46,47		🔬			
49		305000	Liaison / coordination to Utility Undertakers / UU diversion	150 days	Fri 22/6/18	Sun 18/11/18 21 days	10,11			.		
50		306000	tree felling / site clearance	360 days	Mon 10/12/18	Wed 4/12/19 0 days	48,49,45	_)	
52		307100	Workfront I - Road works	911 days	Mon 24/12/18	Mon 21/6/21 0 days		-				
53		307110	Stage 1	42 davs	Mon 24/12/18	Sun 3/2/190 days		-				
54		307120	Drainage work - gully and u-channel & PL ducting	14 days 2 days	Mon 24/12/18	Sun 6/1/19 0 days	50SS+14 days,42		4	.		
55		307130	Carriageway	14 days 2 days	Mon 7/1/19	Sun 20/1/19 0 days	54			l 👗		
56		307140	Footpath	14 days 1 day	Mon 21/1/19	Sun 3/2/19 0 days	55					
57		307150	Stage 2 - 20	798 days 60 days	Mon 4/2/19	Sun 11/4/21 0 days	56					
58		307160	Road marking, traffic sign and road furniture	71 days 6 days	Mon 12/4/21	Mon 21/6/21 0 days	57					
59		30/161	Lighting Installation by HyD	30 days	Mon 26/4/21	Tue 25/5/21 27 days	5822+14 days	_				
61		307200		42 days	Mon 24/12/18	Sun 3/2/19 0 days		-				
62		307220	Drainage work - gullv and u-channel & PL ducting	14 days 2 days	Mon 24/12/18	Sun 6/1/19 0 days	50SS+14 davs	-				
63		307230	Carriageway	14 days 2 days	Mon 7/1/19	Sun 20/1/19 0 days	62		'	T		
64		307240	Footpath	14 days 1 day	Mon 21/1/19	Sun 3/2/19 0 days	63			👗		
65		307250	Stage 2 - 20	798 days 60 days	Mon 4/2/19	Sun 11/4/21 0 days	64					
66		307260	Road marking, traffic sign and road furniture	71 days 6 days	Mon 12/4/21	Mon 21/6/21 0 days	65					
67		307261	Lighting Installation by HyD	30 days	Mon 26/4/21	Tue 25/5/21 27 days	66SS+14 days					
68		307300	workfront III - Koad works	390 days	Thu 19/12/19	Mon 11/1/21 161 days						
Project	YL/20	17/03 Devel	opment of Lok Ma Chau	Summary	-	Rolled Up Milestone	♦ External	ernal Tasks		Inactive Task		Manual Task
Data Data Data Data	ate: 28 sion: 3	Aug 2018 0 Aug 2018	Critical Task	Rolled Up Task		Rolled Up Progress	Proje	ject Summary	\bigtriangledown	Inactive Milestone	i ب	Duration-only
L			Milestone	Rolled Up Critical	Fask	Split	Grou	up By Summary	•	Inactive Summary		Manual Summary Rollup
		-						Page 1				

	2	2021	2022	2
Sep Oct Nov Dec	Jan Feb Mar Apr May Ju	n Jul AugSepOctNovDec	Jan Feb Mar Apr May Jun J	<u> </u>
)		
		,		
)	_		
		.		
	بھی ا	ካ		
		ŀ		
	•			
Manual S	Summary 🗸	Progress		
Start-onl	y E	Deadline	Ŷ	
Finish-or				

Sang Hing - Kuly Joint Venture

Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works

Project Programme of the Works Rev.2 (Data Date : 28 Aug 2018)

ID 6	Activity	Task Name		Duration Time risk	Start	Finish Fl	loat	Predecessors	2018	Son Oct No		ob Mar Apr May	2019		2020
69	307310	Stage 1		42 days	Thu 19/12/19	Wed 29/1/20 1	61 days				V Dec Jan r	ebilviai Aprilviay.			nar Apriniay Jun Jur Aug
70	307320	Drainage work - gully and u-ch	annel & PL ducting	14 days 2 days	Thu 19/12/19	Wed 1/1/20 10	61 days	78							
71	307330	Carriageway		14 days 2 days	Thu 2/1/20	Wed 15/1/20 16	61 days	70						1	
72	307340	Footpath		14 days 1 day	Thu 16/1/20	Wed 29/1/20 10	61 days	71							
73	307350	Stage 2 - 8		294 days 28 days	Thu 30/1/20	Wed 18/11/2010	61 days	72							
74	307360	Road marking, traffic sign and roa	ad furniture	54 days 6 days	Thu 19/11/20	Mon 11/1/21 16	61 days	73							
75	307361	Lighting Installation by HyD		30 days	Thu 3/12/20	Fri 1/1/21 1	71 days	74SS+14 days							
76	307400	Workfront IV - Retaining Wall		685 days	Wed 12/6/19	Mon 26/4/21 20	6 days								
77	307410	BW1.5 ~ BW1.8 BW3.4		95 days 7 days	Wed 12/6/19	Sat 14/9/19 20	6 days	110					•		
78	307420	RW3 5 RW2 9 ~ RW3 3		95 days 7 days	Sun 15/9/19	Wed 18/12/19 26	6 days	77 113					*		
79	307430	BW1 1 ~ BW1 4		95 days 7 days	Thu 19/12/19	Sun 22/3/20 20	6 days	78							
80	307440	RW2 0 - RW2 3		75 days 7 days	Mon 23/3/20	Eri 5/6/20 20	6 days	79	_						
81	307450	RW2.4 - RW2.8		95 days 7 days	Sat 6/6/20	Tue 8/9/20 20	6 days	80	_						
82	307460	Backfilling		120 days 7 days	Wed 9/9/20	Wed 6/1/21 26	6 days	81	_						
02	207470	Drainage work and readwork		110 days 10 days	Thu 7/1/21	Mon 26/4/21 20	6 days	02							
0.5	202000	Vehicular Bridge		411 days	Eri 22/6/19	Tuo 6/8/19 6	6 days	02							
04	208100	Proparation and submission (CSD Dro	anaration and submission	100 days 0 days	FII 22/0/18	Cat 20/0/190	dave	10.11					•		
00	208200	Ligicon and obtained approval from	DSD & EDD for works in Moander	100 days 9 days	FII 22/0/10	5al 29/9/100	days	10,11 RECC + 40 days							
00	208210	Liaison and obtained approval from	ura to confirming decign	0 days	Sup 25/11/19	FIT 19/10/180	days	0555+40 Udys							
0/	300210			0 days	Sull 25/11/16	Sull 23/11/180	uays	07			`				
88	308220	Approval from Supervisor and releva	ant government department	60 days	Sun 25/11/18	Wed 23/1/190	days	87	_						
89	308300	Steel bridge fabrication		90 days 5 days	Thu 24/1/19	Tue 23/4/190	days	86FS+46 days,88							
90	308400	Bearings and movement joints fabric	cation	90 days 5 days	Thu 24/1/19	Tue 23/4/190	days	85F5+60 days,88	_		🛍				
91	308500	Central Pier and South Abutment		206 days	Sun 30/9/18	Tue 23/4/190	days								
92	308510	Site clearance and formation trim	ming	18 days 2 days	Sun 30/9/18	Wed 17/10/18 2	days	85		• <u> </u>					
93	308520	Temporary Platform forming for C	Central Pier and South Abutment	15 days 2 days	Sat 20/10/18	Sat 3/11/18 0	days	92,86		🍢					
94	308530	Predrilling work and determinatio	on of pile founding level	45 days 5 days	Sun 4/11/18	Tue 18/12/18 0	days	93		[*	┉┼┼				
95	308540	Installation of preliminary pile		21 days 2 days	Sun 25/11/18	Sat 15/12/18 0	days	94SS+21 days			∞ ++-				
96	308550	Pile testing to preliminary pile		14 days 1 day	Sun 13/1/19	Sat 26/1/19 0	days	95FS+28 days			T h				
97	308560	Piling work (10 nos. for SA, 8 nos.	. for CP)	42 days 4 days	Sun 27/1/19	Sat 9/3/19 0	days	96,94							
98	308570	Substructure - Pile Cap and Abutn	nent	45 days 5 days	Sun 10/3/19	Tue 23/4/19 0	days	97							
99	308580	Substructure - Pile cap and Pier		45 days 5 days	Sun 10/3/19	Tue 23/4/19 0	days	98SS							
100	308600	North Abutment		188 days	Thu 18/10/18	Tue 23/4/190	days								
101	308610	Site clearance and formation trim	mina	18 days 2 days	Thu 18/10/18	Sun 4/11/18 39	9 davs	92							
102	308620	Temporary platform forming for N	North Abutment	14 days 1 day	Mon 5/11/18	Sun 18/11/18 39	9 davs	101							
103	308630	Predrilling work and determinatio	on of nile founding level	30 days 3 days	Wed 19/12/18	Thu 17/1/199	davs	102 94							
103	308640	Piling work (8 pos. for NA.)		30 days 3 days	Sup 27/1/19	Mon 25/2/19 0	dave	102,54	_			, 			
105	308650	Pile testing		15 days 1 day	Tue 26/2/19	Tue 12/3/19 0	dave	103,50	_						
105	208660	Substructure _ Dile Cap and Abute	mont	42 days 1 day	Wod 12/2/19	Tuo 22/4/19 0	days	105	_						
100	208700	Installation of superstructure	nem	42 days 4 days	Wed 13/3/19	Sat 22/6/190	days	105	_						
107	209710	Installation Cite Wolding for Steel	l Structuro	25 days 4 days	Wed 24/4/19	June 28/5/100	days	00 90 09 00 106				1			
100	200710	BC docking and bituminous payor	mont	25 days 4 days	Wed 24/4/19	Sat 22/6/100	days	100							
109	308720	Accessization temporany road works	for matching with bridge	25 udys 2 udys	Wed 29/5/19	Sat 22/0/190	udys 1 davr	100							
110	308800	Association temporary road works i	hu haddfilling	T4 udys	Wed 29/3/19	Tue 11/6/19 1.	1 days	100	_						
111	200010		by backfilling	7 days 2 days	Wed 29/3/19	Tue 11/6/10 1	1 days	100					<u>}</u>		
112	208000	Removal of temporary platform	it.	7 uays 1 uay	Sup 22/6/19	Tue 11/0/19 1.	I uays E dave	111							
113	308900	Removal of temporary platform	A Ma Chau Dand	45 days 4 days	Sun 23/6/19	Tue 6/8/19 6:	5 days	107,112							
114	309000	Construction of Noise Barrier along Lo		1096 days	Fri 22/6/18	Won 21/6/210	days								
115	309100	Construction of Concrete Footing		900 days	Fri 22/6/18	Mon 7/12/200	days	10.11							
110	309110	Preparation and submission		210 days	Fri 22/6/18	inu 1//1/190	days	10,11							
110	309120	INRTO BUD 1		120 days 10 days	Fri 18/1/19	Fri 17/5/190	days	40,4/,110	_						
118	309130	INB 14		90 days 8 days	Sat 18/5/19	Thu 15/8/190	days	11/							
119	309140	INB 8 and TNB 12		120 days 10 days	Fri 16/8/19	Fri 13/12/190	days	118							
120	309150	TNB 9		90 days 8 days	Sat 14/12/19	Thu 12/3/200	days	119							\
121	309160	TNB 7, TNB 6, TNB 5 and TNB 16		180 days 15 days	Fri 13/3/20	Tue 8/9/200	days	120							
122	309170	TNB 4, TNB 3, TNB 2 and TNB 11		90 days 8 days	Wed 9/9/20	Mon 7/12/20 0	days	121							
123	309200	Installation of Acrylic Noise Barrier		886 days	Fri 18/1/19	Mon 21/6/21 0	days								
124	309210	Fabrication of acrylic noise barrier	r	210 days 15 days	Fri 18/1/19	Thu 15/8/19 48	80 days	116							
125	309220	Installation of acrylic noise barrier	r	196 days 15 days	Tue 8/12/20	Mon 21/6/21 0	days	124,122							
126	309300	TNB 1		45 days 4 days	Tue 8/12/20	Thu 21/1/21 10	06 days	122							
127	309400	TNB 15		45 days 4 days	Fri 22/1/21	Sun 7/3/21 10	06 days	126							
128 🔳	310000	Key Date for temporary Vehicular Bridge	•	0 days	Sat 22/6/19	Sat 22/6/190	days	107,110,112					**		
129 💷	399999	Completion of Section I of the Works		0 days	Mon 21/6/21	Mon 21/6/21 0	days	127,58,66,74,83FS+30 day	/S						
130															
131	400000	4. Section II of the Works - Works in the	Portion B	1011 days	Fri 22/6/18	Sun 28/3/21 0	days		↓						
132	410000	Tree survey and submission		90 days	Fri 22/6/18	Wed 19/9/18 10	01 days								
133	420000	Tree felling / site clearance		60 days 7 days	Sun 30/12/18	Wed 27/2/19 0	days	144FF-1 day,132							
134	430000	Preparation and submission		252 days	Fri 22/6/18	Thu 28/2/190	days		∣ ∣₊⊨━━━						
135	431000	Method statement and submission/0	CSD preparation	160 days	Fri 22/6/18	Wed 28/11/18 0	days				₀ ,				
136	431100	Last day for approval of CSD and retu	urn to confirming design	0 days	Wed 28/11/18	Wed 28/11/18 0	days	135	- I T		*				
137	431200	Approval from Supervisor and releva	ant government department	92 days	Thu 29/11/18	Thu 28/2/19 0	days	136							
138	432000	Preparation for all necessary submiss	sion by EP for notification to EPD for	42 davs	Fri 22/6/18	Thu 2/8/18 7	6 davs	135SS		<u> </u>		[
		commencement of construction wor	rks. (by Contractor)				· ·)-								
		I						1							
			Task	Summarv	_	Rolled Up M	lilestone	Fyter	rnal Tasks		i I	nactive Task	[Manual Tasl	< E
Project: YL/2	017/03 Devel	opment of Lok Ma Chau	Critical Task	Pollod Up Task	-		rograce	- Exter	act Summary			nactivo Milostera	· ·	Duration	
Submission:	30 Aug 2018			Rolled Up Task		Kolled Up P	logiess	Proje	eccountriary			active ivillestone	e ♥ 	Duration-on	ny
			Milestone 🔶	Rolled Up Critical Tas	SK	split 💴		Grou	ip By Summary			nactive Summary		—— Manual Sum	nmary Rollup

Page 2

Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works

Project Programme of the Works Rev.2 (Data Date : 28 Aug 2018)

ID	Activity	Task Name	Duration Time risk	Start	Finish Float	Predecessors	2018		2020
139	432100	Appointment of ET/IEC (by others)	90 days	Fri 22/6/18	Wed 19/9/18 0 days	135SS			Jan Feb Mar Apr May Jun Jul Aug Se
140	432200	Conduct Baseline Monitoring by ET (by others)	28 days	Thu 20/9/18	Wed 17/10/18 0 days	139			
141	433000	Submission to EPD for notification of commencement of construction works at Portion B	30 days	Thu 18/10/18	Fri 16/11/18 0 days	140,138			
142	440000	Determination of the toe level of stone column by cone penetration test (by other)	75 days	Thu 28/2/19	Mon 13/5/19 0 days	133,140			
143	450000	Works for stone column	245 days	Fri 1/3/19	Thu 31/10/190 days			-	
144	450010	Commencement of construction works at Portion B	0 days	Fri 1/3/19	Fri 1/3/190 days	141FS+104 days,137			
145	451000	Stone column - workfront I (North Embankment)	194 days	Fri 1/3/19	Tue 10/9/19 0 days			~	
146	451100	Excavation	60 days 5 days	Fri 1/3/19	Mon 29/4/19 0 days	144			
147	451120	Rock filling	60 days 5 days	Fri 15/3/19	Mon 13/5/19 0 days	146SS+14 days,135			
148	451130	Construction of stone column	120 days 10 days	Tue 14/5/19	Tue 10/9/19 0 days	147SS+60 days,142			
149	452000	Stone column - workfront II (South Embankment)	194 days	Fri 1/3/19	Tue 10/9/190 days				
150	452100	Excavation	60 days 5 days	Fri 1/3/19	Mon 29/4/19 0 days	146SS			
151	452200	Rock filling	60 days 5 days	Fri 15/3/19	Mon 13/5/19 0 days	150SS+14 days			
152	452300	Construction of stone column	120 days 10 days	Tue 14/5/19	Tue 10/9/19 0 days	151SS+60 days,142			
153	453000	Stone column - workfront III (North Embankment)	174 days	Tue 30/4/19	Sun 20/10/19 11 days				
154	453100	Excavation	90 days / days	Tue 30/4/19	Sun 28/7/19 11 days	133,146			
155	453200	Rock filling	100 days 10 days	Tue 14/5/19	Wed 21/8/19 11 days	1545S+14 days,147			
150	455500	Stone column - workfront IV (South Embankmont)	100 days 10 days	Sat 15/7/19	Sun 20/10/19 11 days	15555+00 uays,142			
158	454100	Evcavation	90 days 7 days	Tue 30/4/19	Sun 28/7/19 11 days	133 150			
159	454200	Rock filling	100 days 10 days	Tue 14/5/19	Wed 21/8/19 11 days	158SS+14 days 151			
160	454300	Construction of stone column	100 days 10 days	Sat 13/7/19	Sun 20/10/19 11 days	159SS+60 days,142			
161	455000	Stone column - workfront V (Inter. Embankment)	215 days	Sun 31/3/19	Thu 31/10/19 0 days				
162	455100	Excavation	100 days 7 days	Sun 31/3/19	Mon 8/7/19 0 days	146SS+30 days			
163	455200	Rock filling	120 days 10 days	Sun 14/4/19	Sun 11/8/19 0 days	162SS+14 days			
164	455300	Construction of stone column	120 days 10 days	Thu 4/7/19	Thu 31/10/19 0 days	163SS+81 days			
165	461000	Excavation for EA zone (Workfront I)	90 days 7 days	Sat 3/8/19	Thu 31/10/19 0 days	152FS-39 days,148FS-39 day			
166	462000	Excavation for EA zone (Workfront II)	83 days 7 days	Sun 1/3/20	Fri 22/5/20 0 days	156,160,165FS+120 days			
167	463000	Planting of Vegetation inside EA Zone	30 days 2 days	Sat 23/5/20	Sun 21/6/20 0 days	166			Č
168	471000	Construction of drainage incl. inlet, outlet structures and overflow weir	188 days 15 days	Wed 11/9/19	Mon 16/3/200 days	148,152			
169	472000	Construction of PE pipes by trenchless method	120 days 10 days	Thu 9/1/20	Sat 10/0/20 50 days	16855+120 days			
170	4/3000	Construction of Embankment (North Embankment)	90 days / days	Sat 2/8/10	Sat 19/9/20 5 uays	100,109,174			
172	481100	Rockfill	90 days 10 days	Sat 3/8/19	Thu 31/10/19 67 days	16555			
173	481200	Eco-bag system construction	40 days 3 days	Fri 1/11/19	Tue 10/12/19 67 days	172			
174	482000	Construction of Embankment (South Embankment)	97 days	Tue 17/3/20	Sun 21/6/20 0 days				
175	482100	Rockfill	70 days 7 days	Tue 17/3/20	Mon 25/5/20 0 days	168,173FS+30 days			
176	482200	Eco-bag system construction	27 days 2 days	Tue 26/5/20	Sun 21/6/20 0 days	175			1 The second sec
177	483000	Construction of access road along south embankment	95 days 12 days	Mon 22/6/20	Thu 24/9/20 0 days	176			
178	484000	Construction of access road along intermediate embankment	90 days 10 days	Fri 25/9/20	Wed 23/12/20 0 days	177,170			
179	485100	Construction of bird hide	95 days 7 days	Thu 24/12/20	Sun 28/3/21 0 days	178			
180	485200	Construction of otter holts	95 days 7 days	Thu 24/12/20	Sun 28/3/21 0 days	17955			
181	486000	Key Date	95 days / days	Sup 21/6/20	Sun 28/3/21 0 days	1/955			
183	491000	Farly completion of Section II of Works	0 days	Sun 28/3/21	Sun 28/3/21 0 days	181 180			· · · · ·
184	499999	Completion of Section II of the Works	0 days	Mon 21/6/21	Mon 21/6/21 0 days	177.181.180.183FS+85 days			
185 186	500000	5. Section III of the Works - Land decontamination works in the Portions B & C	730 days	Fri 22/6/18	Sat 20/6/20 0 days				
187	510000	Preparation and submission	90 days	Fri 22/6/18	Wed 19/9/18 1 day	12			
188	520000	I reatment plants establishment	45 days 4 days	Thu 20/9/18	Sat 3/11/18 1 day	18/		<u> </u>	
190	531000	Works within the FA zone and ground treatment area	261 days	Thu 4/10/18	Fri 21/6/190 days				`
191	531100	LD - 01 (ground improvement area - Portion C)	96 days 25 days	Thu 4/10/18	Mon 7/1/191 day				
192	531110	Excavation of top layer of soil	21 days 2 days	Thu 4/10/18	Wed 24/10/18 1 day	188SS+14 days			
193	531120	Excavation of contaminate soil and decontamination	35 days 3 days	Thu 25/10/18	Wed 28/11/18 1 day	192			
194	531130	Confirming test of contamination area	10 days 1 day	Thu 29/11/18	Sat 8/12/18 1 day	193	🛛 📔 🚽 🙇		
195	531140	Backfilling and compaction	30 days 3 days	Sun 9/12/18	Mon 7/1/19 1 day	194		9 ₁	
196	531200	LD - 02 (Ecological area - Portion B)	113 days	Fri 1/3/19	Fri 21/6/19 0 days			•••••	
197	531210	Excavation for contaminated soil for stockpiled for further treatment	21 days 4 days	Fri 1/3/19	Thu 21/3/19 0 days	146SS			
198	531220	Excavation of contaminate soil and decontamination	35 days 10 days	Fri 22/3/19	Thu 25/4/19 0 days	197			
199	531221	Confirming test of contamination area	12 days 1 day	Fri 26/4/19	Tue 7/5/19 0 days	198			
200	531230	Backfilling and compaction	45 days 10 days	Wed 8/5/19	Fri 21/6/19 0 days	188FS+120 days,199			
201	531300	LD - 03 (Ecological area - Portion B)	113 days	Fri 1/3/19	Fri 21/6/19 0 days				
202	531310	Excavation for contaminated soil for stockpiled for further treatment	21 days 4 days	Fri 1/3/19	Thu 21/3/19 0 days	197SS			
203	531320	Excavation of contaminate soil and decontamination	35 days 10 days	Fri 22/3/19	Thu 25/4/19 0 days	197,202			
204	531321	Confirming test of contamination area	12 days 1 day	Fri 26/4/19	Tue 7/5/19 0 days	203			
205	531330	Backfilling and compaction	45 days 10 days	Wed 8/5/19	Fri 21/6/19 0 days	188FS+120 days,204			
Deciari	VI /2017/02 D	Task	Summary		Rolled Up Milestone	♦ Externa	al Tasks	Inactive Task	anual Task
Data Da	te: 28 Aug 2018	иортепь от Lok ма Chau Critical Task	Rolled Up Task		Rolled Up Progress	Project	t Summary	Inactive Milestone	uration-only
Submise	sion: 30 Aug 2018	Milestone	Rolled Up Critical 1	Fask	Split	Group	By Summary	Inactive Summary	anual Summary Rollup
							Page 3		· · ·

Sang Hing - Kuly Joint Venture

	1		
Sep Oct Nov Dec	Jan Feb Mar Apr May Ju	2021 In Jul Aug Sep Oct Nov Dec	2022 Jan Feb Mar Apr May Jun Jul A
			
5			
•			
90			
	↓		
		•	
Manual S	Summary 🛡	Progress	
Start-on	y E	Deadline	Ŷ
Finish-or	lly 1		

Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works

Project Programme of the Works Rev.2 (Data Date : 28 Aug 2018)

ID	Activity	Task Name	Duration Time risk	Start	Finish Float	Predecessors	20)18	an Oct Nov Doc	Jan Fahl	20)19		2020
206	532000	Works within Portion C	365 davs	Sat 22/6/19	Sat 20/6/20 0 davs		IviayJun	Jui Aug.		Jan rebi		Jui Aug sep Oc	NOV DEC Jan Feb Mar A	
207	532100	LD - 04 (Portion C)	180 days 35 days	Sat 22/6/19	Wed 18/12/19 0 days						4			
208	532110	Excavation of top layer of soil	45 days 4 days	Sat 22/6/19	Mon 5/8/19 0 days	191,196,203					4		•	
209	532120	Excavation of contaminate soil and decontamination	55 days 5 days	Tue 6/8/19	Sun 29/9/19 0 days	208								
210	532130	Confirming test of contamination area	10 days 1 day	Mon 30/9/19	Wed 9/10/19 0 days	209	-							
211	532140	Backfilling and compaction	70 days 6 days	Thu 10/10/19	Wed 18/12/19 0 days	210	-							
212	532200	LD - 05 (Portion C)	185 days 35 days	Thu 19/12/19	Sat 20/6/20 0 days									
213	532210	Excavation of top layer of soil	49 days 5 days	Thu 19/12/19	Wed 5/2/20 0 days	211	-							ľ
214	532220	Excavation of contaminate soil and decontamination	52 days 5 days	Thu 6/2/20	Sat 28/3/20 0 days	213								
215	532230	Confirming test of contamination area	14 days 1 day	Sun 29/3/20	Sat 11/4/20 0 days	214	-							
216	532240	Backfilling and compaction	70 days 7 days	Sun 12/4/20	Sat 20/6/20 0 days	215	-							
217	540000	Key Date for works in EA zone and ground improvement area	0 davs	Fri 21/6/19	Fri 21/6/19 0 davs	205.200						-		
218	550000	Early completion of Section III of Works	0 days	Sat 20/6/20	Sat 20/6/20 0 days	217.211.216	-				-			₩
219	599999	Completion of Section III of the Works	0 days	Mon 21/6/21	Mon 21/6/21 0 days	218FS+366 days	-							·
220					······		-							
221	600000	6. Section IV of the Works - Ground treatment works in the Portion C	1096 days	Fri 22/6/18	Mon 21/6/21 0 days									
222	610000	Preparation and submission	90 days	Fri 22/6/18	Wed 19/9/18 0 days	12	-	+						
223	620000	Installation of instrumentation and monitoring	45 days 2 days	Thu 20/9/18	Sat 3/11/18 0 days	222								
224	631000	Installation of PVD (Area I - Early handover part)	45 days 3 days	Thu 11/10/18	Sat 24/11/18 0 days	223SS+21 days	-							
225	632000	Installation of PVD (Area II - Remaining Part - other than I D001)	45 days 3 days	Sun 25/11/18	Tue 8/1/190 days	224	-							
226	633000	Installation of PVD (Area II - Remaining Part - LD-001 location)	21 days 1 day	Wed 9/1/19	Tue 29/1/19 0 days	225.195	-							
227	641000	Surcharge filling and monitoring (Area L - Farly handover part)	168 days 5 days	Fri 8/3/19	Thu 22/8/19 0 days	22455+30 days 14655+7 d	a							
228	642000	Surcharge filling and monitoring (Area II - Remaining part)	265 days 5 days	Fri 23/8/19	Wed 13/5/20 0 days	227 225 226FS+205 days 1	4			ן נ		\		
229	651000	Instrumentation monitoring	404 days	Thu 14/5/20	Mon 21/6/21 0 days	228 223 227	-							
220	660000	Construction of Stone Column	254 days	Thu 14/5/20	Fri 22/1/21 150 days	220,223,227	-							
230	661000	CPT Test as directed by SO	14 days	Thu 14/5/20	Wed 27/5/20150 days	1/12 228	-							¥.
231	662000	Excavation	60 days 5 days	Thu 28/5/20	Sun 26/7/20 150 days	231	-							
232	663000	Bock filling	60 days 5 days	Mon 27/7/20	Thu 24/9/20 150 days	232	-							
233	664000	Construction of stone column	120 days 10 days	Eri 25/9/20	Eri 22/1/21 150 days	232 164	-							
234	699999	Completion of Section IV of the Works	0 days	Mon 21/6/21	Mon 21/6/21 0 days	234 229	-							
235			o duys	111011 21/ 0/ 21	11101121/0/210 duys	234,223	-							
230	700000	7 Section V of the Works - Landscape softworks	1096 days	Fri 22/6/18	Mon 21/6/21 0 days									
238	710000	Prenaration Works	730 days 10 days	Fri 22/6/18	Sat 20/6/20 0 days	255	-							
230	720000	Planting Works	366 days 20 days	Sup 21/6/20	Mon 21/6/21 0 days	238	-							
235	720000	Completion of Section V of the Works	0 days	Mon 21/6/21	Mon 21/6/21 0 days	230	-							
241	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		o days				-							
242	800000	8. Section VI of the Works - establishment and further establishment works in	1461 davs	Fri 22/6/18	Tue 21/6/22 0 days									
		the Portion B	,-											
243	810000	Preparation and Planting Works	730 days 10 days	Fri 22/6/18	Sat 20/6/20 0 days	2SS								
244	820000	Establishment Works	731 days 20 days	Sun 21/6/20	Tue 21/6/22 0 days	243	-							
245	899999	Completion of Section V of the Works	0 days	Tue 21/6/22	Tue 21/6/22 0 days	244	-							
			-			1	-			-				

Project: YL/2017/03 Development of Lok Ma Chau Data Date: 28 Aug 2018 Submission: 30 Aug 2018	Critical Task Milestone	<u></u>	Rolled Up Task Rolled Up Critical Task	Rolled Up Progress Split		 Project Summary Group By Summary 	Inactive Milestone Inactive Summary	\$ Duration-only Manual Summary Rollu	p	Start-only Finish-only
Project: YL/2017/03 Development of Lok Ma Chau	Task		Summary	 Kolled op Milestone 	~	LATELLIAI LASKS	Indetive Task			
	Tack		Summany	Rolled Up Milestone	^	Extornal Tacks	Inactive Task	 Manual Tack		

Sang Hing - Kuly Joint Venture

		lan Foh Mar Ar	20	21	2022
Jseplocu	NOVIDEC	Jan Febliviar Ap	niviayJun		c Jan Febimar Aprimay Jun Jul #
			•		
-					
				•	
			ן	_	
			*		
					•
	Agnual S	Immary		Progrees	
	/Janual S	ummary		Progress	ψ.

٦

APPENDIX B ACTION AND LIMIT LEVELS

Appendix B - Action and Limit Levels

Location	Action Level, μg/m ³	Limit Level, µg/m ³
DMS – 1	353	
DMS – 2A	370	500
DMS – 3	351	500
DMS-4A	350	

Table B-1Action and Limit Levels for 1-Hour TSP

Table B-2Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, µg/m ³
DMS – 1	184	
DMS – 2A	166	260
DMS - 3	166	200
DMS - 4A	152	

Table B-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) *

Noted: If works are to be carried during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

(*) reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Table B-4Action and Limit Levels for Water Quality

Parameter (unit)	Water Depth	Action Level	Limit Level
		CS1: 4.7	CS1: 4.5
		IS1: 7.0	IS1: 6.8
Dissolved Oxygen	Donth avanaga	IS2: 5.3	IS2: 5.2
(mg/L)	Deptil average	IS4: 4.1	IS4: 3.8
		CS5: 5.9	CS5: 5.8
		BS1:3.9	BS1: 3.7
		CS1: 13.6	CS1: 13.8
	Depth average	IS1: 27.7	IS1: 29.9
		IS2: 35.5	IS2: 38.1
Turbidity (NTU)		IS4: 70.9	IS4: 74.6
Turbially (NTO)		CS5: 4.9	CS5: 5.0
		BS1:29.9	BS1:32.6
		IS6: 120% of upstream control	IS6: 130% of upstream control
		station	station
		CS1: 18.5	CS1: 19.7
		IS1: 28.0	IS1: 28.8
		IS2: 39.8	IS2: 41.2
Suspended Solids	Denth services	IS4: 155	IS4: 175
(mg/L)	Depth average	CS5: 5.0	CS5: 5.8
		BS1:36.5	BS1:36.9
		IS6: 120% of upstream control	IS6: 130% of upstream control
		station	station

Note:

(1) Depth-averaged is calculated by taking the arithmetic means of reading of all three depths

(2) For DO, non-compliance of the water quality limit occurs when monitoring result is lower that the limit.

(3) For SS & turbidity, non-compliance of the water quality limits occur when monitoring result is higher than the limits.

APPENDIX C COPIES OF CALIBRATION CERTIFCATES

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30677
Date of Issue:	2019-01-14
Date Received:	2019-01-11
Date Tested:	2019-01-11
Date Completed:	2019-01-14
Next Due Date:	2019-03-13
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23807	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-01	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	1.185

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

	the state of the
Test Report No.:	30677A
Date of Issue:	2019-01-14
Date Received:	2019-01-11
Date Tested:	2019-01-11
Date Completed:	2019-01-14
Next Due Date:	2019-03-13
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23808	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-02	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.159

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

	A REAL PROPERTY AND A REAL
Test Report No.:	30677B
Date of Issue:	2019-01-14
Date Received:	2019-01-11
Date Tested:	2019-01-11
Date Completed:	2019-01-14
Next Due Date:	2019-03-13
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration	
Item for Calibration:	
Description	: Dust Monitor
Manufacturer	: Met One Instruments
Model No.	: AEROCET-831
Serial No.	: X23809
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 1 minute
Equipment No.	: WA-01-03
Test Conditions:	
Room Temperatre	: 17-22 degree Celsius
Relative Humidity	: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	1.211

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30677C
Date of Issue:	2019-01-14
Date Received:	2019-01-11
Date Tested:	2019-01-11
Date Completed:	2019-01-14
Next Due Date:	2019-03-13
Page:	1 of 1

ATTN: Mr. W. K. Tang

Certificate of Calibration	
Item for Calibration:	
Description	: Dust Monitor
Manufacturer	: Met One Instruments
Model No.	: AEROCET-831
Serial No.	: X23810
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 1 minute
Equipment No.	: WA-01-04
Test Conditions:	
Room Temperatre	: 17-22 degree Celsius
Relative Humidity	: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.233

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

(alizk

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30914
Date of Issue:	2019-02-25
Date Received:	2019-02-22
Date Tested:	2019-02-22
Date Completed:	2019-02-25
Next Due Date:	2019-04-24
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X24476	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-05	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.
 In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.131
*****	******

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

Test Report No.:	30573A
Date of Issue:	2018-12-24
Date Received:	2018-12-21
Date Tested:	2018-12-21
Date Completed:	2018-12-24
Next Due Date:	2019-02-23
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X24477	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-06	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	1.159

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30677D
Date of Issue:	2019-01-14
Date Received:	2019-01-11
Date Tested:	2019-01-11
Date Completed:	2019-01-14
Next Due Date:	2019-03-13
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X24475	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-07	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.195
	· · · · · · · · · · · · · · · · · · ·

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

.

	TEST	r REPOR	RT .	
APPLICANT: ATTN:	Cinotech Consultants Room 1710, Technolog 18 On Lai Street, Shatin, NT, Hong Kon Mr. W.K. Tang	Limited ty Park, g	Test Report No.: Date of Issue: Date Received: Date Tested: Date Completed: Next Due Date: Page:	29813 2018-09-15 2018-09-14 2018-09-14 2018-09-15 2019-09-14 1 of 1
	Cautificat	a of Colil		and the second sec
• 	Ceruncal			
Item for calibra	tion:			
		• • • • • • • • • • • • • • • • • • •	PEW? Integrating Sour	nd Lavel Mater
L A	Jescripuon Jonnfacturor	· SVANT	FK Integrating 50m	
I N	Andel No	· SVANG	055	
n S	erial No.	· 12563		
N	Aicrophone No	$\cdot 34377$.*	
Ē	Equipment No.	: N-08-03		۰.
Test conditions:				
न न	Room Temperatre Relative Humidity	: 17-22 de : 40-70%	egree Celsius	
Test Specificatio	ons:		~ ,	
Р	erformance checking at 9	4 and 114 dE	3	
Methodology:				
Г	n-house method, according	g to manufac	turer instruction man	ual
Results:				

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT:Cinotech Consultants LimitedTRoom 1710, Technology Park,D18 On Lai Street,DShatin, NT, Hong KongD

Test Report No.:	29499
Date of Issue:	2018-08-13
Date Received:	2018-08-11
Date Tested:	2018-08-11
Date Completed:	2018-08-13
Next Due Date:	2019-08-12
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21459
Microphone No.	: 43676
Equipment No.	: N-08-08

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

	TES	ST REPOR	T		
APPLICANT	Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street,		Test Report No.: Date of Issue: Date Received:	29816 2018-09-29 2018-09-28	
	Shafin, NT, Hong Ko	ong	Date Tested: Date Completed: Next Due Date:	2018-09-28 2018-09-29 2019-09-28	
ATTN:	Mr. W.K. Tang		Page:	1 of 1	
Item for calibi	ation:				
	Description Manufacturer Model No. Serial No. Equipment No.	: Acoustic : SVANTI : SV30A : 24803 : N-09-03	al Calibrator EK		
Test conditions	S:				
	Room Temperatre Relative Humidity	: 17-22 de : 40-70%	gree Celsius		
Methodology:					
	The Sound Level Calib documented procedures recommended by the man	orator has bee and using stan starturer, or e	n calibrated in accondended in accondended (s) and instrum quivalent.	ordance with the nent(s) which are	

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

WELLAB 歴力 consulting . testing . research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

		5-POII	NT CALIBRA	TION DATA	A SHEET	File No.	WD4 & 19047/75/0002
Station	DMS-1 - Village I	Iouse along Ha Wa	an Tsuen Road	Operator:	HL	1 110 110.	WINE(1804//15/0002
Date:	10-Jan-19	U		Next Due Date:	9-Mar-	-19	
Equipment No.:	A-01-75			Serial No.	2203		
					5		
ter per d'Alta. Ann			Ambient	Condition			
Temperature, Ta (K) 291.2 Pres				Pa (mmHg)		769	
	· · · · · ·						
		Or	ifice Transfer S	tandard Inform	ation		
Seria	1 No.	2896	Slope, mc	0.0585	Intercept	t, bc	-0.00045
Last Calibr	ation Date:	13-Feb-18		mc x Qstd + k	$bc = [\Delta H x (Pa/76)]$	0) x (298/Ta)] ^{1/2}
Next Calibi	ation Date:	13-Feb-19		$Qstd = \{[\Delta H]\}$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	' me
		•		:	· · · · · · ·	· · · · · ·	ni i sha cika cika k
	· · · ·	~	Calibration o	of TSP Sampler			· .
Calibration		Ori	lice			HVS	/7(0) ··· (709/7-\1)/2
Point	in of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Usta (CFM)	ΔW (HVS), in. of water	[⊿w х (Ра	V ovis
1	11.2	2		58.10	7.0		2.60
2	0.7	2 17		54.16	7.0	2.05	
	7.1	2 70		47.62	J.8	2.45	
	5.4	2.75		47.02	4.0		1.99
	2.2	2	°5	21.50	3.4		1.00
y Linear Regr Slope , mw = Correlation c f Correlation (0.0425 coefficient* = Coefficient < 0.99	0.9 0, check and reca	977 Ilibrate.	Intercept, bw = 	0.175	7	
al the second	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Set Point	Calculation			
om the TSP Fi	ield Calibration C	urve, take Qstd =	43 CFM				
om the Regres	sion Equation, the	e "Y" value accoi	ding to				
		mw x Q	Qstd + bw = [∆₩	′ x (Pa/760) x (2	98/Ta)] ^{1/2}		
Therefore, S	et Point; W = (m	w x Qstd + bw) ²	x (760 / Pa) x (Ta / 298) =	3.88		
emarks:							
				· .			
onducted by:	LEE MAN MEZ	Signature:	k	6		Date:	10/1/2019
Checked by:	Wik Tong	Signature:	Ku	Ver		Date:	10/11/2219

W	EL	LA	B匯丿	5

consulting . testing . research

MS-1 - Village F 9-Feb-19 A-01-75 Ta (K) o. on Date: on Date: AH (orifice),	5-POIR louse along Ha Wa 292.6 0r 2896 13-Feb-18 13-Feb-18 13-Feb-19	an Tsuen Road Ambient Pressure, Pr ifice Transfer St Slope, mc	TION DAT# Operator: Next Due Date: Serial No. Condition a (mmHg) andard Inform 0.0585 mc x Qstd + h Qstd = {[∆H h	HL 8-Apr- 2203 ation Intercept c = [ΔH x (Pa/76	File No. 19 766.5 , bc 0) x (298/Ta)	WMA18047/75/0002
MS-1 - Village H 9-Feb-19 A-01-75 Ta (K) o. on Date: on Date: AH (orifice),	louse along Ha Wa 292.6 0r 2896 13-Feb-18 13-Feb-19	an Tsuen Road Ambient Pressure, Pa ifice Transfer St Slope, mc	_ Operator: Next Due Date: Serial No. Condition a (mmHg) andard Inform 0.0585 mc x Qstd + h Qstd = {[ΔH y	HL 8-Apr- 2203 ation Intercept c = [ΔH x (Pa/76	766.5 , bc	-0.00045
9-Feb-19 A-01-75 Ta (K) o. on Date: on Date:	292.6 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa rifice Transfer St Slope, mc	Next Due Date: Serial No. Condition a (mmHg) andard Inform 0.0585 mc x Qstd + h Qstd = {[ΔH y	8-Apr- 2203 ation Intercept oc = [ΔH x (Pa/76	19 766.5 , bc	-0.00045
A-01-75 Ta (K) o. on Date: on Date:	292.6 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer St Slope, mc	Serial No. Condition a (mmHg) andard Inform 0.0585 mc x Qstd + h Qstd = {[Δ H x	2203 ation Intercept oc = [Δ H x (Pa/76	766.5 , bc	-0.00045
Ta (K) o. on Date: on Date: AH (orifice),	292.6 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer St Slope, mc	Condition a (mmHg) andard Inform 0.0585 mc x Qstd + h Qstd = {[ΔH y	ation Intercept oc = [ΔH x (Pa/76	766.5 , bc 0) x (298/Ta)	-0.00045
Ta (K) o. on Date: on Date:	292.6 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer St Slope, mc	Condition a (mmHg) andard Inform 0.0585 mc x Qstd + h Qstd = {[ΔH x	ation Intercept bc = [Δ H x (Pa/76	766.5	-0.00045
Ta (K) o. on Date: on Date: AH (orifice),	292.6 Or 2896 13-Feb-18 13-Feb-19	Pressure, Pa ifice Transfer St Slope, mc	a (mmHg) andard Inform 0.0585 mc x Qstd + k Qstd = {[ΔH x	ation Intercept oc = [ΔH x (Pa/76	766.5	-0.00045
o. on Date: on Date: ΔΗ (orifice),	Or 2896 13-Feb-18 13-Feb-19	ifice Transfer St Slope, mc	andard Inform 0.0585 mc x Qstd + k Qstd = {[ΔH x	ation Intercept bc = [ΔH x (Pa/76	, bc	-0.00045
o. on Date: on Date: AH (orifice),	2896 13-Feb-18 13-Feb-19	Slope, mc	0.0585 mc x Qstd + b Qstd = {[ΔH x	Intercept oc = [ΔH x (Pa/76	, bc 0) x (298/Ta)	-0.00045
on Date: on Date: AH (orifice),	13-Feb-18 13-Feb-19	·····	mc x Qstd + h Qstd = {[ΔH y	oc = [ΔH x (Pa/76	0) x (298/Ta)	
Den Date: ΔΗ (orifice),	13-Feb-19	·····	Qstd = $\{[\Delta H]$		-,(,	1 ^{1/2}
ΔH (orifice),				x (Pa/760) x (298/	'Ta)] ^{1/2} -bc} /	mc
∆H (orifice),	0	Calibration of	f TSP Sampler		· · · · · · · · · · · · · · · · · · ·	
ΔH (orifice),	Ori	fice			HVS	
in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/	/760) x (298/Ta)] ^{1/2} Y-axis
11.6	3	.45	58.98	7.2		2.72
9.8	3	.17	54.22	5.8	2.44	
7.4	2.76		47.11	4.7		2.20
5.3	2.33		39.87	3.3		1.84
3.4	1.87		31.94	2.3		1.54
sion of Y on X 0.0431 ficient* = fficient < 0.990	0.9 0, check and reca	978 alibrate.	Intercept, bw = _	0.144	0	
energie Maria e e		Cat Daint (Talan lation			
Calibration C	irve take Octd =	- Set Point C				
n Equation the	"Y" value acco	rding to				
n Dynadoll, fil						
	mw x Q	$\mathbf{Dstd} + \mathbf{bw} = \mathbf{D}\mathbf{W}$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
Point; W = (my	w x Qstd + bw) ²	x (760 / Pa) x (Ta / 298) =	3.89		
1960 422 Ik Jang	Signature:	ki Vio	in		Date: Date:	9-2-2019 9/2/2019
	$ \begin{array}{r} 11.6 \\ 9.8 \\ 7.4 \\ 5.3 \\ 3.4 \\ ion of Y on X \\ 0.0431 \\ ficient* =$	11.639.837.425.323.41ion of Y on X0.0431ficient* = 0.9fficient* = 0.9Galibration Curve, take Qstd =m Equation, the "Y" value accordmw x (Colspan="2">value accordCalibration Curve, take Qstd =n Equation, the "Y" value accordww x (Colspan="2">value accordValue AccordValue AccordMW XValue AccordWw x (Std + bw)2MWN MWSignature:K TangSignature:	11.6 3.45 9.8 3.17 7.4 2.76 5.3 2.33 3.4 1.87 ion of Y on X 0.0431 ficient* = 0.9978 fficient < 0.990, check and recalibrate.	11.6 3.45 58.98 9.8 3.17 54.22 7.4 2.76 47.11 5.3 2.33 39.87 3.4 1.87 31.94 ion of Y on X 0.0431 Intercept, bw - ficient* = 0.9978 fficient< < 0.990, check and recalibrate.	11.6 3.45 58.98 7.2 9.8 3.17 54.22 5.8 7.4 2.76 47.11 4.7 5.3 2.33 39.87 3.3 3.4 1.87 31.94 2.3 ion of Y on X 0.0431 Intercept, bw : 0.1444 ficient* = 0.9978 0.1444 ficient < 0.990, check and recalibrate.	11.6 3.45 58.98 7.2 9.8 3.17 54.22 5.8 7.4 2.76 47.11 4.7 5.3 2.33 39.87 3.3 3.4 1.87 31.94 2.3 ion of Y on X 0.0431 Intercept, bw : 0.1440 ficient* = 0.9978 fficient* = 0.9978 fificient < 0.990, check and recalibrate.

WELLAB 歴力 consulting . testing . research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

	DMS-2A -					File No.	WMA18047/15/0002
Station	Village House a	long Lok Ma Cha	au Road	Operator:	HL		
Date:	10-Jan-19			Next Due Date:	9-Mar-	-19	
Equipment No.:	A-01-15	NA INTE CENTE CON A CON		Serial No.	10576		
			Ambient	Condition		en e	
Temperatu	ure, Ta (K)	291.5	Pressure, Pa	a (mmHg)		768.8	
1	a ng gala ng g		vifica Transfor St	andard Inform	ation		
Seria	1 No	2896	Slope mc		Intercent	the	0.00045
Last Calibr	ation Date:	12 Feb 18	Slope, Inc	mc = 0.0363	$he = IAH \times (P_2/76)$	() v (298/Ta)	-0.00043
Next Calibr	ation Date:	13-Feb-19		Ostd = {[AH]	$(P_{2}/760) \times (2.98)$	/Ta)] ^{1/2} -hc} /	me
Next Caller	ation Date.	15-100-19	L		(1 47 7 00) X (2) 01		
		•	Calibration of	TSP Sampler			
		Ort	fice	-we wantered		HVS	
Calibration Point	ΔH (orifice), in. of water	[ΔН x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[∆W x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	12.2	3	.55	60.69	6.7		2.63
2	10.3	3	3,26		5.5		2,38
3	7.3	2	2.75		4.3		2.11
4	5.4	2	2.36		3.5		1.90
5	3.1	1	.79	30.60	2.3		1.54
By Linear Regr Slope , mw = Correlation c *If Correlation C	cession of Y on X 0.0351 oefficient* = Coefficient < 0.99	0.9 0, check and reca	978	Intercept, bw :_ -	0.469.	3	
			Set Point C	alculation		e de la composition	······································
From the TSP Fi	eld Calibration C	urve, take Ostd =	43 CFM				
From the Regres	sion Equation, the	e "Y" value accor	rding to				
C	* -		Ũ				
		mw x Q	$p_{std} + bw = [\Delta W]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, So	et Point; W = (m	w x Qstd + bw $)^2$	x (760 / Pa) x (7	Γa / 298) =	3.78		
Remarks:							

Conducted by: 133 May 1162 Signature:

hi Huron

Date: Date:

10/1/2-19

10/12/2016

.M.		A	В	朣	'n

consulting . testing . research

		Hig	gh-Volume	TSP San	npler		
		5-POI	T CALIBRA	TION DATA	A SHEET		
	DMS-2A -					File No.	WMA18047/15/0003
Station	Village House	along Lok Ma Cha	u Road	_ Operator:	HL		
Date:	9-Feb-19			Next Due Date:	8-Apr-	-19	
Equipment No.:	A-01-15			Serial No.	10576		
			Ambient	Condition			· · ·····.
Temperatu	ure. Ta (K)	292.7	Pressure, Pr	(mmHg)		766.3	
Temperata	iiii, iii (ix)		110000010,110	(70010	
		Or	ifice Transfer St	andard Inform	ation		
Seria	l No.	2896	Slope, mc	0.0585	Intercep	t, bc	-0.00045
Last Calibra	ation Date:	13-Feb-18	-	mc x Qstd + l	oc = [ΔH x (Pa/76	50) x (298/Ta))] ^{1/2}
Next Calibr	ation Date:	13-Feb-19		Qstd = $\{[\Delta H]\}$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	mc
		•					
			Calibration of	TSP Sampler			
Calibration		Orl	ïce			HVS	
Point	ΔH (orifice),	$[AH \times (Pa/760) \times (298/Ta)]^{1/2}$		Qstd (CFM)	ΔW (HVS), in.	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2}
	in. of water	L		X - axis	of water		Y-axis
1	12.0	3	.51	59.97	6.9		2.66
2	9.8	3	3.17		5.7		2.42
3	7.6	2	.79	47.73	4.6		2.17
4	5.5	2	.38	40.60	3.4		1.87
5	3.2	1	.81	30.97	2.1		1.47
D., I		UT I I I I I I I I I I I I I I I I I I I					
By Linear Regr		X		Intonant has	0.200	C	
Stope, mw -	0.0411	-	0000		0.200	<u> </u>	
*If Correlation ($\frac{1}{2} = \frac{1}{2} = \frac{1}$	0.92	librate	-			
- II Correlation C		50, check and reca	morate.				
			Set Point (alculation			
From the TSP Fi	eld Calibration (urve_take_Ostd ==	43 CFM				
From the Regres	sion Equation fl	ie "Y" value accor	ding to				
riom the regres	sion Equation, a						
		mw x Q	std + bw = $[\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
		Q.1.1.2		F (202)			
Therefore, Se	et Point; $W = (n$	iw x Qsta + bw)	x (7607Pa) x (1a/298) =	3.77	·····	
Remarks:							
			3				
Conducted by:	LED MINN MEZ	Signature:	hi			Date:	9-2-2-19
Checked by:	W.K. Jana	Signature:	Vin	m		Date:	9/2/2019
	0	-				-	~~~ · · · · · · · · · · · · · · · · · ·

WELLAB 歴力 consulting . testing . research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	WMA18047/24/0002
Station	DMS-3 - Village I	House along Border	Road	Operator:	HL		
Date:	10-Jan-19			Next Due Date:	9-Mar-	·19	-
Equipment No.:	pment No.: <u>A-01-24</u>			Serial No.	1659		<u>.</u>
TRIAL PARTY		a la factoria	Ambient	Condition		10	
Temperatu	re, Ta (K)	293	Pressure, P	a (mmHø)		768.5	
C				- (1	70010	······,
	een oorder gebe	Or	ifice Transfer St	andard Inform	ation	t terres en el compositor el compositor el compositor el compositor en compositor el compositor el compositor el compositor en compositor el compositor el compositor el compositor el compositor el compositor el compositor	
Seria	l No.	2896	Slope, mc	0.0585	Intercept	t, bc	-0.00045
Last Calibr	ation Date:	13-Feb-18		mc x Qstd + I	oc = [ΔH x (Pa/76	0) x (298/Ta	ı)] ^{1/2}
Next Calibr	ation Date:	13-Feb-19	.	Qstd = {[\Delta H	x (Pa/760) x (298	/Ta)] ^{1/2} -bc}	/ mc
		•					
			Calibration o	f TSP Sampler			
Calibration		Ort	ïce			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	a/760) x (298/Ta)] ^{1/2} Y-axis
1	13.6	3	3.74		7.6		2.80
2	10.7	3	.32	56.68	6.3		2.55
3	7.9	2.85		48.71	4.8		2.22
4	4.8	2	.22	37.97	3.3		1.84
5	2.7	1	.67	28.48	2.0		1.43
Slope , mw = Correlation e	0.0383 0efficient* = Coefficient < 0.99	0.99	994	Intercept, bw : -	0.363	0	
			intrace.				
•	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Set Point C	Calculation		· · ·	
rom the TSP Fi	eld Calibration C	urve, take Qstd =	43 CFM				
rom the Regres	sion Equation, the	e "Y" value accor	ding to				
		mu v (etd + bw - [AW	v (Ba/760) v (2	08/Ta)11/2		
		inter a Q		x (1 #//00) x (2	56/ T #)]		
Therefore, Se	et Point; W = (m	w x Qstd + bw $)^2$	x (760 / Pa) x ('	Ta / 298) =	3.92		
emarks:							
	x . 14						
Sondwate d have	11.2 va. In-	Giomotura	4			D-t-	10/1/2-10
Ohani di	LOCIMAN MEV	Signature:		-		Date:	101110017
Checked by:	W/ IAMPY	Signature:	Mun	pn		Date:	(0[1[//ol/]

WELLAB 匯力 consulting . testing . research

-

High-Volume TSP Sampler	
5-POINT CALIBRATION DATA SHEET	ſ

						File No.	WMA18047/24/0003
Station	ion DMS-3 - Village House along Border e: 9-Feb-19		Road Operator:		· HL		
Date:]	Next Due Date:		8-Apr-19	
Equipment No.: A-01-24			Serial No.		1659		
			Åmbient	Condition	· · · · ·		
Temperature Ta (K) 293			Pressure Pa	(mmHg)	· · · · ·	766.2	
Temperata	io, 14 (11)	2,3	11055410,10	(((((((((((((((((((((((((((((((((((((((I .	700.2	
		Or	ifice Transfer St:	andard Inform	ation	· · · · · · ·	
Serial No.		2896	2896 Slope, mc 0.0585 Intercept, bc		t, bc	-0.00045	
Last Calibration Date:		13-Feb-18		mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$] ^{1/2}
Next Calibration Date:		13-Feb-19	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				
	• :	•					n an 11 an an
		0.4	Calibration of	TSP Sampler		THUR.	-
Calibration Point	AH (orifice)	Urite		Ostd (CEM)	AW (HVS) in	HVS [AW v (Pa	/760) x (298/Ta)11/2
	in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		\mathbf{X} - axis	of water	Y-axis	
1	14.0	3.79		64.74	7.8	2.83	
2	10.6	3	.30	56.33	6.5	2.58	
3	7.7	2	.81	48.02	4.6	2.17	
4	5.3	2	.33	39.84	3.4	1.87	
5	2.9	1.72		29.47	2.1	1.47	
Slope , mw = Correlation co If Correlation C If Correlation C rom the TSP File rom the Regres:	0.0395 pefficient* = coefficient < 0.996 eld Calibration Cu sion Equation, the	0.99 D, check and reca urve, take Qstd = e "Y" value accor mw x Q	$\frac{280}{16}$ $\frac{1}{16}$ $\frac{1}{16$	Intercept, bw = - <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u></u>	0.301 ⁴	7	
Therefore, So	et Point; W = (my	w x Qstd + bw) ²	x (760 / Pa) x (1	Γa / 298) =	3.90		
emarks:							
Conducted by: Checked by:	<u>lite Mon He</u> z U ^J K. Jang	Signature: Signature:	Le Kwa			Date:	9-2-2019 9 12 12019
WELLAB 歴力 consulting . testing . research

.

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

Station Lc Date: Equipment No.: Temperature, Temperature, Last Calibration Next Calibration Calibration Point Li	ok Ma Chau O 10-Jan-19 A-01-69 , Ta (K) [0. [0. [0. [0.] [293.4 293.4 0r 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pr ifice Transfer St Slope, mc	Operator: Next Due Date: Serial No. Condition a (mmHg) andard Inform	HL 9-Mar- 3222	19 768.3	
Date: Equipment No.: Temperature, ' Serial No Last Calibration Next Calibration Calibration Point	10-Jan-19 A-01-69	293.4 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer St Slope, mc	Next Due Date: Serial No. Condition a (mmHg) andard Inform	9-Mar- 3222	19 768.3	• • • 전 * * *
Equipment No.: Temperature, Serial No Last Calibratio Next Calibratio Next Calibratio Calibration Point	A-01-69 . Ta (K) To. on Date: on Date:	293.4 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer St Slope, mc	Serial No. Condition a (mmHg) andard Inform	3222	768.3	
Temperature, Serial No Last Calibratio Next Calibratio Calibration Point	, Ta (K)	293.4 Ori 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pr ifice Transfer St Slope, mc	Condition a (mmHg) andard Inform	ation	768.3	
Temperature, Serial No Last Calibratio Next Calibratio Calibration Point	Ta (K)	293.4 Or 2896 13-Feb-18 13-Feb-19	Pressure, Pa ifice Transfer St Slope, mc	a (mmHg) andard Inform	ation	768.3	
Serial No Last Calibratio Next Calibratio Calibration Point	lo. on Date: on Date;	Or 2896 13-Feb-18 13-Feb-19	ifice Transfer St Slope, mc	andard Inform	ation		
Serial No Last Calibratio Next Calibratio Calibration Point	on Date:	2896 13-Feb-18 13-Feb-19	Slope, mc	andard Inform	otion	te esterna de	
Calibration Point	on Date:	13-Feb-18 13-Feb-19	slope, me	0 0 6 9 6	Tetereet	. h.a.	0.00045
Calibration Point	on Date:	13-Feb-19		10.0383		., DC	-0.00045
Calibration Point		13-Fe0-19		$\operatorname{mex}\operatorname{Qstd} + \mu$	$r = [\Delta \mathbf{H} \mathbf{X} (\mathbf{F} \mathbf{a}) / 0]$	U) X (290/18 (Ta)1 ^{1/2} ba)	/] / ma
Calibration Point	na hara da na Ras Tanàn			Qstu - {[ΔΠ]	(Fa/700) X (298/	[[a]] -0c}	/ 1110
Calibration Point		•	Calibration of	TSP Sampler	and the second		
Point Z		Orf	ice			HVS	
	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	1/760) x (298/Ta)] ^{1/2} Y-axis
1	13.7	3.	.75	64.09	7.9		2.85
2	10.2	3.	.24	55.30	6,2		2.52
3	7.8	2.	.83	48.36	4.8		2.22
4	5.4	2.	.35	40.24	3.3		1.84
5	3,3	1.	84	31.46	2.4		1.57
y Linear Regressi	sion of Y on X						
Slope , mw =	0.0403			Intercept, bw :	0.2723	7	
Correlation coeff	fficient* =	0.99	80				
If Correlation Coef	efficient < 0.99), check and reca	librate.	-			
	· . ·		Set Point (alculation			
rom the TSP Field	Calibration C	urve_take_Ostd =	43 CFM				
rom the Regression	n Equation the	"V" value accor	ding to				
tom the reegression	n Bquution, in		ung to				
		mw x Q	std + bw = $[\Delta W]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Set Po	Point; W = (my	w x Qstd + bw $)^2$	x (760 / Pa) x (1	Γa / 298) =	3.91		

Remarks:

Conducted by: <u>122 Man Mar</u> Signature: Checked by: <u>Wk Tang</u> Signature:

kei Kwai

Date: Date:

10/1/2019 2019

W	'E L	LA	B	匯力
cons	ulting	1. testi	ing .	research

High-Volume TSP Sampler

5-POINT	CALIBRAT	ION DATA	SHEET

Station Date: Equipment No.: Temperature Serial I Last Calibrat Next Calibrat	Lok Ma Chau O 9-Feb-19 A-01-69 e, Ta (K) No. ion Date: ion Date:	293.5 0r 2896 13-Feb-18 13-Feb-19	Horn Hill Ambient Pressure, Pa ifice Transfer Sta Slope, mc	_ Operator: Next Due Date: Serial No. Condition a (mmHg) andard Inform 0.0585	HL 8-Apr- 3222	19 769.7	
Date: Equipment No.: Temperature Serial 1 Last Calibrat Next Calibrat	9-Feb-19 A-01-69 e, Ta (K) No. ion Date: ion Date:	293.5 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer Sta Slope, mc	Next Due Date: Serial No. Condition a (mmHg) andard Inform 0.0585	8-Apr- 3222	19 769.7	
Equipment No.: Temperature Serial 1 Last Calibrat Next Calibrat	A-01-69 e, Ta (K) No. ion Date: ion Date:	293.5 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer Sta Slope, mc	Serial No. Condition a (mmHg) andard Inform 0.0585	3222	769.7	
Temperature Serial 1 Last Calibrat Next Calibrat	e, Ta (K) No. ion Date: ion Date:	293.5 Or 2896 13-Feb-18 13-Feb-19	Ambient Pressure, Pa ifice Transfer Sta Slope, mc	Condition a (mmHg) andard Inform 0.0585	lation	769.7	
Temperature Serial 1 Last Calibrat Next Calibrat	e, Ta (K) No. ion Date: ion Date:	293.5 Or 2896 13-Feb-18 13-Feb-19	Pressure, Pa ifice Transfer St: Slope, mc	a (mmHg) andard Inform 0.0585	ation	769.7	·····
Serial 1 Last Calibrat Next Calibrat	No. ion Date: ion Date:	Or 2896 13-Feb-18 13-Feb-19	ifice Transfer St: Slope, mc	andard Inform	nation		
Serial 1 Last Calibrat Next Calibrat	No. ion Date: ion Date:	2896 13-Feb-18 13-Feb-19	Slope, mc	0.0585	1		
Last Calibrat Next Calibrat	ion Date:	13-Feb-18 13-Feb-19			Intercept	. bc	-0.00045
Next Calibrat	ion Date:	13-Feb-19		mc x Qstd + l	oc = [ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}
		,		Qstd = $\{ \Delta H \}$	x (Pa/760) x (298/	$(Ta) ^{1/2} - bc \} /$	me
				(I			
		1	Calibration of	TSP Sampler			
Calibration		Orf	ïce			HVS	
Point	ΔH (orifice), in. of water	[∆H x (Pa/760)) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	13.7	3	.75	64.14	8.0		2.87
2	10.6	3	.30	56.42	6.4		2.57
3	7.9	2	.85	48.70	5.1		2.29
4	5.4	2.	.36	40.27	3.4		1.87
5	3.6	1.	.92	32.88	2.3		1.54
Slope , mw = Correlation coo If Correlation Co	0.0427 fficient* = efficient < 0.990	0.99), check and reca	982 librate,	Intercept, bw :	0.1566	5	
rom the TSP Fiel	d Calibration Cu	urve. take Ostd =	43 CFM				
From the Regression	on Equation. the	"Y" value accor	ding to				
		- ,					
		mw x Q	std + bw = $[\Delta W]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore Set	Point: $W = f m w$	$x = 0$ std + hw $\sqrt{2}$	x (760 / Þalví T	ין אר אר אר אין אין אין אין אין אין אין א	2.07		
	(1114	· ·· · · · · · · · · · · · · · · · · ·			3.80	··· ·	
cemarks:							
 Conducted by: <u>1</u> Checked by: <u>1</u>	<u>b How Ht</u> r: 1 <u>k. 1ang</u>	Signature:	k. Kwe	<u>1</u>]	Date: Date:	9-2-2019 91717019

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30911
Date of Issue:	2019-01-29
Date Received:	2019-01-28
Date Tested:	2019-01-28
Date Completed:	2019-01-29
Next Due Date:	2019-07-28
Page:	1 of 2

ATTN: Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

: Weather Stations, Vantage Pro2: Davis Instruments: 6152CUK: AK130520007

Test conditions:

Room Temperature Relative Humidity : 17-22 degree Celsius : 40-70 %

Test Specifications:

1. Performance check of anemometer

2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

Test Report No .:	30911
Date of Issue:	2019-01-29
Date Received:	2019-01-28
Date Tested:	2019-01-28
Date Completed:	2019-01-29
Next Due Date:	2019-07-28
Page:	2 of 2

Results:

1. Performance check of anemometer

Air Velc	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	Difference D (°)	
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.1	45	0.1
90	90	0
135.2	135	0.2
180	180	0
225.1	225	0.1
270	270	0
315	315	0
360	360	0

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

APPLICANT:	Wellab Limited (FM&A Department)
	Room 1701, Technology Park
	18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30912
Date of Issue:	2019-02-02
Date Received:	2019-02-02
Date Tested:	2019-02-02
Date Completed:	2019-02-02
Next Due Date:	2019-05-01
Page:	1 of 2

ATTN: Mr. W. K. Tang

	Certificate of Calibration		
Item for calibration:			

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-09
Manufacturer:	YSI Incorporate	d, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102988
- EXO conductivity/Temperature Sensor, Ti	599870	16G102310
- EXO Turbuduty Sensor, Ti	599101-01	16H102467
- EXO pH Sensor Assembly, Guarded, Ti	599701	18C102842

Test conditions:

Room Temperature Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

Methodology:

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.:	30912
Date of Issue:	2019-02-02
Date Received:	2019-02-02
Date Tested:	2019-02-02
Date Completed:	2019-02-02
Next Due Date:	2019-05-01
Page:	2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
20.0	20.002	-0.002	N/A

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.01	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.86	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.19	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.08	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.00	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.01	9.0-11.0	Pass
50 NTU	50.01	45.0-55.0	Pass
100 NTU	100.6	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment	
0.5 meter	0.50	0.45-0.55	Pass	

	LLOI NLL		
APPLICANT:	Cinotech Consultants Limited	Test Report No.:	30303
	RM 1710, Technology Park,	Date of Issue:	2018-11-24
	18 On Lai Street,	Date Received:	2018-11-24
	Shatin, N.T., Hong Kong	Date Tested:	2018-11-24
		Date Completed:	2018-11-24
		Next Due Date:	2019-02-23
ATTN:	Miss Mei Ling Tang	Page:	1 of 2
	Certificate of C	alibration	
Item for calibrat	ion:		
YSI EXO1 Multip	arameter Sondes	Equipment No.: S	W-08-159
Manufacturer:		YSI Incorporated, a Xylem brand	
Description:		Model No. S	erial No.
- EXO Optical DO Sensor, Ti		599100-01 1	7K100317
- EXO conductivit	y/Temperature Sensor, Ti	599870 1	7H103441
- EXO Turbuduty	Sensor, Ti	599101-01 1	7K100325
- EXO pH Sensor	Assembly, Guarded, Ti	599795-01 1	7K103094
Test conditions:	• •		
R	Coom Temperature : 17-2	2 degree Celsius	
R	elative Humidity : 40-7	0%	
Test Specification	18:		
P a	erformance checking for Conductivi nd Turbidity	ty, Temperature, pH, Diss	olved oxygen (D.0
Methodology:	-		
Δ	coording to manufacturer instruction	h manual APHA 20e $A500$	-0 C

.....

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

atrahlse

PATRICK TSE Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items catibrated or tested.

TEST REPORT

Test Report No.:	30303
Date of Issue:	2018-11-24
Date Received:	2018-11-24
Date Tested:	2018-11-24
Date Completed:	2018-11-24
Next Due Date:	2019-02-23
Page:	2 of 2

-

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (uS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
20.0	20.001	-0.001	N/A

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.02	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.16	9.18 + 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.06	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.02	Difference between Titration value and	Pass
		<0.2mg/L	

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.02	9.0-11.0	Pass
50 NTU	50.04	45.0-55.0	Pass
100 NTU	100.2	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

APPLICANT:	Wellab Limited
	(EM&A Department)
	Room 1701, Technology Park
	18 On Lai Street,
	Shatin, NT, Hong Kong

Test Report No.:	30915E
Date of Issue:	2019-02-23
Date Received:	2019-02-23
Date Tested:	2019-02-23
Date Completed:	2019-02-23
Next Due Date:	2019-05-22
Page:	1 of 2

ATTN: Mr. W. K. Tang

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-159		
Manufacturer:	YSI Incorporate	YSI Incorporated, a Xylem brand		
Description:	Model No.	Serial No.		
- EXO Optical DO Sensor, Ti	599100-01	17K100317		
- EXO conductivity/Temperature Sensor, Ti	599870	17H103441		
- EXO Turbuduty Sensor, Ti	599101-01	17K100325		
- EXO pH Sensor Assembly, Guarded, Ti	599795-01	17K103094		

Test conditions:

Room Temperature Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.**

PATRICK TSE Laboratory Manager

.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

Test Report No.:	30915E
Date of Issue:	2019-02-23
Date Received:	2019-02-23
Date Tested:	2019-02-23
Date Completed:	2019-02-23
Next Duc Date:	2019-05-22
Page:	2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 μS/cm)			
T	XX		

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.0	20.002	-0.002	N/A

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.01	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.19	9.18 <u>+</u> 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.08	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.04	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.04	9.0-11.0	Pass
50 NTU	50.01	45.0-55.0	Pass
100 NTU	101.0	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment		
0.5 meter	0.50	0.45-0.55	Pass		

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Environmental Team for Contract No. YL/2017/03 - Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works – Design and Construction Impact Air Quality and Noise Monitoring Schedule (February 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Feb	2-Feb
					1 hr TSP X3	
					Noise	
3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb	9-Feb
	1 hr TSP X3					1 hr TSP X3
	Noise					1 m 151 X5
	24 ha TSD				24 hz TSD	
	24 nr 13P				24 nr 13P	
10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb	16-Feb
					1 hr TSP X3	
					Noise	
				24 hr TSP		
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb	23-Feb
				1 hr TSP X3		
				Noise		
			24 hr TSP			
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb		
			1 h., TOD V2			
			Noise			
		24 hr TSP				

Air Quality Monitoring Station

Noise Monitoring Station

DMS-1 - Village House along Ha Wan Tsuen Road DMS-2A - Village House along Lok Ma Chau Road DMS-3 - Village House along Border Road DMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill NMS-1 - Village house in Ha Wan Tsuen

NMS-2 - Village house along existing Ha Wan Tsuen East Road

NMS-3 - Village house along Border Road

NMS-4A - Hong Kong Police Force, Lok Ma Chau Operation

Base at Horn Hill

Environmental Team for Contract No. YL/2017/03 - Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works – Design and Construction

Tentative Impact Air Quality and Noise Monitoring Schedule (March 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Mar	2-Mar
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
		1 hr TSP X3 Noise				
	24 hr TSP				24 hr TSP	
	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
	1 hr TSP X3				1 hr TSP X3	
					Noise	
				24 hr TSP		
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
				1 hr TSP X3		
				Noise		
			24 hr TSP			
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	20_Mar	30-Mar
27-1/141	25 114	20 1014	27 10141	20 1014	2) 111	50 141
			1 hr TSP X3 Noise			
		24 br TSD				
		24 III 13F				
31-Mar						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

DMS-1 - Village House along Ha Wan Tsuen Road DMS-2A - Village House along Lok Ma Chau Road DMS-3 - Village House along Border Road DMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill NMS-1 - Village house in Ha Wan Tsuen NMS-2 - Village house along existing Ha Wan Tsuen East Road NMS-3 - Village house along Border Road NMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill

Environmental Team for Contract No. YL/2017/03 - Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works – Design and Construction

Impact Water Quality Monitoring Schedule in February 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Feb	2-Feb
					Water Quality Monitoring	
3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb	9-Feb
	Water Quality Monitoring					Water Quality Monitoring
10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb	16-Feb
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb	23-Feb
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb		
	Water Quality Monitoring			Water Quality Monitoring		

Environmental Team for Contract No. YL/2017/03 - Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works – Design and Construction

Tentative Impact Water Quality Monitoring Schedule in March 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Mar	2-Mar
						Water Quality Monitoring
3 Mar	4 Mor	5 Mar	6 Mor	7 Mar	8 Mar	0 Mar
Jinai		Water Quality Monitoring	0-11141	Water Quality Monitoring	0-11141	Water Quality Monitoring
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
31-Mar						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Location DMS-	Location DMS-1 - Village House along Ha Wan Tsuen Road					
Date	Time	Weather	Particulate Concentration (µg/m ³)			
1-Feb-19	13:00	Cloudy	82.8			
1-Feb-19	14:00	Cloudy	80.9			
1-Feb-19	15:00	Cloudy	80.8			
4-Feb-19	8:30	Fine	302.2			
4-Feb-19	9:30	Fine	191.0			
4-Feb-19	10:30	Fine	184.5			
9-Feb-19	13:00	Cloudy	134.4			
9-Feb-19	14:00	Cloudy	122.9			
9-Feb-19	15:00	Cloudy	130.7			
15-Feb-19	13:00	Fine	45.1			
15-Feb-19	14:00	Fine	47.9			
15-Feb-19	15:00	Fine	42.2			
21-Feb-19	13:00	Sunny	72.5			
21-Feb-19	14:00	Sunny	81.7			
21-Feb-19	15:00	Sunny	83.3			
27-Feb-19	13:00	Cloudy	194.6			
27-Feb-19	14:00	Cloudy	210.0			
27-Feb-19	15:00	Cloudy	196.5			
		Minimum	42.2			
		Maximum	302.2			
		Average	126.9			

Location DMS-2A - Village House along Lok Ma Chau Road					
Date	Time	Weather	Particulate Concentration (µg/m ³)		
1-Feb-19	13:35	Cloudy	85.1		
1-Feb-19	14:35	Cloudy	86.9		
1-Feb-19	15:35	Cloudy	84.0		
4-Feb-19	13:00	Cloudy	119.4		
4-Feb-19	14:00	Cloudy	113.4		
4-Feb-19	15:00	Cloudy	131.2		
9-Feb-19	13:00	Cloudy	133.2		
9-Feb-19	14:00	Cloudy	126.2		
9-Feb-19	15:00	Cloudy	141.4		
15-Feb-19	13:00	Cloudy	62.0		
15-Feb-19	14:00	Cloudy	64.1		
15-Feb-19	15:00	Cloudy	78.4		
21-Feb-19	13:00	Sunny	65.3		
21-Feb-19	14:00	Sunny	62.2		
21-Feb-19	15:00	Sunny	63.5		
27-Feb-19	13:30	Cloudy	178.6		
27-Feb-19	14:30	Cloudy	181.3		
27-Feb-19	15:30	Cloudy	190.5		
		Minimum	62.0		
		Maximum	190.5		
		Average	109.3		

Location DMS-3	3 - Village H	ouse along Border	r Road
Date	Time	Weather	Particulate Concentration (µg/m ³)
1-Feb-19	8:20	Cloudy	80.7
1-Feb-19	9:20	Cloudy	102.3
1-Feb-19	10:20	Cloudy	77.9
4-Feb-19	9:00	Cloudy	236.2
4-Feb-19	10:00	Cloudy	185.3
4-Feb-19	11:00	Cloudy	165.5
9-Feb-19	8:50	Cloudy	146.8
9-Feb-19	9:50	Cloudy	142.0
9-Feb-19	10:50	Cloudy	128.5
15-Feb-19	9:00	Cloudy	79.5
15-Feb-19	10:00	Cloudy	87.5
15-Feb-19	11:00	Cloudy	82.0
21-Feb-19	9:00	Sunny	91.9
21-Feb-19	10:00	Sunny	59.5
21-Feb-19	11:00	Sunny	69.3
27-Feb-19	9:00	Cloudy	154.3
27-Feb-19	10:00	Cloudy	156.9
27-Feb-19	11:00	Cloudy	174.5
		Minimum	59.5
		Maximum	236.2
		Average	123.4

Location DMS	3-4A - Hong K	Cong Police Force Horn Hill	, Lok Ma Chau Operation Base at
Date	Time	Weather	Particulate Concentration (µg/m ³)
1-Feb-19	8:55	Cloudy	74.4
1-Feb-19	9:55	Cloudy	78.7
1-Feb-19	10:55	Cloudy	77.8
4-Feb-19	13:00	Fine	159.1
4-Feb-19	14:00	Fine	141.1
4-Feb-19	15:00	Fine	163.2
9-Feb-19	8:50	Cloudy	140.0
9-Feb-19	9:50	Cloudy	118.1
9-Feb-19	10:50	Cloudy	125.2
15-Feb-19	8:30	Fine	69.3
15-Feb-19	9:30	Fine	69.7
15-Feb-19	10:30	Fine	73.5
21-Feb-19	8:15	Sunny	73.7
21-Feb-19	9:15	Sunny	65.1
21-Feb-19	10:15	Sunny	74.6
27-Feb-19	8:45	Cloudy	163.7
27-Feb-19	9:45	Cloudy	153.0
27-Feb-19	10:45	Cloudy	210.3
		Minimum	65.1
		Maximum	210.3
		Average	112.8

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Location DMS-1 - Village House along Ha Wan Tsuen Road

Start Data	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elapse	e Time	Sampling	Flow Rate	ə (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
4-Feb-19	Cloudy	291.2	767.6	3.3541	3.4576	0.1035	2931.4	2955.4	24.0	1.220	1.220	1.220	1756.7	58.9
8-Feb-19	Cloudy	296.1	764.6	3.3702	3.4514	0.0812	2955.4	2979.4	24.0	1.207	1.206	1.206	1737.0	46.7
14-Feb-19	Cloudy	294.4	769.1	2.9675	3.0509	0.0834	2979.4	3003.4	24.0	1.218	1.218	1.218	1753.7	47.6
20-Feb-19	Sunny	296.1	767.4	2.9945	3.2173	0.2228	3003.4	3027.4	24.0	1.213	1.212	1.213	1746.2	127.6
26-Feb-19	Cloudy	291.7	767.3	2.9722	3.0859	0.1137	3027.4	3051.4	24.0	1.223	1.222	1.222	1760.2	64.6
													Min	46.7
													Max	127.6
													Average	69.1

Location DMS-2A - Village House along Lok Ma Chau Road

Start Data	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elaps	e Time	Sampling	Flow Rate	ə (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
4-Feb-19	Cloudy	291.6	767.5	3.3883	3.5115	0.1232	498.3	522.3	24.0	1.219	1.218	1.218	1754.3	70.2
8-Feb-19	Cloudy	296.4	764.8	2.9655	3.0805	0.1150	522.3	546.3	24.0	1.203	1.202	1.203	1731.6	66.4
14-Feb-19	Cloudy	294.3	769.7	2.9674	3.0659	0.0985	546.3	570.3	24.0	1.221	1.221	1.221	1758.4	56.0
20-Feb-19	Sunny	296.5	767.6	3.3554	3.5051	0.1497	570.3	594.3	24.0	1.215	1.214	1.214	1748.5	85.6
26-Feb-19	Cloudy	291.8	767.0	3.3733	3.5078	0.1345	594.3	618.3	24.0	1.225	1.224	1.225	1763.4	76.3
				-		-						-	Min	56.0
													Max	85.6
													Average	70.9

Location DMS-3 - Village House along Border Road

Start Data	Weather	Air	Atmospheric	Filter Weight (g)		Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
4-Feb-19	Cloudy	291.7	767.1	3.3678	3.4871	0.1193	9047.6	9071.6	24.0	1.214	1.213	1.214	1747.5	68.3
8-Feb-19	Cloudy	296.8	764.2	2.9582	3.0609	0.1027	9071.6	9095.6	24.0	1.198	1.198	1.198	1725.1	59.5
14-Feb-19	Cloudy	294.4	769.6	2.9735	3.0671	0.0936	9096.8	9120.8	24.0	1.217	1.216	1.216	1751.5	53.4
20-Feb-19	Sunny	296.1	767.0	3.3730	3.4611	0.0881	9120.8	9144.8	24.0	1.210	1.209	1.210	1742.1	50.6
26-Feb-19	Cloudy	291.5	767.4	3.3789	3.5237	0.1448	9144.8	9168.8	24.0	1.222	1.221	1.221	1758.8	82.3
													Min	50.6
													Max	82.3
													Average	62.8

Location DMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill

Start Data	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elapse	e Time	Sampling	Flow Rate	ə (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
4-Feb-19	Cloudy	291.5	767.3	3.3654	3.5192	0.1538	9351.6	9375.6	24.0	1.218	1.217	1.217	1753.0	87.7
8-Feb-19	Cloudy	296.4	764.7	2.9756	3.0394	0.0638	9375.6	9399.6	24.0	1.204	1.203	1.203	1732.8	36.8
14-Feb-19	Cloudy	294.1	768.9	2.9724	3.0201	0.0477	9399.6	9423.6	24.0	1.222	1.221	1.221	1758.8	27.1
20-Feb-19	Sunny	296.6	767.4	2.9857	3.0281	0.0424	9423.6	9447.6	24.0	1.215	1.214	1.215	1748.9	24.2
26-Feb-19	Cloudy	291.4	767.6	2.9812	3.0536	0.0724	9447.6	9471.6	24.0	1.227	1.226	1.226	1766.0	41.0
				=		-			-	-		-	Min	24.2
													Max	87.7
													Average	43.4

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Location NMS-	1 -Village ho	use in Ha W	an Tsuen					
Data		T ime e	Un	t: dB (A) (5-r	nin)	Average	Baseline Level	Construction Noise Level
Date	weather	Time	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}	L _{eq}
		13:00	60.0	59.6	53.0			
		13:05	55.2	57.9	50.4			
1 Eab 10	Cloudy	13:10	58.2	59.3	52.3	57 A		57.0
1-Feb-19	I-Feb-19 Cloudy	13:15	55.5	57.6	51.5	57.4		57.0
		13:20	55.6	57.7	51.5			
		13:25	57.5	59.9	52.7			
		9:35	48.6	47.2	39.5			
		9:40	48.0	50.3	40.4			
1 Eab 10	Cloudy	9:45	47.7	50.7	39.0	47.0		20.0
4-Feb-19	Cloudy	9:50	47.4	50.8	39.3	47.9		39.0
		9:55	47.7	51.0	39.3			
		10:00	47.7	50.9	39.4			
		14:55	58.5	61.5	52.5		l I	
		15:00	59.5	62.1	52.4	58.1		
15 Eab 10	Cloudy	15:05	58.7	61.9	52.5		47.3	E7 7
15-Feb-19	Cloudy	15:10	59.7	62.7	52.6			57.7
		15:15	55.8	58.3	51.4			
		15:20	53.6	55.0	49.2			
		13:00	54.4	57.0	50.2			
		13:05	55.4	58.5	51.3			
01 Eab 10	Cummu	13:10	57.3	60.7	51.3	50.0		50.4
21-Feb-19	Sunny	13:15	57.2	60.3	51.4	0.00		50.1
		13:20	56.9	58.9	53.2			
		13:25	57.7	59.7	52.5			
		14:00	61.4	64.7	55.0		1 1	
		14:05	59.6	62.9	54.3			
07 Fab 10	Claudy	14:10	59.5	62.9	54.4	50.9		50 F
27-rep-19	Ciouay	14:15	59.7	61.7	55.5	59.8		59.5
		14:20	59.5	61.6	55.3			
	ŀ	14:25	58.3	61.0	55.2			

Location NMS-	-2 - Village ho	ouse along e	xisting Ha V	Van Tsuen E	ast Road			
Dete	M/a atla an	Time	Uni	t: dB (A) (5-r	min)	Average	Baseline Level	Construction Noise Level
Date	vveather	Time	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}	L _{eq}
		16:00	68.8	71.7	54.2			
		16:05	73.3	77.4	57.3			
1 Eab 10	Cloudy	16:10	74.3	77.2	58.0	72 /		71 7
1-Feb-19 Cloudy	Cloudy	16:15	74.1	77.3	57.9	73.4		11.1
		16:20	73.5	77.8	57.4			
		16:25	74.4	77.3	58.3			
		15:00	74.5	78.1	55.5			
		15:05	69.7	74.1	54.2			
4 Eab 10	Cloudy	15:10	75.3	77.2	65.0	72.1		71.2
4-66-19	Cloudy	15:15	74.4	79.5	55.1	73.1		71.5
		15:20	70.5	75.5	54.4			
		15:25	70.4	74.0	54.1			
		13:30	74.8	78.1	48.5			
		13:35	73.9	77.2	50.8	74.0		
15 Eeb 10	Cloudy	13:40	73.4	75.1	53.8		68.4	72.6
10-1 60-19	Cloudy	13:45	74.5	77.7	53.7			12.0
		13:50	74.5	76.3	54.3			
		13:55	72.4	75.3	55.9			
		14:00	76.4	78.6	57.3			
		14:05	75.1	78.8	59.5			
21 Eeb 10	Suppy	14:10	75.3	79.3	51.6	7/ 8		73 7
21-160-19	Sunny	14:15	75.1	78.3	51.9	74.0		15.1
		14:20	72.8	77.6	52.2			
		14:25	72.9	78.0	52.4			
		15:30	70.3	74.2	49.0			
27-Feb-19 Cloud		15:35	70.2	74.7	59.7			
	Cloudy	15:40	70.7	74.4	58.2	70.2		65.8
	Cioudy	15:45	70.1	74.2	49.6	70.5		00.0
		15:50	70.3	74.4	49.8			
		15:55	70.3	74.3	49.1			

.

Location NMS	-3 - Village he	ouse along E	Border Road							
Dut		T :	Un	it: dB (A) (5-r	nin)	Average	Baseline Level	Construction Noise Level		
Date	Weather	lime	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}	L _{eq}		
		8:45	56.6	58.5	49.8					
		8:50	56.7	58.4	50.4					
1 Eab 10	Cloudy	8:55	54.9	57.4	49.9	EE 0		EE 9 Macourad - Deceline Loval		
I-Feb-19 Cloudy	Cloudy	9:00	55.9	57.8	51.1	0.00		55.6 Measured \geq baseline Level		
		9:05	55.5	57.8	50.4					
		9:10	54.8	57.2	49.9					
		9:00	58.7	59.4	57.2					
		9:05	58.5	59.4	57.3	50.7				
1 Eab 10	Claudy	9:10	58.7	59.4	57.3			FE 1		
4-Feb-19	Cloudy	9:15	59.3	59.5	57.3	30.7		55.1		
		9:20	58.5	59.4	57.4					
		9:25	58.6	59.5	57.8					
		9:15	48.9	51.7	43.2	49.4				
		9:20	51.1	54.3	43.5					
15 Eab 10	Cloudy	9:25	50.9	53.5	42.3		56.2	10.1 Maggured < Paggling Loval		
15-Feb-19	Cloudy	9:30	48.0	50.2	43.3			49.4 Measured \geq baseline Lever		
		9:35	48.8	50.5	43.9					
		9:40	47.4	49.7	41.9					
		9:15	57.7	59.1	56.0					
		9:20	58.5	60.1	55.9					
21 Eab 10	Suppy	9:25	56.2	57.7	52.2	56 7		17 1		
21-66-19	Sunny	9:30	57.5	55.6	52.1	50.7		47.1		
		9:35	54.0	55.3	52.3					
		9:40	54.5	55.4	52.4					
		11:00	52.3	53.8	49.4					
		11:05	52.4	53.9	49.4					
27 Eab 10	Cloudy	11:10	52.3	53.9	49.8	52.5		E2.5 Macourad < Papaling Laval		
21-19	Cioudy	11:15	52.4	53.9	49.3	52.5				
		11:20	52.7	54.1	49.4					
		11:25	52.8	53.9	49.3					

Location NMS-	-4A - Hong K	ong Police F	orce, Lok M	a Chau Ope	ration						
Dete	M/a atla an	Time	Uni	it: dB (A) (5-r	nin)	Average	Baseline Level	Construction Noise Level			
Date	weather	Time	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}	L _{eq}			
		10:10	52.5	53.5	51.1						
		10:15	51.9	52.8	50.8						
1 Eab 10	Cloudy	10:20	51.0	52.9	49.6	51.6		51.6 Massurad < Resoling Loval			
	Cloudy	10:25	51.2	52.0	50.0	51.0		51.6 Measured≦ Baseline Level			
		10:30	51.7	52.2	50.0						
		10:35	51.3	52.0	50.0						
		14:00	50.9	52.9	45.1						
		14:05	51.2	53.7	45.1						
1 Eab 10	Cloudy	14:10	50.8	52.7	45.0	50.0		50.0 Macourad < Pacolina Laval			
4-Feb-19	Cloudy	14:15	50.8	52.9	45.1	50.9		50.9 Measured \geq baseline Level			
		14:20	50.9	53.0	45.2						
		14:25	50.9	52.4	45.0						
		9:10	50.8	51.1	44.0	50.1					
		9:15	50.9	51.2	44.0						
15 Fab 10	Cloudy	9:20	50.1	52.9	43.4		52.5	50.1 Macourad C Papalina Laval			
15-Feb-19	Cloudy	9:25	50.5	52.2	43.7			50.1 Measured \geq baseline Level			
		9:30	50.2	52.1	43.4						
		9:35	47.6	50.3	43.2						
		9:00	51.1	53.6	45.9						
		9:05	53.6	54.6	45.2						
21 Eab 10	Supply	9:10	47.8	49.4	43.9	50.2		50.2 Massured C Deseline Level			
21-Feb-19	Sunny	9:15	48.3	50.0	45.1	50.5		50.3 Measured \geq Baseline Level			
		9:20	49.6	50.3	46.0						
		9:25	48.1	49.3	47.0						
		9:00	48.8	49.5	41.2						
		9:05	48.9	50.0	41.3						
27-Feb-19	Claudy	9:10	51.0	53.2	44.1	40.4		10.4 Massured C Deselves Laws			
	Cloudy	9:15	48.9	50.1	41.4	49.1		49.1 Measured \geq Baseline Level			
		9:20	48.7	49.6	42.0						
		9:25	47.3	50.2	41.0						

APPENDIX H WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATION
Water Quality Monitoring Results at BS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Den	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Feb-19	Cloudy	Calm	14:02	Middle	0.4	20.1 20.1	20.1	7.8 7.8	7.8	5.3 5.3	5.3	107.4 107.0	107.2	9.5 9.4	9.5	22.6 22.9	22.8	23 23	23.0
4-Feb-19	Cloudy	Calm	08:06	Middle	0.4	20.5 20.5	20.5	7.9 7.9	7.9	5.6 5.5	5.6	108.7 108.8	108.8	9.5 9.5	9.5	25.2 25.6	25.4	27 27	27.0
9-Feb-19	Cloudy	Calm	09:53	Middle	0.3	22.7 22.7	22.7	7.8 7.8	7.8	6.5 6.5	6.5	83.3 83.9	83.6	6.9 7.0	7.0	17.7 17.7	17.7	22 22	22.0
11-Feb-19	Cloudy	Calm	10:06	Middle	0.4	21.6 21.6	21.6	7.4 7.4	7.4	6.6 6.6	6.6	64.6 65.1	64.9	5.5 5.5	5.5	19.5 19.7	19.6	24 24	24.0
13-Feb-19	Cloudy	Calm	10:15	Middle	0.3	21.7 21.7	21.7	7.6 7.6	7.6	6.2 6.1	6.2	87.7 101.3	94.5	7.5 8.6	8.1	20.0 19.1	19.6	28 28	28.0
15-Feb-19	Cloudy	Calm	14:09	Middle	0.4	23.3 23.3	23.3	8.3 8.2	8.3	6.3 6.3	6.3	144.1 139.0	141.6	11.9 11.4	11.7	22.3 22.1	22.2	32 32	32.0
19-Feb-19	Rainy	Calm	10:05	Middle	0.4	20.3 20.3	20.3	7.4 7.4	7.4	6.2 6.2	6.2	60.0 60.1	60.1	5.2 5.2	5.2	18.3 18.3	18.3	20 20	20.0
21-Feb-19	Sunny	Calm	14:05	Middle	0.4	24.8 24.7	24.8	7.8 7.8	7.8	5.1 5.2	5.2	125.4 128.0	126.7	10.1 10.3	10.2	27.3 27.4	27.4	49 50	49.5
23-Feb-19	Cloudy	Calm	09:24	Middle	0.4	22.9 22.9	22.9	7.4 7.4	7.4	5.2 5.2	5.2	62.6 62.8	62.7	5.2 5.2	5.2	39.1 38.4	38.8	37 37	37.0
25-Feb-19	Cloudy	Calm	10:11	Middle	0.4	20.0 20.0	20.0	7.3 7.3	7.3	4.6 4.6	4.6	44.3 44.6	44.5	3.9 4.0	4.0	28.3 28.0	28.2	28 28	28.0
28-Feb-19	Cloudy	Calm	11:00	Middle	0.3	22.3 22.3	22.3	7.9 7.9	7.9	4.8 4.8	4.8	117.1 117.6	117.4	9.9 10.0	10.0	23.3 23.4	23.4	34 34	34.0

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Den	th (m)	Tempera	ature (°C)	p	Η	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Feb-19	Cloudy	Calm	14:19	Middle	0.7	20.0 20.0	20.0	7.8 7.8	7.8	4.1 4.1	4.1	90.4 89.5	90.0	8.0 8.0	8.0	19.5 19.7	19.6	18 18	18.0
4-Feb-19	Cloudy	Calm	08:25	Middle	0.6	20.6 20.6	20.6	7.6 7.6	7.6	4.4 4.4	4.4	82.1 81.8	82.0	7.2 7.2	7.2	19.0 19.1	19.1	24 25	24.5
9-Feb-19	Cloudy	Calm	10:09	Middle	0.6	22.5 22.5	22.5	7.7 7.7	7.7	4.7 4.7	4.7	68.5 68.6	68.6	5.8 5.8	5.8	17.8 17.6	17.7	23 23	23.0
11-Feb-19	Cloudy	Calm	10:27	Middle	0.7	21.4 21.4	21.4	7.6 7.5	7.6	4.8 4.8	4.8	56.8 56.6	56.7	4.9 4.9	4.9	16.4 16.8	16.6	28 28	28.0
13-Feb-19	Cloudy	Calm	11:00	Middle	0.7	21.4 21.4	21.4	7.5 7.5	7.5	5.1 5.1	5.1	62.8 61.7	62.3	5.4 5.3	5.4	18.6 18.3	18.5	27 26	26.5
15-Feb-19	Cloudy	Calm	14:58	Middle	0.7	23.1 23.2	23.2	8.7 8.6	8.7	5.3 5.3	5.3	167.4 166.3	166.9	13.9 13.8	13.9	23.1 21.2	22.2	28 27	27.5
19-Feb-19	Rainy	Calm	10:35	Middle	0.6	20.4 20.4	20.4	7.2 7.2	7.2	5.1 5.1	5.1	29.7 29.1	29.4	2.6 2.6	2.6	18.8 18.9	18.9	20 19	19.5
21-Feb-19	Sunny	Calm	14:28	Middle	0.7	24.9 24.9	24.9	8.7 8.7	8.7	5.2 5.2	5.2	180.7 180.8	180.8	14.5 14.5	14.5	17.3 17.3	17.3	32 32	32.0
23-Feb-19	Cloudy	Calm	09:50	Middle	0.6	22.7 22.7	22.7	7.3 7.3	7.3	5.2 5.2	5.2	20.2 20.7	20.5	1.7 1.7	1.7	23.7 23.3	23.5	22 22	22.0
25-Feb-19	Cloudy	Calm	10:31	Middle	0.6	19.5 19.5	19.5	7.3 7.3	7.3	5.2 5.2	5.2	26.4 26.2	26.3	2.4 2.3	2.4	20.7 20.6	20.7	20 20	20.0
28-Feb-19	Cloudy	Calm	11:19	Middle	0.6	21.6 21.6	21.6	7.9 7.9	7.9	5.4 5.4	5.4	106.6 106.5	106.6	9.1 9.1	9.1	17.0 17.3	17.2	26 25	25.5

Water Quality Monitoring Results at CS5 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Den	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Dale	Condition	Condition**	Time	Dep	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Feb-19	Cloudy	Calm	11:40	Middle	0.2	18.4 18.4	18.4	8.4 8.4	8.4	0.2 0.2	0.2	117.8 118.4	118.1	11.1 11.1	11.1	4.0 4.0	4.0	3 3	3.0
4-Feb-19	Cloudy	Calm	09:52	Middle	0.1	19.8 19.8	19.8	8.3 8.3	8.3	0.4 0.4	0.4	84.0 83.8	83.9	7.7 7.6	7.7	4.7 4.6	4.7	<2.5 <2.5	<2.5
9-Feb-19	Cloudy	Calm	10:45	Middle	0.1	21.7 21.7	21.7	8.6 8.5	8.6	0.3 0.4	0.4	107.4 107.4	107.4	9.4 9.4	9.4	4.2 4.2	4.2	<2.5 <2.5	<2.5
11-Feb-19	Cloudy	Calm	11:18	Middle	0.1	19.5 19.5	19.5	8.5 8.5	8.5	0.4 0.4	0.4	104.9 105.0	105.0	9.6 9.6	9.6	3.9 3.9	3.9	3 4	3.5
13-Feb-19	Cloudy	Calm	11:43	Middle	0.1	22.6 22.6	22.6	8.5 8.5	8.5	0.4 0.4	0.4	118.4 118.5	118.5	10.2 10.2	10.2	4.5 4.5	4.5	3 3	3.0
15-Feb-19	Cloudy	Calm	13:01	Middle	0.1	24.2 24.2	24.2	8.9 8.9	8.9	0.3 0.3	0.3	129.3 129.3	129.3	10.8 10.8	10.8	3.4 3.4	3.4	3 3	3.0
19-Feb-19	Rainy	Calm	11:47	Middle	0.1	20.9 20.9	20.9	8.6 8.6	8.6	0.2 0.2	0.2	96.8 96.8	96.8	8.6 8.6	8.6	22.7 22.7	22.7	17 17	17.0
21-Feb-19	Sunny	Calm	12:55	Middle	0.1	29.1 29.1	29.1	8.3 8.3	8.3	0.2 0.2	0.2	114.1 114.5	114.3	8.7 8.8	8.8	5.7 5.8	5.8	6 6	6.0
23-Feb-19	Cloudy	Calm	10:48	Middle	0.1	19.9 19.9	19.9	8.4 8.4	8.4	0.4 0.4	0.4	99.6 99.6	99.6	9.1 9.1	9.1	4.9 4.8	4.9	4 4	4.0
25-Feb-19	Cloudy	Calm	11:49	Middle	0.1	18.9 18.9	18.9	8.6 8.6	8.6	0.4 0.4	0.4	112.4 112.5	112.5	10.4 10.4	10.4	5.3 5.0	5.2	5 5	5.0
28-Feb-19	Cloudy	Calm	13:05	Middle	0.1	28.7 28.7	28.7	9.5 9.5	9.5	0.3 0.3	0.3	145.7 146.1	145.9	11.3 11.3	11.3	4.4 4.6	4.5	4 5	4.5

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher. The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Den	th (m)	Tempera	ature (°C)	p	Η	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Feb-19	Cloudy	Calm	14:10	Middle	0.5	20.0 20.0	20.0	8.4 8.4	8.4	4.8 4.8	4.8	144.0 144.7	144.4	12.7 12.8	12.8	19.9 19.9	19.9	23 23	23.0
4-Feb-19	Cloudy	Calm	08:12	Middle	0.4	21.3 21.3	21.3	7.9 7.9	7.9	5.5 5.5	5.5	113.1 113.3	113.2	9.7 9.7	9.7	19.8 19.7	19.8	27 26	26.5
9-Feb-19	Cloudy	Calm	10:02	Middle	0.4	22.3 22.3	22.3	7.5 7.5	7.5	6.1 6.1	6.1	93.0 93.0	93.0	7.8 7.8	7.8	26.8 26.8	26.8	26 25	25.5
11-Feb-19	Cloudy	Calm	10:16	Middle	0.4	21.2 21.2	21.2	7.5 7.5	7.5	6.3 6.3	6.3	90.3 90.2	90.3	7.7 7.7	7.7	24.5 24.2	24.4	18 19	18.5
13-Feb-19	Cloudy	Calm	10:47	Middle	0.5	20.7 20.7	20.7	7.7 7.7	7.7	6.0 6.0	6.0	96.4 96.4	96.4	8.4 8.4	8.4	28.8 29.1	29.0	32 32	32.0
15-Feb-19	Cloudy	Calm	14:40	Middle	0.5	22.3 22.3	22.3	8.3 8.3	8.3	6.0 6.0	6.0	134.0 129.0	131.5	11.3 10.8	11.1	29.9 30.8	30.4	38 38	38.0
19-Feb-19	Rainy	Calm	10:26	Middle	0.5	20.2 20.2	20.2	7.2 7.2	7.2	6.1 6.1	6.1	63.1 62.7	62.9	5.5 5.5	5.5	21.4 21.6	21.5	20 20	20.0
21-Feb-19	Sunny	Calm	14:21	Middle	0.4	24.4 24.4	24.4	8.5 8.6	8.6	5.9 5.9	5.9	196.2 197.7	197.0	15.9 16.0	16.0	21.4 21.3	21.4	28 28	28.0
23-Feb-19	Cloudy	Calm	09:39	Middle	0.4	22.2 22.2	22.2	7.7 7.7	7.7	5.8 5.8	5.8	85.1 85.7	85.4	7.2 7.2	7.2	34.0 33.5	33.8	45 44	44.5
25-Feb-19	Cloudy	Calm	10:22	Middle	0.5	19.0 19.0	19.0	7.5 7.5	7.5	5.6 5.6	5.6	69.7 69.1	69.4	6.3 6.2	6.3	29.3 29.4	29.4	25 24	24.5
28-Feb-19	Cloudy	Calm	11:10	Middle	0.4	21.0 21.0	21.0	8.2 8.2	8.2	5.4 5.4	5.4	138.4 136.0	137.2	12.0 11.8	11.9	20.3 19.8	20.1	26 26	26.0

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Den	th (m)	Tempera	ature (°C)	p	Η	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidit	ty(NTU)	Suspended	Solids (mg/L)
Dale	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Feb-19	Cloudy	Calm	11:51	Middle	0.1	19.7 19.7	19.7	7.6 7.6	7.6	5.5 5.5	5.5	110.1 110.7	110.4	9.8 9.8	9.8	20.9 21.2	21.1	20 20	20.0
4-Feb-19	Cloudy	Calm	09:10	Middle	0.1	20.4 20.4	20.4	7.7 7.7	7.7	5.9 5.9	5.9	95.8 95.8	95.8	8.4 8.4	8.4	28.5 28.3	28.4	33 33	33.0
9-Feb-19	Cloudy	Calm	09:30	Middle	0.1	21.8 21.8	21.8	7.9 7.9	7.9	5.6 5.6	5.6	76.6 76.4	76.5	6.5 6.5	6.5	22.4 22.5	22.5	37 37	37.0
11-Feb-19	Cloudy	Calm	09:56	Middle	0.2	20.6 20.6	20.6	7.0 7.0	7.0	6.3 6.3	6.3	75.2 75.1	75.2	6.5 6.5	6.5	17.9 17.9	17.9	20 19	19.5
13-Feb-19	Cloudy	Calm	09:17	Middle	0.2	21.1 21.1	21.1	7.5 7.5	7.5	4.9 4.9	4.9	85.0 84.6	84.8	7.4 7.3	7.4	19.3 19.4	19.4	32 32	32.0
15-Feb-19	Cloudy	Calm	12:37	Middle	0.1	23.7 23.8	23.8	7.4 7.4	7.4	6.1 6.1	6.1	105.2 105.3	105.3	8.6 8.6	8.6	19.8 19.9	19.9	27 27	27.0
19-Feb-19	Rainy	Calm	09:32	Middle	0.1	20.2 20.1	20.2	6.8 6.8	6.8	6.0 6.0	6.0	68.6 67.8	68.2	6.0 5.9	6.0	24.8 24.9	24.9	26 26	26.0
21-Feb-19	Sunny	Moderate	12:34	Middle	0.2	26.1 26.1	26.1	6.9 7.0	7.0	3.4 3.4	3.4	76.2 76.3	76.3	6.1 6.1	6.1	160.9 165.3	163.1	210 210	210.0
23-Feb-19	Cloudy	Calm	09:05	Middle	0.1	21.7 21.7	21.7	7.3 7.3	7.3	4.9 4.9	4.9	61.6 61.5	61.6	5.3 5.3	5.3	41.3 41.5	41.4	46 46	46.0
25-Feb-19	Cloudy	Calm	09:52	Middle	0.1	19.0 19.0	19.0	7.1 7.2	7.2	4.4 4.4	4.4	66.8 66.7	66.8	6.0 6.0	6.0	33.0 33.1	33.1	35 35	35.0
28-Feb-19	Cloudy	Calm	10:11	Middle	0.1	22.5 22.5	22.5	7.0 7.1	7.1	4.6 4.6	4.6	80.2 80.1	80.2	6.8 6.8	6.8	27.8 27.9	27.9	34 35	34.5

Water Quality Monitoring Results at IS4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Den	th (m)	Tempera	ature (°C)	p	эΗ	Salin	ity ppt	DO Satu	uration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Deb	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
1-Feb-19	Cloudy	Calm	11:31	Middle	0.1	17.0 17.1	17.1	8.0 8.0	8.0	0.3 0.3	0.3	52.0 51.6	51.8	5.0 5.0	5.0	9.0 8.8	8.9	4 4	4.0
4-Feb-19	Cloudy	Calm	10:19	Middle	0.1	19.0 19.1	19.1	7.8 7.7	7.8	0.1 0.1	0.1	48.2 47.7	48.0	4.5 4.4	4.5	9.6 9.7	9.7	7 8	7.5
9-Feb-19	Cloudy	Calm	11:02	Middle	0.1	20.5 20.5	20.5	8.2 8.2	8.2	0.1 0.1	0.1	67.0 65.4	66.2	6.0 5.9	6.0	10.8 11.4	11.1	7 8	7.5
11-Feb-19	Cloudy	Calm	09:41	Middle	0.1	18.0 18.0	18.0	7.5 7.4	7.5	0.1 0.1	0.1	48.1 47.8	48.0	4.6 4.5	4.6	19.6 19.3	19.5	18 19	18.5
13-Feb-19	Cloudy	Calm	11:59	Middle	0.1	20.6 20.6	20.6	7.8 7.7	7.8	0.1 0.1	0.1	56.4 56.0	56.2	5.1 5.0	5.1	10.4 10.4	10.4	9 9	9.0
15-Feb-19	Cloudy	Calm	11:24	Middle	0.1	21.3 21.3	21.3	7.5 7.5	7.5	0.1 0.1	0.1	59.4 59.3	59.4	5.3 5.3	5.3	7.0 6.8	6.9	9 9	9.0
19-Feb-19	Rainy	Calm	08:28	Middle	0.1	18.9 18.9	18.9	7.3 7.3	7.3	0.1 0.1	0.1	59.2 59.0	59.1	5.5 5.5	5.5	10.8 10.8	10.8	5 6	5.5
21-Feb-19	Sunny	Calm	11:25	Middle	0.2	22.5 22.5	22.5	7.1 7.0	7.1	0.1 0.1	0.1	47.3 46.2	46.8	4.1 4.0	4.1	11.4 11.4	11.4	19 19	19.0
23-Feb-19	Cloudy	Calm	08:25	Middle	0.1	19.2 19.2	19.2	8.0 8.0	8.0	0.3 0.3	0.3	49.1 48.7	48.9	4.5 4.5	4.5	37.2 38.9	38.1	26 26	26.0
25-Feb-19	Cloudy	Calm	09:27	Middle	0.1	17.2 17.2	17.2	7.6 7.6	7.6	0.1 0.1	0.1	46.1 45.8	46.0	4.4 4.4	4.4	7.5 7.6	7.6	13 13	13.0
28-Feb-19	Cloudy	Calm	09:43	Middle	0.1	20.9 20.9	20.9	6.7 6.7	6.7	0.1 0.1	0.1	47.0 46.6	46.8	4.2 4.2	4.2	3.9 4.0	4.0	8 8	8.0

APPENDIX I QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30772	
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-02-04	
	100 How Ming Street,	Date Received:	2019-02-01	
	Kwun Tong, Hong Kong	Date Tested:	2019-02-01	
		Date Completed:	2019-02-04	
ATTN:	Ms. Esther Tong	Page:	1 of 1	

Ms. Esther Tong ATTN:

QC report: Method Blank

method brank			-
Parameter	Method Blank 1	Acceptance	
Total Suspended Solids (mg/L)	<0.5	<0.5	

Method OC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	104	80-120

Sample Duplicate

Parameter	30772-7 chk	Acceptance
Total Suspended Solids (%)	4	RPD <u><</u> 5

Remarks: 1) $\leq =$ less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30772

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30780
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-02-13
	100 How Ming Street,	Date Received:	2019-02-04
	Kwun Tong, Hong Kong	Date Tested:	2019-02-04
		Date Completed:	2019-02-13
ATTN:	Ms. Esther Tong	Page:	1 of 1

QC report: Method Blank

Method Dialik			_
Parameter	Method Blank 1	Acceptance	
Total Suspended Solids (mg/L)	<0.5	<0.5	

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	101	80-120

Sample Duplicate

Parameter	30780-7 chk	Acceptance
Total Suspended Solids (%)	3	RPD<5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30780

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TRICK TSE

General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30791
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-02-14
	100 How Ming Street,	Date Received:	2019-02-09
	Kwun Tong, Hong Kong	Date Tested:	2019-02-09
		Date Completed:	2019-02-14
ATTN:	Ms. Esther Tong	Page:	1 of 1

QC report: Method Blank

Method Dialik			_
Parameter	Method Blank 1	Acceptance	
Total Suspended Solids (mg/L)	<0.5	<0.5	
Total Suspended Sonds (mg/L)	-0.5		

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	96	80-120

Sample Duplicate

Parameter	30791-7 chk	Acceptance
Total Suspended Solids (%)	1	RPD<5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30791

P ATRICK TSE

General Manager

1 of 1

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No .:	QC30793
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-02-14
	100 How Ming Street,	Date Received:	2019-02-11
	Kwun Tong, Hong Kong	Date Tested:	2019-02-11
		Date Completed:	2019-02-14

Page:

ATTN: Ms. Esther Tong

QC report: Mothod Blank

Method Dialik		
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	96	80-120

Sample Duplicate

Parameter	30793-7 chk	Acceptance
Total Suspended Solids (%)	5	RPD≤5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30793

PATRICK TSE General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30808
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-02-19
	100 How Ming Street,	Date Received:	2019-02-13
	Kwun Tong, Hong Kong	Date Tested:	2019-02-13
		Date Completed:	2019-02-19
ATTN:	Ms. Esther Tong	Page:	1 of 1

QC report:

Method Blank		
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	98	80-120

Sample Duplicate

Parameter	30808-7 chk	Acceptance
Total Suspended Solids (%)	2	RPD<5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30808

PATRICK TSE General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30821
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-02-21
	100 How Ming Street,	Date Received:	2019-02-15
	Kwun Tong, Hong Kong	Date Tested:	2019-02-15
		Date Completed:	2019-02-21
ATTN:	Ms. Esther Tong	Page:	1 of 1

QC report: Method Blank

Method Diank		
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	96	80-120

Sample Duplicate

Parameter	30821-7 chk	Acceptance
Total Suspended Solids (%)	0	RPD≤5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30821

P **ATRICK TSE**

General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30842
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-02-20
	100 How Ming Street,	Date Received:	2019-02-19
	Kwun Tong, Hong Kong	Date Tested:	2019-02-19
		Date Completed:	2019-02-20
ATTN:	Ms. Esther Tong	Page:	1 of 1

QC report:

Method Blank		
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	100	80-120

Sample Duplicate

Parameter	30842-7 chk	Acceptance
Total Suspended Solids (%)	2	RPD <u><</u> 5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30842

P TRICK TSE

General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	2	Report No.: Date of Issue:	QC30853 2019-02-27
	100 How Ming Street,		Date Received:	2019-02-21
	Kwun Tong, Hong Kong		Date Tested:	2019-02-21
			Date Completed:	2019-02-27
ATTN:	Ms. Esther Tong		Page:	1 of 1

QC report: Method Blank

Methou Dialik	T	
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	97	80-120

Sample Duplicate

Parameter	30853-7 chk	Acceptance
Total Suspended Solids (%)	1	RPD<5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30853

ATRICK TSE P Feneral Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No .:	QC30875
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-03-01
	100 How Ming Street,	Date Received:	2019-02-23
	Kwun Tong, Hong Kong	Date Tested:	2019-02-23
		Date Completed:	2019-03-01
ATTN:	Ms. Esther Tong	Page:	1 of 1

QC report: Method Blank

Method Dialik		
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	98	80-120

Sample Duplicate

Parameter	30875-7 chk	Acceptance
Total Suspended Solids (%)	4	RPD <u><</u> 5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30875

PATRICK TSE General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30879
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-03-01
	100 How Ming Street,	Date Received:	2019-02-25
	Kwun Tong, Hong Kong	Date Tested:	2019-02-25
		Date Completed:	2019-03-01
ATTN:	Ms. Esther Tong	Page:	1 of 1

QC report:

Method Blank		
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	98	80-120

Sample Duplicate

Parameter	30879-7 chk	Acceptance
Total Suspended Solids (%)	4	RPD <u><</u> 5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30879

PATRICK TSE

General Manager

TEST REPORT

APPLICANT:	Black & Veatch Hong Kong Limited	Report No.:	QC30904	
	43/F, AIA Kowloon Tower,	Date of Issue:	2019-03-06	
	100 How Ming Street,	Date Received:	2019-02-28	
	Kwun Tong, Hong Kong	Date Tested:	2019-02-28	
		Date Completed:	2019-03-06	_
ATTN:	Ms. Esther Tong	Page:	1 of 1	

QC report: Method Blank

Method Diank		
Parameter	Method Blank 1	Acceptance
Total Suspended Solids (mg/L)	<0.5	<0.5

Method QC

Parameter	MQC1	Acceptance
Total Suspended Solids (%)	101	80-120

Sample Duplicate

Parameter	30904-7 chk	Acceptance
Total Suspended Solids (%)	4	RPD≤5

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 30904

P **ATRICK TSE** General Manager

APPENDIX J WEATHER CONDITION

APPENDIX J – WEATHER CONDITIONS DURING THE MONITORING PERIOD

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 February 2019	18.8	70	0.0
2 February 2019	18.6	80	Trace
3 February 2019	21.8	83	Trace
4 February 2019	21.7	83	0.0
5 February 2019	20.1	84	0.0
6 February 2019	22.1	85	0.0
7 February 2019	23.0	83	Trace
8 February 2019	21.7	87	Trace
9 February 2019	19.3	90	0.8
10 February 2019	18.0	90	0.8
11 February 2019	18.4	85	Trace
12 February 2019	19.0	82	0.2
13 February 2019	21.1	80	0.0
14 February 2019	20.4	83	Trace
15 February 2019	20.4	84	0.2
16 February 2019	22.4	81	0.0
17 February 2019	18.8	86	0.1
18 February 2019	17.9	90	18.1
19 February 2019	20.3	91	31.0
20 February 2019	22.6	92	0.2

I. Mean Wind Speed and Wind Direction

APPENDIX J – WEATHER CONDITIONS DURING THE MONITORING PERIOD

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
21 February 2019	21.4	93	Trace
22 February 2019	20.4	82	1.6
23 February 2019	18.1	87	12.3
24 February 2019	16.9	83	3.4
25 February 2019	18.0	85	Trace
26 February 2019	18.7	88	Trace
27 February 2019	20.7	85	Trace
28 February 2019	22.8	85	0.0

I. Mean Wind Speed and Wind Direction

* The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-Feb-2019	0:00	0.4	Ν
1-Feb-2019	1:00	1.3	NNE
1-Feb-2019	2:00	1.3	NE
1-Feb-2019	3:00	1.3	Ν
1-Feb-2019	4:00	0.9	NE
1-Feb-2019	5:00	0.9	NNE
1-Feb-2019	6:00	1.3	NNE
1-Feb-2019	7:00	1.3	NNE
1-Feb-2019	8:00	0.9	NE
1-Feb-2019	9:00	0.9	Ν
1-Feb-2019	10:00	0.9	NE
1-Feb-2019	11:00	0.9	NE
1-Feb-2019	12:00	0.9	NNE
1-Feb-2019	13:00	0.9	Ν
1-Feb-2019	14:00	0.4	Ν
1-Feb-2019	15:00	0.4	NE
1-Feb-2019	16:00	0.4	NE
1-Feb-2019	17:00	0.0	Ν
1-Feb-2019	18:00	0.0	ENE
1-Feb-2019	19:00	0.4	NE
1-Feb-2019	20:00	0.4	ENE
1-Feb-2019	21:00	0.9	ENE
1-Feb-2019	22:00	0.4	NE
1-Feb-2019	23:00	0.4	ENE
2-Feb-2019	0:00	0.9	E
2-Feb-2019	1:00	0.9	ENE
2-Feb-2019	2:00	0.9	NE
2-Feb-2019	3:00	0.4	ENE
2-Feb-2019	4:00	0.4	E
2-Feb-2019	5:00	0.4	NE
2-Feb-2019	6:00	0.0	ENE
2-Feb-2019	7:00	0.4	NE
2-Feb-2019	8:00	0.4	NE
2-Feb-2019	9:00	0.4	ENE
2-Feb-2019	10:00	0.9	ENE
2-Feb-2019	11:00	0.4	Ν
2-Feb-2019	12:00	0.9	NE
2-Feb-2019	13:00	0.9	NE
2-Feb-2019	14:00	1.3	NE
2-Feb-2019	15:00	1.8	NE
2-Feb-2019	16:00	1.3	ENE
2-Feb-2019	17:00	0.4	E
2-Feb-2019	18:00	0.0	NE
2-Feb-2019	19:00	0.0	NE
2-Feb-2019	20:00	0.4	NE
2-Feb-2019	21:00	0.4	N
2-Feb-2019	22:00	0.4	NE
2-Feb-2019	23:00	0.4	N
3-Feb-2019	0:00	0.0	N
3-Feb-2019	1:00	0.4	E
3-Feb-2019	2:00	0.0	ENE
3-Feb-2019	3:00	0.4	ENE
3-Feb-2019	4:00	0.4	ENE

Date	Time	Wind Speed m/s	Direction
3-Feb-2019	5:00	0.0	
3-Feb-2019	6:00	0.4	ENE
3-Feb-2019	7:00	0.0	ENE
3-Feb-2019	8:00	0.0	ENE
3-Feb-2019	9:00	0.0	ENE
3-Feb-2019	10:00	0.0	ENE
3-Feb-2019	11:00	0.4	ENE
3-Feb-2019	12:00	0.4	SW
3-Feb-2019	13:00	0.9	WSW
3-Feb-2019	14:00	0.9	SW
3-Feb-2019	15:00	0.9	WSW
3-Feb-2019	16:00	0.4	WSW
3-Feb-2019	17:00	0.0	W
3-Feb-2019	18:00	0.4	SW
3-Feb-2019	19:00	0.0	SSW
3-Feb-2019	20:00	0.0	
3-Feb-2019	21:00	0.0	
3-Feb-2019	22:00	0.0	
3-Feb-2019	23:00	0.0	ESE
4-Feb-2019	0.00	0.0	
4-Feb-2019	1:00	0.0	
4-Feb-2019	2:00	0.0	
4-Feb-2019	3:00	0.0	
4-Feb-2019	4:00	0.0	
4-Feb-2019	5:00	0.0	
4-Feb-2019	6:00	0.0	
4-Feb-2019	7:00	0.0	
4-Feb-2019	8:00	0.0	
4-Feb-2019	9.00	0.0	
4-Feb-2019	10:00	0.0	
4-Feb-2019	11:00	0.0	N
4-Feb-2019	12:00	0.0	N
4-Feb-2019	13:00	0.4	N
4-Feb-2019	14:00	0.0	SE
4-Feb-2019	15:00	0.0	SE
4-1 eb-2013	16:00	0.0	NE
4-Feb-2019	17:00	0.0	FNF
4-Feb-2019	18:00	0.4	NE
4-1 eb-2013	10:00	0.5	
4-Feb-2019	20:00	2.7	E FNF
4-Feb-2019	20.00	1.8	ENE
4-Feb-2019	22:00	27	ENE
4-Feb-2019	22:00	1.2	
5-Eob-2019	0.00	1.0	
5-Fab-2010	1.00	1.0	
5-Fab-2010	2.00	0.0	
5-Eob 2010	2.00	0.9	
5-Eob 2019	3.00	0.9	
5-Feb-2019	4.00 5.00	0.9	
5-Eob 2019	5.00 6:00	0.9	
5 Eab 2010	7:00	1.0	
5-Feb-2019	7.00 Q:00	1.3	
5-Eob 2019	0.00	0.9	
J-1 CJ-2013	5.00	0.4	

Date	Time	Wind Speed m/s	Direction
5-Feb-2019	10:00	0.9	NE
5-Feb-2019	11:00	1.3	E
5-Feb-2019	12:00	1.8	E
5-Feb-2019	13:00	0.9	E
5-Feb-2019	14:00	0.4	ESE
5-Feb-2019	15:00	0.4	SE
5-Feb-2019	16:00	0.4	NE
5-Feb-2019	17:00	0.4	ESE
5-Feb-2019	18:00	0.4	ENE
5-Feb-2019	19:00	0.4	SE
5-Feb-2019	20:00	0.4	SE
5-Feb-2019	21:00	0.4	E
5-Feb-2019	22:00	0.4	E
5-Feb-2019	23:00	0.4	E
6-Feb-2019	0:00	0.0	E
6-Feb-2019	1:00	0.4	E
6-Feb-2019	2:00	0.4	E
6-Feb-2019	3:00	0.9	E
6-Feb-2019	4:00	0.0	E
6-Feb-2019	5:00	0.0	E
6-Feb-2019	6:00	0.9	Ш
6-Feb-2019	7:00	0.4	Ш
6-Feb-2019	8:00	0.4	ESE
6-Feb-2019	9:00	0.0	E
6-Feb-2019	10:00	0.4	E
6-Feb-2019	11:00	0.4	NNE
6-Feb-2019	12:00	1.3	SW
6-Feb-2019	13:00	1.8	SW
6-Feb-2019	14:00	1.3	WSW
6-Feb-2019	15:00	1.8	WSW
6-Feb-2019	16:00	1.8	SSW
6-Feb-2019	17:00	1.8	SW
6-Feb-2019	18:00	0.4	SW
6-Feb-2019	19:00	0.0	SSW
6-Feb-2019	20:00	0.0	S
6-Feb-2019	21:00	0.0	
6-Feb-2019	22:00	0.0	E
6-Feb-2019	23:00	0.0	
7-Feb-2019	0:00	0.0	E
7-Feb-2019	1:00	0.0	SW
7-Feb-2019	2:00	0.0	SSW
7-Feb-2019	3:00	0.0	SE
7-Feb-2019	4:00	0.0	
7-Feb-2019	5:00	0.0	SE
7-Feb-2019	6:00	0.9	ESE
7-Feb-2019	7:00	1.3	ESE
7-Feb-2019	8:00	0.4	E
7-Feb-2019	9:00	0.0	ESE
7-Feb-2019	10:00	0.4	ESE
7-Feb-2019	11:00	0.4	SE
7-Feb-2019	12:00	0.9	NE
7-Feb-2019	13:00	0.0	ENE
7-Feb-2019	14:00	0.9	ENE

Date	Time	Wind Speed m/s	Direction
7-Feb-2019	15:00	0.4	ENE
7-Feb-2019	16:00	0.4	ENE
7-Feb-2019	17:00	0.9	WSW
7-Feb-2019	18:00	0.0	E
7-Feb-2019	19:00	0.0	E
7-Feb-2019	20:00	0.0	
7-Feb-2019	21:00	0.4	SE
7-Feb-2019	22:00	0.0	SE
7-Feb-2019	23:00	0.0	SE
8-Feb-2019	0:00	0.0	SE
8-Feb-2019	1:00	0.0	
8-Feb-2019	2:00	0.0	SE
8-Feb-2019	3:00	0.0	SE
8-Feb-2019	4:00	0.4	E
8-Feb-2019	5:00	0.0	E
8-Feb-2019	6:00	0.9	E
8-Feb-2019	7:00	0.9	ESE
8-Feb-2019	8:00	0.0	ESE
8-Feb-2019	9:00	0.0	ESE
8-Feb-2019	10:00	0.4	SE
8-Feb-2019	11:00	0.4	NE
8-Feb-2019	12:00	0.4	SE
8-Feb-2019	13:00	1.3	ENE
8-Feb-2019	14:00	1.3	ENE
8-Feb-2019	15:00	1.8	NE
8-Feb-2019	16:00	2.2	ENE
8-Feb-2019	17:00	1.8	ENE
8-Feb-2019	18:00	1.3	ENE
8-Feb-2019	19:00	1.3	ENE
8-Feb-2019	20:00	0.4	ENE
8-Feb-2019	21:00	0.9	ENE
8-Feb-2019	22:00	0.9	NE
8-Feb-2019	23:00	1.3	ENE
9-Feb-2019	0:00	1.8	ENE
9-Feb-2019	1:00	1.8	ENE
9-Feb-2019	2:00	1.8	NE
9-Feb-2019	3:00	1.8	NE
9-Feb-2019	4:00	0.9	NE
9-Feb-2019	5:00	1.3	NE
9-Feb-2019	6:00	0.4	ENE
9-Feb-2019	7:00	0.9	NE
9-Feb-2019	8:00	0.9	NE
9-Feb-2019	9:00	1.3	ENE
9-Feb-2019	10:00	1.3	ENE
9-Feb-2019	11:00	1.3	ENE
9-Feb-2019	12:00	0.9	ENE
9-Feb-2019	13:00	1.8	NE
9-Feb-2019	14:00	1.3	E
9-Feb-2019	15:00	1.3	ENE
9-Feb-2019	16:00	0.9	ENE
9-Feb-2019	17:00	0.4	ENE
9-Feb-2019	18:00	0.4	ENE
9-Feb-2019	19:00	0.9	NE

Date	Time	Wind Speed m/s	Direction
9-Feb-2019	20:00	1.3	ESE
9-Feb-2019	21:00	1.8	ESE
9-Feb-2019	22:00	0.9	E
9-Feb-2019	23:00	1.8	NE
10-Feb-2019	0:00	1.8	ENE
10-Feb-2019	1:00	2.2	NE
10-Feb-2019	2:00	1.8	NE
10-Feb-2019	3:00	1.3	NE
10-Feb-2019	4:00	1.3	ENE
10-Feb-2019	5:00	1.8	ENE
10-Feb-2019	6:00	1.3	NE
10-Feb-2019	7:00	1.3	E
10-Feb-2019	8:00	1.3	ESE
10-Feb-2019	9:00	0.9	ENE
10-Feb-2019	10:00	0.9	NE
10-Feb-2019	11:00	1.3	Ε
10-Feb-2019	12:00	0.9	NE
10-Feb-2019	13:00	0.9	NE
10-Feb-2019	14:00	1.3	E
10-Feb-2019	15:00	0.9	ESE
10-Feb-2019	16:00	1.3	E
10-Feb-2019	17:00	0.9	E
10-Feb-2019	18:00	0.9	NE
10-Feb-2019	19:00	0.4	NE
10-Feb-2019	20:00	0.0	NE
10-Feb-2019	21:00	0.0	ENE
10-Feb-2019	22:00	0.9	ENE
10-Feb-2019	23:00	0.4	NE
11-Feb-2019	0:00	0.0	NE
11-Feb-2019	1:00	0.4	NE
11-Feb-2019	2:00	0.9	ENE
11-Feb-2019	3:00	0.0	ENE
11-Feb-2019	4:00	0.4	ENE
11-Feb-2019	5:00	0.4	Ν
11-Feb-2019	6:00	0.9	Ν
11-Feb-2019	7:00	0.4	NE
11-Feb-2019	8:00	0.4	NNE
11-Feb-2019	9:00	0.9	Ν
11-Feb-2019	10:00	0.4	NE
11-Feb-2019	11:00	0.9	N
11-Feb-2019	12:00	0.4	Ν
11-Feb-2019	13:00	0.4	Ν
11-Feb-2019	14:00	0.9	Ν
11-Feb-2019	15:00	0.4	NE
11-Feb-2019	16:00	0.4	N
11-Feb-2019	17:00	0.4	NE
11-Feb-2019	18:00	0.4	NE
11-Feb-2019	19:00	0.0	NE
11-Feb-2019	20:00	0.4	ENE
11-Feb-2019	21:00	0.9	ENE
11-Feb-2019	22:00	0.4	E
11-Feb-2019	23:00	0.0	E
12-Feb-2019	0:00	0.0	ENE

Date	Time	Wind Speed m/s	Direction
12-Feb-2019	1:00	0.4	NNE
12-Feb-2019	2:00	0.0	NNE
12-Feb-2019	3:00	0.0	NNE
12-Feb-2019	4:00	0.0	NNE
12-Feb-2019	5:00	0.0	NNE
12-Feb-2019	6:00	0.0	NNE
12-Feb-2019	7:00	0.0	ENE
12-Feb-2019	8:00	0.4	NNE
12-Feb-2019	9:00	0.0	ENE
12-Feb-2019	10:00	0.4	ENE
12-Feb-2019	11:00	0.4	ENE
12-Feb-2019	12:00	0.9	ENE
12-Feb-2019	13:00	1.3	E
12-Feb-2019	14:00	0.9	E
12-Feb-2019	15:00	0.9	ESE
12-Feb-2019	16:00	0.9	SE
12-Feb-2019	17:00	0.4	E
12-Feb-2019	18:00	0.0	ENE
12-Feb-2019	19:00	0.4	SE
12-Feb-2019	20:00	0.0	E
12-Feb-2019	21:00	0.4	E
12-Feb-2019	22:00	0.0	E
12-Feb-2019	23:00	0.0	E
13-Feb-2019	0:00	0.0	E
13-Feb-2019	1:00	0.4	E
13-Feb-2019	2:00	0.9	ESE
13-Feb-2019	3:00	0.0	
13-Feb-2019	4:00	0.0	
13-Feb-2019	5:00	0.4	E
13-Feb-2019	6:00	0.4	E
13-Feb-2019	7:00	0.0	E
13-Feb-2019	8:00	0.4	ESE
13-Feb-2019	9:00	0.0	E
13-Feb-2019	10:00	0.4	ENE
13-Feb-2019	11:00	0.4	NE
13-Feb-2019	12:00	0.4	ENE
13-Feb-2019	13:00	0.4	N
13-Feb-2019	14:00	0.4	N
13-Feb-2019	15:00	0.4	ENE
13-Feb-2019	16:00	0.0	N
13-Feb-2019	17:00	0.0	E
13-Feb-2019	18:00	0.9	ESE
13-Feb-2019	19:00	0.0	ESE
13-Feb-2019	20:00	0.0	E
13-Feb-2019	21:00	0.4	NE
13-Feb-2019	22:00	0.4	ESE
13-Feb-2019	23:00	1.3	ENE
14-Feb-2019	0:00	1.8	ENE
14-Feb-2019	1:00	0.9	ENE
14-Feb-2019	2:00	1.3	ENE
14-Feb-2019	3:00	0.9	NE
14-Feb-2019	4:00	0.4	ENE
14-Feb-2019	5:00	0.9	NE

Date	Time	Wind Speed m/s	Direction
14-Feb-2019	6:00	0.0	NE
14-Feb-2019	7:00	0.4	ENE
14-Feb-2019	8:00	0.9	NE
14-Feb-2019	9:00	0.9	ENE
14-Feb-2019	10:00	0.9	ENE
14-Feb-2019	11:00	0.9	NE
14-Feb-2019	12:00	0.9	ENE
14-Feb-2019	13:00	1.3	E
14-Feb-2019	14:00	1.3	SE
14-Feb-2019	15:00	1.3	SE
14-Feb-2019	16:00	2.2	SE
14-Feb-2019	17:00	1.3	SE
14-Feb-2019	18:00	1.3	SE
14-Feb-2019	19:00	0.9	SE
14-Feb-2019	20:00	0.4	ENE
14-Feb-2019	21:00	0.9	NE
14-Feb-2019	22:00	0.9	NE
14-Feb-2019	23:00	0.9	NE
15-Feb-2019	0:00	1.3	ENE
15-Feb-2019	1:00	0.9	ENE
15-Feb-2019	2:00	0.4	ENE
15-Feb-2019	3:00	0.9	ENE
15-Feb-2019	4:00	0.4	NE
15-Feb-2019	5:00	0.9	NE
15-Feb-2019	6:00	0.9	ENE
15-Feb-2019	7:00	1.8	ENE
15-Feb-2019	8:00	0.9	NE
15-Feb-2019	9:00	0.4	NE
15-Feb-2019	10:00	0.9	ENE
15-Feb-2019	11:00	0.9	NE
15-Feb-2019	12:00	0.9	ENE
15-Feb-2019	13:00	0.9	NE
15-Feb-2019	14:00	0.9	ENE
15-Feb-2019	15:00	0.4	E
15-Feb-2019	16:00	0.9	ENE
15-Feb-2019	17:00	0.9	SE
15-Feb-2019	18:00	0.9	SE
15-Feb-2019	19:00	0.4	ESE
15-Feb-2019	20:00	0.0	E
15-Feb-2019	21:00	0.0	E
15-Feb-2019	22:00	0.0	E
15-Feb-2019	23:00	0.4	E
16-Feb-2019	0:00	0.0	E
16-Feb-2019	1:00	0.0	E
16-Feb-2019	2:00	0.0	E
16-Feb-2019	3:00	0.0	E
16-Feb-2019	4:00	0.0	E
16-Feb-2019	5:00	0.4	E
16-Feb-2019	6:00	0.0	E
16-Feb-2019	7:00	1.3	ESE
16-Feb-2019	8:00	0.4	ESE
16-Feb-2019	9:00	0.4	ESE
16-Feb-2019	10:00	0.4	ENE

Date	Time	Wind Speed m/s	Direction
16-Feb-2019	11:00	0.4	E
16-Feb-2019	12:00	0.9	ENE
16-Feb-2019	13:00	0.9	Е
16-Feb-2019	14:00	0.9	SE
16-Feb-2019	15:00	0.9	SE
16-Feb-2019	16:00	1.8	ESE
16-Feb-2019	17:00	1.3	SE
16-Feb-2019	18:00	0.9	NE
16-Feb-2019	19:00	1.3	ENE
16-Feb-2019	20:00	0.4	ENE
16-Feb-2019	21:00	0.9	NE
16-Feb-2019	22:00	0.9	ENE
16-Feb-2019	23:00	0.9	ENE
17-Feb-2019	0:00	0.4	NE
17-Feb-2019	1:00	0.4	NE
17-Feb-2019	2:00	0.4	NE
17-Feb-2019	3:00	0.4	NE
17-Feb-2019	4:00	0.4	NE
17-Feb-2019	5:00	0.9	E
17-Feb-2019	6:00	0.4	ENE
17-Feb-2019	7:00	0.4	ENE
17-Feb-2019	8:00	0.9	ENE
17-Feb-2019	9:00	1.3	ENE
17-Feb-2019	10:00	1.3	ESE
17-Feb-2019	11:00	1.3	ENE
17-Feb-2019	12:00	1.3	ESE
17-Feb-2019	13:00	1.3	E
17-Feb-2019	14:00	1.3	ENE
17-Feb-2019	15:00	1.3	ENE
17-Feb-2019	16:00	1.3	ESE
17-Feb-2019	17:00	0.9	NE
17-Feb-2019	18:00	0.9	ENE
17-Feb-2019	19:00	1.3	NE
17-Feb-2019	20:00	1.8	ENE
17-Feb-2019	21:00	2.2	E
17-Feb-2019	22:00	1.3	ENE
17-Feb-2019	23:00	1.3	ENE
18-Feb-2019	0:00	1.8	ENE
18-Feb-2019	1:00	1.3	NE
18-Feb-2019	2:00	0.9	NNE
18-Feb-2019	3:00	0.9	NE
18-Feb-2019	4:00	0.9	ENE
18-Feb-2019	5:00	0.9	ENE
18-Feb-2019	6:00	1.8	NE
18-Feb-2019	7:00	2.2	NNE
18-Feb-2019	8:00	2.7	NE
18-Feb-2019	9:00	1.8	NE
18-Feb-2019	10:00	1.8	ENE
18-Feb-2019	11:00	1.8	ENE
18-Feb-2019	12:00	0.4	NE
18-Feb-2019	13:00	0.4	ENE
18-Feb-2019	14:00	0.0	NE
18-Feb-2019	15:00	0.0	NE

18-Feb-2019 16.00 0.0 NE 18-Feb-2019 17:00 1.3 E 18-Feb-2019 19:00 0.0 E 18-Feb-2019 20:00 0.4 E 18-Feb-2019 21:00 0.4 E 18-Feb-2019 22:00 0.9 E 18-Feb-2019 23:00 0.0 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 0:00 0.9 E 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 3:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019	Date	Time	Wind Speed m/s	Direction
18-Feb-2019 17.00 1.3 E 18-Feb-2019 18:00 0.4 E 18-Feb-2019 20:00 0.4 E 18-Feb-2019 21:00 0.4 ESE 18-Feb-2019 22:00 0.9 E 18-Feb-2019 23:00 0.0 ENE 18-Feb-2019 20:00 0.9 E 19-Feb-2019 2:00 0.9 E 19-Feb-2019 2:00 0.9 ENE 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 3:00 0.4 NE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 0:00 0.4 NE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019	18-Feb-2019	16:00	0.0	NE
18-Feb-2019 18:00 0.4 E 18-Feb-2019 19:00 0.0 E 18-Feb-2019 21:00 0.4 E 18-Feb-2019 22:00 0.9 E 18-Feb-2019 23:00 0.0 ENE 18-Feb-2019 0:00 0.4 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 10:00 0.4 NNE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 <td>18-Feb-2019</td> <td>17:00</td> <td>1.3</td> <td>E</td>	18-Feb-2019	17:00	1.3	E
18-Feb-2019 19:00 0.0 E 18-Feb-2019 20:00 0.4 E 18-Feb-2019 22:00 0.9 E 18-Feb-2019 23:00 0.0 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 1:00 0.9 E 19-Feb-2019 2:00 0.0 ENE 19-Feb-2019 3:00 0.4 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 10:00 0.4 ENE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 13:00 0.4 ENE 19-Feb-2019 14:00 0.9 E 19-Feb-2019	18-Feb-2019	18:00	0.4	E
18-Feb-2019 20:00 0.4 E 18-Feb-2019 21:00 0.9 E 18-Feb-2019 23:00 0.0 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 2:00 0.9 E 19-Feb-2019 2:00 0.0 ENE 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 8:00 0.4 NE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 11:00 0.4 E 19-Feb-2019 11:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 14:00 0.9 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019	18-Feb-2019	19:00	0.0	E
18-Feb-2019 21:00 0.4 ESE 18-Feb-2019 22:00 0.9 E 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 1:00 0.9 E 19-Feb-2019 1:00 0.9 E 19-Feb-2019 2:00 0.0 ENE 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 0:00 0.4 NE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 16:00 0.4 ENE 19-Feb-2019	18-Feb-2019	20:00	0.4	E
18-Feb-2019 22:00 0.9 E 18-Feb-2019 23:00 0.0 ENE 19-Feb-2019 1:00 0.9 E 19-Feb-2019 2:00 0.0 ENE 19-Feb-2019 2:00 0.9 ENE 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 0:00 0.4 NNE 19-Feb-2019 10:00 0.4 NNE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 11:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 10:00 0.4 ENE 19-Feb-2019	18-Feb-2019	21:00	0.4	ESE
18-Feb-2019 23:00 0.0 ENE 19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 1:00 0.9 E 19-Feb-2019 2:00 0.0 ENE 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 0:00 0.4 NE 19-Feb-2019 0:00 0.4 NE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 10:00 1.3 E 19-Feb-2019	18-Feb-2019	22:00	0.9	E
19-Feb-2019 0:00 0.4 ENE 19-Feb-2019 1:00 0.9 E 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 3:00 0.4 ENE 19-Feb-2019 5:00 0.4 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 8:00 0.4 NE 19-Feb-2019 8:00 0.4 ENE 19-Feb-2019 10:00 0.4 ENE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 <td>18-Feb-2019</td> <td>23:00</td> <td>0.0</td> <td>ENE</td>	18-Feb-2019	23:00	0.0	ENE
19-Feb-2019 1:00 0.9 E 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 4:00 0.4 ENE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 9:00 0.4 NNE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 15:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.4 NE 19-Feb-2019	19-Feb-2019	0:00	0.4	ENE
19-Feb-2019 2:00 0.0 ENE 19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 5:00 0.4 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 8:00 0.4 ENE 19-Feb-2019 10:00 0.4 NE 19-Feb-2019 10:00 0.4 ENE 19-Feb-2019 11:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 14:00 0.9 E 19-Feb-2019 15:00 0.4 ENE 19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.4 NE 20-Feb-2019	19-Feb-2019	1:00	0.9	E
19-Feb-2019 3:00 0.9 ENE 19-Feb-2019 4:00 0.4 ENE 19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 8:00 0.4 NE 19-Feb-2019 8:00 0.4 ENE 19-Feb-2019 9:00 0.4 NNE 19-Feb-2019 10:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 15:00 0.4 ESE 19-Feb-2019 16:00 0.4 ENE 19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 21:00 0.9 E 19-Feb-2019 21:00 0.9 E 19-Feb-2019 </td <td>19-Feb-2019</td> <td>2:00</td> <td>0.0</td> <td>ENE</td>	19-Feb-2019	2:00	0.0	ENE
19-Feb-20194:000.4ENE19-Feb-20195:000.4NE19-Feb-20196:000.4NE19-Feb-20197:000.4NE19-Feb-20199:000.4NNE19-Feb-201910:000.4NNE19-Feb-201910:000.4NNE19-Feb-201910:000.4E19-Feb-201911:000.4E19-Feb-201913:000.4E19-Feb-201914:000.9E19-Feb-201914:000.9E19-Feb-201916:000.4ESE19-Feb-201916:000.4ENE19-Feb-201916:000.4ESE19-Feb-201917:000.4ENE19-Feb-201918:000.4ENE19-Feb-201912:000.9E19-Feb-201920:000.9E19-Feb-201920:000.9E19-Feb-201920:000.9E19-Feb-201920:000.4NE20-Feb-201920:000.4NE20-Feb-201920:000.4NE20-Feb-201910:000.4ENE20-Feb-201910:000.4ENE20-Feb-201910:000.4ENE20-Feb-20193:000.4ENE20-Feb-20193:000.4ENE20-Feb-20193:000.4ENE20-Feb-20193:000.4ENE <td>19-Feb-2019</td> <td>3:00</td> <td>0.9</td> <td>ENE</td>	19-Feb-2019	3:00	0.9	ENE
19-Feb-2019 5:00 0.4 NE 19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 8:00 0.4 ENE 19-Feb-2019 9:00 0.4 NNE 19-Feb-2019 10:00 0.4 NNE 19-Feb-2019 11:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 20:00 0.9 E 19-Feb-2019 20:00 0.4 NE 20-Feb-2019 20:00 0.4 NE 20-Feb-2019 <td>19-Feb-2019</td> <td>4:00</td> <td>0.4</td> <td>ENE</td>	19-Feb-2019	4:00	0.4	ENE
19-Feb-2019 6:00 0.4 NE 19-Feb-2019 7:00 0.4 NE 19-Feb-2019 8:00 0.4 ENE 19-Feb-2019 9:00 0.4 NNE 19-Feb-2019 10:00 0.4 NNE 19-Feb-2019 11:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 10:0 0.4 ENE 19-Feb-2019 10:0 0.4 E 19-Feb-2019 20:00 0.4 NE 20-Feb-2019 21:00 0.4 NE 20-Feb-2019 20:00 0.4 E 20-Feb-2019 </td <td>19-Feb-2019</td> <td>5:00</td> <td>0.4</td> <td>NE</td>	19-Feb-2019	5:00	0.4	NE
19-Feb-2019 7:00 0.4 NE 19-Feb-2019 8:00 0.4 ENE 19-Feb-2019 10:00 0.4 NNE 19-Feb-2019 10:00 0.4 NNE 19-Feb-2019 11:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 14:00 0.9 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 21:00 0.4 NE 20-Feb-2019 2:00 0.4 NE 20-Feb-2019 2:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 </td <td>19-Feb-2019</td> <td>6:00</td> <td>0.4</td> <td>NE</td>	19-Feb-2019	6:00	0.4	NE
19-Feb-2019 $8:00$ 0.4 ENE $19-Feb-2019$ $9:00$ 0.4 NNE $19-Feb-2019$ $10:00$ 0.4 NNE $19-Feb-2019$ $11:00$ 0.4 E $19-Feb-2019$ $12:00$ 0.4 E $19-Feb-2019$ $12:00$ 0.4 E $19-Feb-2019$ $13:00$ 0.4 E $19-Feb-2019$ $15:00$ 0.4 E $19-Feb-2019$ $15:00$ 0.4 E $19-Feb-2019$ $15:00$ 0.4 E $19-Feb-2019$ $17:00$ 0.4 ENE $19-Feb-2019$ $17:00$ 0.4 ENE $19-Feb-2019$ $12:00$ 0.4 ENE $19-Feb-2019$ $12:00$ 0.4 ENE $19-Feb-2019$ $21:00$ 0.4 ENE $19-Feb-2019$ $21:00$ 0.9 E $19-Feb-2019$ $22:00$ 0.4 NE $20-Feb-2019$ $22:00$ 0.4 NE $20-Feb-2019$ $2:00$ 0.4 ENE $20-Feb-2019$ $2:00$ 0.4 ENE $20-Feb-2019$ $3:00$ 0.4 ENE $20-Feb-2019$ $3:00$ 0.4 ENE $20-Feb-2019$ $5:00$ 0.4 ENE $20-Feb-2019$ $5:00$ 0.4 ENE $20-Feb-2019$ $5:00$ 0.4 ENE $20-Feb-2019$ $5:00$ 0.4 ENE $20-Feb-2019$ $1:00$ 0.9 ENE $20-Feb-2019$ $1:00$ 0.9 ENE $20-Feb-2019$ </td <td>19-Feb-2019</td> <td>7:00</td> <td>0.4</td> <td>NE</td>	19-Feb-2019	7:00	0.4	NE
19-Feb-2019 $9:00$ 0.4 NNE $19-Feb-2019$ $10:00$ 0.4 NNE $19-Feb-2019$ $11:00$ 0.4 E $19-Feb-2019$ $12:00$ 0.4 E $19-Feb-2019$ $13:00$ 0.4 E $19-Feb-2019$ $13:00$ 0.4 E $19-Feb-2019$ $14:00$ 0.9 E $19-Feb-2019$ $16:00$ 0.4 ESE $19-Feb-2019$ $16:00$ 0.4 ESE $19-Feb-2019$ $16:00$ 0.4 ESE $19-Feb-2019$ $17:00$ 0.4 ENE $19-Feb-2019$ $12:00$ 0.4 ENE $19-Feb-2019$ $12:00$ 0.4 ENE $19-Feb-2019$ $20:00$ 0.9 E $19-Feb-2019$ $20:00$ 0.9 E $19-Feb-2019$ $21:00$ 0.4 NE $20-Feb-2019$ $22:00$ 0.4 NE $20-Feb-2019$ $20:00$ 0.4 ENE $20-Feb-2019$ $2:00$ 0.4 ENE $20-Feb-2019$ $3:00$ 0.4 ENE $20-Feb-2019$ $3:00$ 0.4 ENE $20-Feb-2019$ $4:00$ 0.4 ENE $20-Feb-2019$ $6:00$ 0.0 ENE $20-Feb-2019$ $6:00$ 0.0 ENE $20-Feb-2019$ $6:00$ 0.0 ENE $20-Feb-2019$ $1:00$ 1.3 ESE $20-Feb-2019$ $1:00$ 1.3 ESE $20-Feb-2019$ $1:00$ 1.3 ESE $20-Feb-2019$	19-Feb-2019	8:00	0.4	ENE
19-Feb-2019 10:00 0.4 NNE 19-Feb-2019 11:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 14:00 0.9 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 18:00 0.4 E 19-Feb-2019 18:00 0.4 E 19-Feb-2019 18:00 0.4 E 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.4 NE 19-Feb-2019 20:00 0.4 NE 19-Feb-2019 20:00 0.4 NE 20-Feb-2019 20:00 0.4 NE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 <td>19-Feb-2019</td> <td>9:00</td> <td>0.4</td> <td>NNE</td>	19-Feb-2019	9:00	0.4	NNE
19-Feb-2019 11:00 0.4 E 19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 13:00 0.4 E 19-Feb-2019 14:00 0.9 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 18:00 0.4 E 19-Feb-2019 18:00 0.4 E 19-Feb-2019 10:00 0.4 E 19-Feb-2019 20:00 0.4 NE 19-Feb-2019 20:00 0.4 NE 19-Feb-2019 20:00 0.4 NE 20-Feb-2019 10:00 0.4 E 20-Feb-2019 10:00 0.4 E 20-Feb-2019 10:00 0.4 E 20-Feb-2019 10:00 0.4 E 20-Feb-2019	19-Feb-2019	10:00	0.4	NNE
19-Feb-2019 12:00 0.4 E 19-Feb-2019 13:00 0.4 ENE 19-Feb-2019 14:00 0.9 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 16:00 0.4 E 19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.9 E 19-Feb-2019 21:00 0.4 NE 19-Feb-2019 21:00 0.4 NE 19-Feb-2019 20:00 0.4 NE 19-Feb-2019 21:00 0.4 NE 20-Feb-2019 20:00 0.4 NE 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-201	19-Feb-2019	11:00	0.4	E
19-Feb-2019 13:00 0.4 ENE 19-Feb-2019 14:00 0.9 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 16:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.9 E 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 22:00 0.4 NE 20-Feb-2019 2:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-20	19-Feb-2019	12:00	0.4	E
19-Feb-2019 14:00 0.9 E 19-Feb-2019 15:00 0.4 E 19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.9 ESE 19-Feb-2019 21:00 0.9 ESE 19-Feb-2019 23:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 0:00 1.3 E 20-Feb-2019 0:00 0.4 NE 20-Feb-2019 0:00 0.4 ENE 20-Feb-2019 0:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 7:00 0.0 ENE 20-Feb-201	19-Feb-2019	13:00	0.4	ENE
19-Feb-2019 15:00 0.4 E 19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.9 E 19-Feb-2019 21:00 0.9 ESE 19-Feb-2019 22:00 0.4 NE 20-Feb-2019 23:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 0:00 0.4 ENE 20-Feb-2019 0:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-	19-Feb-2019	14:00	0.9	F
19-Feb-2019 16:00 0.4 ESE 19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.9 E 19-Feb-2019 20:00 0.9 ESE 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 23:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 0:00 1.3 E 20-Feb-2019 0:00 0.4 NE 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.0 ENE 20-Feb-2019 4:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 </td <td>19-Feb-2019</td> <td>15:00</td> <td>0.4</td> <td>F</td>	19-Feb-2019	15:00	0.4	F
19-Feb-2019 17:00 0.4 ENE 19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.9 E 19-Feb-2019 21:00 0.9 ESE 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 23:00 0.4 NE 20-Feb-2019 23:00 0.4 NE 20-Feb-2019 20:00 0.4 NE 20-Feb-2019 20:00 0.4 ENE 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 ENE 20-Feb-2019 10:00 0.9 ENE 20-F	19-Feb-2019	16:00	0.4	 FSF
19-Feb-2019 18:00 0.4 ENE 19-Feb-2019 19:00 1.3 E 19-Feb-2019 20:00 0.9 E 19-Feb-2019 21:00 0.9 ESE 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 23:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 0:00 0.4 ENE 20-Feb-2019 0:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 7:00 0.0 ENE 20-Feb-2019 1:00 0.9 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2	19-Feb-2019	17:00	0.4	E0E
10 10 10 10 10 10 11 11 11 11<	19-Feb-2019	18:00	0.4	FNF
10 10 10 10 10 10 19 Feb-2019 20:00 0.9 E 19 Feb-2019 21:00 0.9 ESE 19 Feb-2019 22:00 0.4 NE 19 Feb-2019 23:00 0.4 NE 20 Feb-2019 0:00 1.3 E 20 Feb-2019 1:00 0.4 ENE 20 Feb-2019 1:00 0.4 ENE 20 Feb-2019 3:00 0.4 ENE 20 Feb-2019 3:00 0.4 ENE 20 Feb-2019 5:00 0.4 ENE 20 Feb-2019 5:00 0.4 ENE 20 Feb-2019 7:00 0.0 E 20 Feb-2019 7:00 0.0 E 20 Feb-2019 10:00 0.9 ENE 20 Feb-2019 10:00 0.9	19-Feb-2019	19:00	1.3	F
10 10 10 10 10 19-Feb-2019 21:00 0.9 ESE 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 23:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 2:00 0.0 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 7:00 0.0 E 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 13:00 1.3 ESE 20	19-Feb-2019	20:00	0.9	F
10 10 10 10 10 10 19-Feb-2019 22:00 0.4 NE 19-Feb-2019 23:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 2:00 0.0 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 E	19-Feb-2019	21:00	0.9	ESE
10-Feb-2019 23:00 0.4 NE 20-Feb-2019 0:00 1.3 E 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 2:00 0.0 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 NE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019	19-Feb-2019	22:00	0.4	NF
10 10 11 11 20-Feb-2019 0:00 1.3 E 20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 2:00 0.0 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 4:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019	19-Feb-2019	23:00	0.4	NE
20-Feb-2019 1:00 0.4 ENE 20-Feb-2019 2:00 0.0 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 4:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2	20-Feb-2019	0.00	13	F
20 Feb-2019 2:00 0.0 ENE 20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 4:00 0.4 ENE 20-Feb-2019 4:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 NE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 SE 20-Feb-	20-Feb-2019	1:00	0.4	 FNF
20-Feb-2019 3:00 0.4 ENE 20-Feb-2019 4:00 0.4 ENE 20-Feb-2019 5:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 7:00 0.0 E 20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2	20-Feb-2019	2:00	0.0	FNF
20-Feb-2019 4:00 0.4 ENE 20-Feb-2019 5:00 0.4 NE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 ENE 20-Feb-2019 7:00 0.0 ENE 20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 14:00 1.3 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Fe	20-Feb-2019	3:00	0.0	 FNF
20-Feb-2019 5:00 0.4 NE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 7:00 0.0 E 20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 NE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 E 20-Feb-2019 14:00 1.3 E 20-Feb-2019 16:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019	20-Feb-2019	4:00	0.4	FNF
20-Feb-2019 6:00 0.0 ENE 20-Feb-2019 7:00 0.0 E 20-Feb-2019 7:00 0.0 E 20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 NE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 18:00 0.4 SE 20-Feb-	20-Feb-2019	5:00	0.4	NF
20-Feb-2019 7:00 0.0 E 20-Feb-2019 8:00 0.0 E 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 NE 20-Feb-2019 10:00 0.9 NE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 E 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.4 SE	20-Feb-2019	6:00	0.0	FNF
20-Feb-2019 8:00 0.0 ENE 20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 11:00 0.9 ENE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 E 20-Feb-2019 16:00 0.9 E 20-Feb-2019 16:00 0.9 E 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 17:00 0.4 SE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 SE	20-Feb-2019	7:00	0.0	F
20-Feb-2019 9:00 0.4 ENE 20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 19:00 0.4 SE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 SE	20-Feb-2019	8:00	0.0	 FNF
20-Feb-2019 10:00 0.9 ENE 20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE	20-Feb-2019	9:00	0.4	FNE
20-Feb-2019 11:00 0.9 NE 20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 ESE 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 ESE	20-Feb-2019	10.00	0.9	 FNF
20-Feb-2019 12:00 1.3 ESE 20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 ESE 20-Feb-2019 14:00 1.3 E 20-Feb-2019 14:00 0.9 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE	20-Feb-2019	11:00	0.9	NF
20-Feb-2019 13:00 1.3 ESE 20-Feb-2019 14:00 1.3 E 20-Feb-2019 14:00 1.3 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 E 20-Feb-2019 16:00 0.4 ENE 20-Feb-2019 17:00 0.4 SE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE	20-Feb-2019	12:00	13	FSF
20-Feb-2019 14:00 1.3 E 20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE	20-Feb-2019	13.00	1.3	FSF
20-Feb-2019 15:00 0.9 E 20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 16:00 0.4 ENE 20-Feb-2019 17:00 0.4 SE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE	20-Feb-2019	14.00	1.3	F
20-Feb-2019 16:00 0.9 ESE 20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE	20-Feb-2019	15:00	<u> </u>	F
20-Feb-2019 17:00 0.4 ENE 20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 19:00 0.9 SE	20-Feb-2019	16:00	0.0	FSF
20-Feb-2019 18:00 0.4 SE 20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 20:00 0.4 SE	20-Feb-2019	17:00	0.0	E0E
20-Feb-2019 19:00 0.9 ESE 20-Feb-2019 20:00 0.4 SE	20-Feb-2019	18:00	0.4	SF
20-Feb-2019 20:00 0.4 SE	20-Feb-2019	19:00	0.4	FSF
	20-Feb-2019	20.00	0.0	SF
Date	Time	Wind Speed m/s	Direction	
-------------	-------	----------------	-----------	
20-Feb-2019	21:00	0.0	SE	
20-Feb-2019	22:00	0.4	ESE	
20-Feb-2019	23:00	0.4	ESE	
21-Feb-2019	0:00	0.4	E	
21-Feb-2019	1:00	0.0	ENE	
21-Feb-2019	2:00	0.4	ENE	
21-Feb-2019	3:00	0.0	ENE	
21-Feb-2019	4:00	0.0	ENE	
21-Feb-2019	5:00	0.0	ENE	
21-Feb-2019	6:00	0.0	ENE	
21-Feb-2019	7:00	0.4	ENE	
21-Feb-2019	8:00	0.4	ENE	
21-Feb-2019	9:00	0.0	ENE	
21-Feb-2019	10:00	0.4	ENE	
21-Feb-2019	11:00	0.9	Е	
21-Feb-2019	12:00	0.9	ESE	
21-Feb-2019	13:00	1.3	ENE	
21-Feb-2019	14:00	0.9	ENE	
21-Feb-2019	15:00	0.9	ENE	
21-Feb-2019	16:00	1.3	ESE	
21-Feb-2019	17:00	1.3	SE	
21-Feb-2019	18:00	1.8	SE	
21-Feb-2019	19:00	0.4	ENE	
21-Feb-2019	20:00	0.0	ESE	
21-Feb-2019	21:00	0.4	ENE	
21-Feb-2019	22:00	0.9	ESE	
21-Feb-2019	23:00	0.9	ESE	
22-Feb-2019	0:00	0.0	ESE	
22-Feb-2019	1:00	1.8	SW	
22-Feb-2019	2:00	1.3	SW	
22-Feb-2019	3:00	1.3	SW	
22-Feb-2019	4:00	1.3	SW	
22-Feb-2019	5:00	0.4	SSW	
22-Feb-2019	6:00	0.0	N	
22-Feb-2019	7:00	0.0	WNW	
22-Feb-2019	8:00	0.9	N	
22-Feb-2019	9:00	0.0	N	
22-Feb-2019	10:00	0.4	Ν	
22-Feb-2019	11:00	0.0	NW	
22-Feb-2019	12:00	0.9	NE	
22-Feb-2019	13:00	0.9	N	
22-Feb-2019	14:00	0.4	NNE	
22-Feb-2019	15:00	0.4	N	
22-Feb-2019	16:00	0.9	N	
22-Feb-2019	17:00	0.0	NNE	
22-Feb-2019	18:00	0.0	ENE	
22-Feb-2019	19:00	0.9	E	
22-Feb-2019	20:00	0.0	ENE	
22-Feb-2019	21:00	0.4	NE	
22-Feb-2019	22:00	0.0	ENE	
22-Feb-2019	23:00	0.4	NE	
23-Feb-2019	0:00	0.4	NE	
23-Feb-2019	1:00	0.4	NE	

Date	Time	Wind Speed m/s	Direction
23-Feb-2019	2:00	0.4	NNE
23-Feb-2019	3:00	0.4	NNE
23-Feb-2019	4:00	1.3	NNE
23-Feb-2019	5:00	1.3	ENE
23-Feb-2019	6:00	1.3	ENE
23-Feb-2019	7:00	0.9	NNE
23-Feb-2019	8:00	2.2	ENE
23-Feb-2019	9:00	0.4	NE
23-Feb-2019	10:00	0.9	ENE
23-Feb-2019	11:00	0.9	E
23-Feb-2019	12:00	1.8	ENE
23-Feb-2019	13:00	0.9	E
23-Feb-2019	14:00	0.4	E
23-Feb-2019	15:00	0.9	ENE
23-Feb-2019	16:00	0.0	NE
23-Feb-2019	17:00	0.4	NNE
23-Feb-2019	18:00	1.3	Ν
23-Feb-2019	19:00	0.4	Ν
23-Feb-2019	20:00	0.9	N
23-Feb-2019	21:00	0.4	N
23-Feb-2019	22:00	0.4	NE
23-Feb-2019	23:00	0.9	NE
24-Feb-2019	0:00	0.9	N
24-Feb-2019	1:00	0.4	NE
24-Feb-2019	2:00	0.4	N
24-Feb-2019	3:00	0.9	N
24-Feb-2019	4:00	0.9	N
24-Feb-2019	5:00	0.0	N
24-Feb-2019	6:00	0.9	N
24-Feb-2019	7:00	0.0	N
24-Feb-2019	8:00	0.4	N
24-Feb-2019	9:00	0.4	NNE
24-Feb-2019	10:00	0.0	N
24-Feb-2019	11:00	0.4	NE
24-Feb-2019	12:00	0.0	N
24-Feb-2019	13:00	0.4	N
24-Feb-2019	14:00	0.4	Ν
24-Feb-2019	15:00	0.4	NNE
24-Feb-2019	16:00	0.4	Ν
24-Feb-2019	17:00	0.9	Ν
24-Feb-2019	18:00	0.4	NNW
24-Feb-2019	19:00	0.4	Ν
24-Feb-2019	20:00	0.0	Ν
24-Feb-2019	21:00	0.0	Ν
24-Feb-2019	22:00	0.0	NNE
24-Feb-2019	23:00	0.0	NNE
25-Feb-2019	0:00	0.9	N
25-Feb-2019	1:00	0.0	NNE
25-Feb-2019	2:00	0.4	N
25-Feb-2019	3:00	0.4	NNE
25-Feb-2019	4:00	0.4	NNE
25-Feb-2019	5:00	0.4	NNE
25-Feb-2019	6:00	0.4	N

Date	Time	Wind Speed m/s	Direction
25-Feb-2019	7:00	0.4	NE
25-Feb-2019	8:00	0.0	NE
25-Feb-2019	9:00	0.4	Ν
25-Feb-2019	10:00	0.0	Ν
25-Feb-2019	11:00	0.4	Ν
25-Feb-2019	12:00	0.4	Ν
25-Feb-2019	13:00	0.4	Ν
25-Feb-2019	14:00	0.4	N
25-Feb-2019	15:00	0.0	NNE
25-Feb-2019	16:00	0.4	Ν
25-Feb-2019	17:00	0.0	Ν
25-Feb-2019	18:00	0.0	
25-Feb-2019	19:00	0.4	N
25-Feb-2019	20:00	0.4	NNW
25-Feb-2019	21:00	0.0	NNE
25-Feb-2019	22:00	0.0	N
25-Feb-2019	23:00	0.0	N
26-Feb-2019	0:00	0.0	NNW
26-Feb-2019	1:00	0.0	N
26-Feb-2019	2:00	0.0	NNE
26-Feb-2019	3:00	0.4	N
26-Feb-2019	4:00	0.0	ENE
26-Feb-2019	5:00	0.4	FNF
26-Feb-2019	6:00	0.9	FNF
26-Feb-2019	7:00	1.3	NF
26-Feb-2019	8.00	13	FNF
26-Feb-2019	9:00	0.9	ENE
26-Feb-2019	10:00	13	NF
26-Feb-2019	11:00	1.3	ENE
26-Feb-2019	12:00	0.0	NE
26-Feb-2019	13:00	0.4	NE
26-Feb-2019	14:00	0.9	E
26-Feb-2019	15:00	2.2	E
26-Feb-2019	16:00	1.3	ESE
26-Feb-2019	17:00	1.3	NE
26-Feb-2019	18:00	0.9	E
26-Feb-2019	19:00	0.4	ENE
26-Feb-2019	20:00	0.4	E
26-Feb-2019	21:00	0.4	ENE
26-Feb-2019	22:00	0.4	ENE
26-Feb-2019	23:00	0.4	E
27-Feb-2019	0:00	0.4	ENE
27-Feb-2019	1:00	0.4	NNE
27-Feb-2019	2:00	0.4	NE
27-Feb-2019	3:00	0.4	ENE
27-Feb-2019	4:00	0.4	NE
27-Feb-2019	5:00	0.4	ENE
27-Feb-2019	6:00	0.4	Ν
27-Feb-2019	7:00	0.4	E
27-Feb-2019	8:00	0.9	SSE
27-Feb-2019	9:00	0.4	ENE
27-Feb-2019	10:00	1.3	ESE
27-Feb-2019	11:00	1.3	ENE

Date	Time	Wind Speed m/s	Direction
27-Feb-2019	12:00	1.8	E
27-Feb-2019	13:00	1.3	E
27-Feb-2019	14:00	1.3	E
27-Feb-2019	15:00	1.3	ENE
27-Feb-2019	16:00	1.3	ESE
27-Feb-2019	17:00	0.9	ENE
27-Feb-2019	18:00	0.4	ENE
27-Feb-2019	19:00	0.4	E
27-Feb-2019	20:00	1.3	ESE
27-Feb-2019	21:00	0.0	ESE
27-Feb-2019	22:00	0.0	E
27-Feb-2019	23:00	0.4	Е
28-Feb-2019	0:00	0.0	E
28-Feb-2019	1:00	0.0	E
28-Feb-2019	2:00	0.0	E
28-Feb-2019	3:00	0.4	E
28-Feb-2019	4:00	0.4	E
28-Feb-2019	5:00	0.4	E
28-Feb-2019	6:00	0.0	E
28-Feb-2019	7:00	0.0	E
28-Feb-2019	8:00	0.0	E
28-Feb-2019	9:00	0.0	E
28-Feb-2019	10:00	0.0	E
28-Feb-2019	11:00	0.4	E
28-Feb-2019	12:00	0.0	NNW
28-Feb-2019	13:00	0.4	SW
28-Feb-2019	14:00	1.3	SW
28-Feb-2019	15:00	1.3	SW
28-Feb-2019	16:00	1.3	SW
28-Feb-2019	17:00	0.4	SW
28-Feb-2019	18:00	0.4	E
28-Feb-2019	19:00	0.0	E
28-Feb-2019	20:00	0.4	E
28-Feb-2019	21:00	0.4	E
28-Feb-2019	22:00	0.4	ENE
28-Feb-2019	23:00	0.0	ENE

APPENDIX K EVENT ACTION PLANS

Event / Action Plan for Air Quality

EVENIT	ACTION			
EVENI	ET	IEC	ER	CONTRACTOR
ACTION LEVE	L			
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC,ER and Contractor; Repeat measurement to confirm finding; and Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method; and Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	1. Notify Contractor.	 Identify source, investigate the causes of exceedance and propose remedial measures Rectify any unacceptable practice and implement remedial measures; and Amend working methods agreed with ER if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC,ER and Contractor; Advise the ER and Contractor on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET and ER on the effectiveness of the proposed remedial measures; and Supervise 	 Confirm receipt of notification of failure in writing; Notify Contractor; and Supervise and ensure remedial measures properly implemented. 	 Identify source, investigate the causes of exceedance and propose remedial measures Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; and

	6. Discuss with IEC, ER and	Implementation o	f	4. Amend proposal if
	Contractor on remedial	remedial measure	s.	appropriate.
	actions required;			
	7. If exceedancecontinues,			
	arrange meeting with IEC			
	and ER;and			
	8. If exceedancestops, cease			
	additional monitoring.			
LIMIT LEVEL				
1.Exceedance	Identify source,	1. Check monitoring	1. Confirm receipt of	1. Identify source,
for one	investigate the causes	data submitted by	notification of failure	investigate the causes
sample	of exceedanceand	ET;	in writing;	of exceedanceand
	propose remedial	2. Check	2. Notify	propose remedial
	measures;	Contractor's	Contractor; and	measures;
	2. Inform ER, Contractor,	working method;	3. Supervise and ensure	2. Take immediate action
	IEC and EPD;	3. Discuss with ET,	remedial measures	to avoid
	3. Repeat measurement to	ER and Contractor	properly	further exceedance;
	confirm finding;	on possible	implemented.	3. Submit proposals for
	4. Increase monitoring	remedial		remedial actions to ER
	frequency to daily;	measures;		with a copy to ET
	5. Assess effectiveness of	4. Advise the ER and		and IEC within 3
	Contractor's remedial	ET on the		working days of
	actions and keep IEC,	effectiveness of		notification;
	EPD and ER informed	the proposed		4. Implement the agreed
	of the results.	remedial		proposals;and
		measures;		5. Amend proposal if
		5. Supervise		appropriate.
		implementation of		
		remedial		
		measures.		
2.Exceedance	Notify IEC, ER,	1. Check monitoring	1. Confirm receipt of	1. Identify source,
for two or	Contractor and EPD;	data submitted by	notification of failure	investigate the causes
more	2. Identify source;	ET;	in writing;	of exceedanceand
consecutive	3. Repeat measurement to	2. Check	2. Notify Contractor;	propose remedial
samples	confirm findings;	Contractor's	3. In consultation with	measures;
	4. Increase monitoring	working method;	the ET and IEC,	2. Take immediate action

frequency to daily;	3. Discuss amongst	agree with the	to avoid
5. Carry out analysis of	ER, ET, and	Contractor on the	further exceedance;
Contractor's working	Contractor on the	remedial measures to	3. Submit proposals for
procedures to	potential remedial	be implemented;	remedial actions to ER
determine possible	actions;	4. Supervise and ensure	with a copy to ET
mitigation to be	4. Review	remedial measures	and IEC within 3
implemented;	Contractor's	properly	working days of
6. Arrange meeting with	remedial actions	implemented;and	notification;
IEC, Contractorand ER	whenever	5.	4. Implement the agreed
to discuss the remedial	necessary to	If exceedancecontinu	proposals;
actions to be taken;	assure their	es, consider what	5. Resubmit proposals if
7. Assess effectiveness of	effectiveness and	portion of the work is	problem still not under
Contractor's remedial	advise the ER	responsible and	control;
actions and keep IEC,	accordingly;and	instruct the	6. Stop the relevant
EPD and ER informed	5. Supervise the	Contractor to stop	portion of works as
of the results;	implementation of	that portion of work	determined by the ER
8. If exceedancestops,	remedial	until	until the exceedanceis
cease additional	measures.	the exceedanceis	abated.
monitoring.		abated.	

Abbreviations: ET – Environmental Team, IEC – Independent Environmental Checker, ER – Engineer's Representative

Each step of actions required shall be implemented within 1 working day unless otherwise specified or agreed with EPD.

EVENT	ACTION			
	ЕТ	IEC	ER	CONTRACTOR
Action Level	 Notify IEC, ER and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the Contractor and formulate remedial measures; 5. Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementat-ion of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	 . Identify source; 2. Inform IEC, ER, EPD and Contractor; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances; 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as

Event / Action Plan for Construction Noise

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
	7. Assess effectiveness of		measures	determined by the
	Contractor's remedial		properly	ER until
	actions and keep IEC, EPD		implemented;	the exceedance is
	and ER informed of the		5. If exceedance	abated.
	results;		continues,	
	8. If exceedance stops, cease		consider what	
	additional monitoring.		portion of the	
			work is	
			responsible	
			and instruct the	
			Contractor to	
			stop that	
			portion of work	
			until	
			the exceedance	
			is abated.	

Abbreviations: ET – Environmental Team, IEC – Independent Environmental Checker, ER – Engineer's Representative

Each step of actions required shall be implemented within 1 working day unless otherwise specified or agreed with EPD.

	Action			
Event	ET	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss remedial measures with IEC and Contractor and ER. 	 Discuss with ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; Supervise the implementation of agreed remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ER, ET and IEC and purpose remedial measures to IEC and ER; and Implement the agreed mitigation measures.
Action level being exceeded by two or more consecutive sampling days	 Repeat in-situ measurement on next day of exceedance to confirm findings; 2. Inform IEC, contractor and ER; 3. Check monitoring data, all plant, equipment and Contractor's working methods; 4. Discuss remedial measures with IEC, contractor and ER 	 Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and 	 Discuss with ET, IEC and Contractor on the proposed mitigation measures; Make agreement on the remedial measures to be implemented ; and Discuss with ET, IEC and Contractor on the effectiveness 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of

Event and Action Plan for Water Quality

	Action			
Event	ET	IEC	ER	Contractor
	5. Ensure remedial measures are implemented	advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures.	of the implemented remedial measures.	working methods; 5. Discuss with ET, IEC and ER and submit proposal of remedial measures to ER and IEC within 3 working days of notification; and 6. Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	 Repeat measurement on next day of exceedance to confirm findings; 2. Inform IEC, contractor and ER; 3. Rectify unacceptable practice; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Consider changes of working methods; 6. Discuss mitigation measures with IEC, ER and Contractor; and 7. Ensure the agreed remedial measures are implemented 	 Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with ET, IEC and Contractor on the implemented remedial measures; Request Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; and Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification;

Abbreviations: ET – Environmental Team, IEC – Independent Environmental Checker, ER – Engineer's Representative

Each step of actions required shall be implemented within 1 working day unless otherwise specified or agreed with EPD.

APPENDIX L SUMMARY OF EXCEEDANCE

Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works – Environmental Team

Exceedance Report

(A) Exceedance Report for Air Quality

Environmental Monitoring	Parameter	No. of non-project related Exceedance		No. of Exc related Constru Activities Cont	ceedance to the uction s of this ract
		ActionLimitLevelLevel	Action Level	Limit Level	
Ain Opolity	1-hr TSP	0	0	0	0
All Quality	24-hr TSP	0	0	0	0

(B) Exceedance Report for Construction Noise (NIL in the reporting period)

(C) Exceedance Report for Water Quality

Environmental Monitoring	Parameter	No. of non-project related Exceedance		No. of Ex related Constr Activitie Con	ceedance l to the ruction es of this tract
		Action Level	Limit Level	Action Level	Limit Level
	Dissolved Oxygen (DO)	0	2	0	0
Water Quality	Turbidity	2	5	0	0
	Suspended Solids (SS)	0	7	0	0

APPENDIX M SITE AUDIT SUMMARY

Environmental Team for Development of Lok Ma Chau Loop Land Decontamination and Advance Engineering Works – Design and Construction

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190201
Date	01 February 2019 (Friday)
Time	15:00 - 16:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_

Ref. No.	Remarks/Observations	Related
	A. Water QualityNo environmental deficiency was identified during site inspection.	Rein 140.
190201-R02 190201-R03	 B. Ecology The 3m high olive green fence shall be erected around the construction area. Indicator near the decontamination zone 2 is yet to be set up. Contractor should ensure there is a clear indicator within 100m of meander. 	B3 B4
:	<i>C. Land Contamination</i>No environmental deficiency was identified during site inspection.	
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	
190201-001	 E. Air Quality Dust generation due to the construction vehicles movement and unloading of material was observed. The Contractor should continue to implement a proper watering system for haul road and site area. 	E5
190201-R05	 Stockpile shall be covered properly with impervious material to avoid dust generation. 	E6
	F. Construction Noise ImpactNo environmental deficiency was identified during site inspection.	
190201-R04	G. Waste / Chemical ManagementChemical containers near the wetsep shall be stored properly.	G3i
	H. Permits/LicencesNo environmental deficiency was identified during site inspection.	
	I. Others	
	 Follow-up on previous audit section (Ref. No.: 190125), follow up action is required for items 190125-O01, 190125-R03, 190125-R04 and 190125-R05 which are renamed as 190201-O01, 190201-R02, 190201-R03 and 190201-R04 respectively. 	

	Name	Signature	Date
Recorded by	Jonathan Lee	10	04 February 2019
Checked by	Dr. Priscilla Choy	WZ	04 February 2019

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

Environmental Observations Identified during the Environmental Site Inspection (01 February 2019)

Ref No: 190201-001

Impact:

Air Quality (E5)

Details:

• Dust generation due to the construction vehicles movement and unloading of material was observed. The Contractor should continue to implement a proper watering system for haul road and site area.

Environmental Team for Development of Lok Ma Chau Loop

 Ref No: 190201-R02 Impact: Ecology (B3) Details: The 3m high olive green fence shall be erected around the construction area.
Ref No: 190201-R03
Impact: Ecology (B3)
 Details: Indicator near the decontamination zone 2 is yet to be set up. Contractor should ensure there is a clear indicator for PMEs within 100m of meander.
Ref No: 190201-R04
Impact: Waste/ Chemical Management (G3i)
Details: • Chemical containers at near the wetsep shall be stored properly.

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

Ref No: 190201-R05

Impact: Air Quality (E 6)

Details:

• Stockpile shall be covered properly with impervious material to avoid dust generation.

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

<u>Rectification Actions taken by the Contractor for Environmental Deficiencies</u> <u>Identified during Previous Audit Session</u>

Environmental Team for Development of Lok Ma Chau Loop

Ref No: 190125-R04
 Impact: Ecology (B4) Details: The Contractor was reminded to establish an effective system to control the PMEs only operating between 0900 and 1700 within 100m of Meander. Follow up: Item remarked as 180201-R03.
 Ref No: 190125-R05 Impact: Waste/ Chemical Management (G3i) Details: Chemical containers at near the wetsep shall be stored properly Follow up: Item remarked as 180201-R04.

Environmental Team for Development of Lok Ma Chau Loop Land Decontamination and Advance Engineering Works – Design and Construction

Weekly Site Inspection Record Summary Inspection Information

inspection information		
Checklist Reference Number	190208	
Date	08 February 2019 (Friday)	
Time	15:45 - 17:00	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_

Ref. No.	Remarks/Observations	Related Item No.
190208-R04 190208-R05	 A. Water Quality No environmental deficiency was identified during site inspection. B. Ecology Provide drip tray for the chemical container near the wetsep A system to ensure the PMEs only operating between 0900 to 1700 hours should be implemented for all site area within 100 m of Meander C. Land Contamination No environmental deficiency was identified during site inspection. 	G3i B4
190208-O01 190208-O02	 D. Landscape & Visual No environmental deficiency was identified during site inspection. E. Air Quality Stockpile of dusty materials were observed without cover/partially covered. The Contractor was reminded to fully cover all stockpiles to avoid dust emission. Part of the exposed site areas and haul road were observed dry. The Contractor was reminded to ensure the implementation of watering should cover all site areas and haul road 	E6 E5
190208-003	 F. Construction Noise Impact No environmental deficiency was identified during site inspection. G. Waste / Chemical Management The setup of chemical waste storage area was observed not complying with the EPD requirement. The Contractor was reminded to review the relevant requirement to modify it. H. Permits/Licences 	G2i, G2ii
	 No environmental deficiency was identified during site inspection. <i>I. Others</i> Follow-up on previous audit section (Ref. No.:190201), follow up action is required for items 190201-O01, 190201-R03, 190201-R04 and 190201-R05 which are renamed as 190208-O02, 190208-R05, 190208-R04 and 190208-O01 respectively. 	

		0	
	Name	Signature	Date
Recorded by	Jonathan Lee		13 February 2019
Checked by	Dr. Priscilla Choy	NZ	13 February 2019
		/	• • • • • • • • • • • • • • • • • • • •

.

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

Environmental Observations Identified during the Environmental Site Inspection (08 February 2019)

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

Ref No: 190208-R05

Impact: Ecology (B4)

Details:

•

A system to ensure the PMEs only operating between 0900 to 1700 hours should be implemented for all site area within 100 m of Meander

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

<u>Rectification Actions taken by the Contractor for Environmental Deficiencies</u> <u>Identified during Previous Audit Session</u>

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop Land Decontamination and Advance Engineering Works – Design and Construction

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190213
Date	13 February 2019 (Wednesday)
Time	09:30 - 11:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
190213-005 190213-R09 190213-006	 A. Water Quality The soak away method from the wetsep tank is not recommended, Contractor should implement an alternate system to discharge water according to discharge license. Cut-off drain near the temporary bridge should be enhanced. The tires of dump trucks after using the wheel wash facility were observed muddy, Contractor should improve the wheel washing facility. 	A6iii A2 E3
190213-R08	 B. Ecology A system to ensure the PMEs only operating between 0900 to 1700 hours should be implemented for all site area within 100 m of Meander C. Land Contamination 	B4
	• No environmental deficiency was identified during site inspection.	
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	
190213-001 190213-002 190213-R10 190213-R11	 E. Air Quality Stockpile of dusty materials were observed without cover/partially covered. The Contractor was reminded to fully cover all stockpiles to avoid dust emission. Part of the exposed site areas were observed dry. The Contractor was reminded to ensure the implementation of watering should cover all site areas. Cement mixing machine should be carried out in an enclosed system. Hoarding should be provided along the site area near the temp. bridge. 	E6 E5 E17ii E10
	F. Construction Noise ImpactNo environmental deficiency was identified during site inspection.	
190213-003 190213-004 190213-R07	 G. Waste / Chemical Management The setup of chemical waste storage area was observed not complying with the EPD requirement. The Contractor was reminded to review the relevant requirement to modify it. A number of drip trays were observed filled with sediments and should be sealed. Drip tray should be provided for chemical containers near wetsep. 	G2i, G2ii G8 G3i
	<i>H. Permits/Licences</i>No environmental deficiency was identified during site inspection.	
	 I. Others Follow-up on previous audit section (Ref. No.:190208), follow up action is required for items 190208-O01, 190208-O02, 190208-O03, 190208-R04 and 190213-R05 which are renamed as 190213-O01, 190213-O02, 190213-O03, 190213-R07 and 190213-R08 respectively. 	

	Name	Signifure	Date
Recorded by	Jonathan Lee	1	15 February 2019
Checked by	Dr. Priscilla Choy	NI	15 February 2019
	• •		• • • • • • • • • • • • • • • • • • • •

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

Environmental Observations Identified during the Environmental Site Inspection (13 February 2019)

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

<u>Rectification Actions taken by the Contractor for Environmental Deficiencies</u> <u>Identified during Previous Audit Session</u>

Environmental Team for Development of Lok Ma Chau Loop

Contract No. YL/2017/03 Environmental Team for Development of Lok Ma Chau Loop Land Decontamination and Advance Engineering Works – Design and Construction

Weekly Site Inspection Record Summary Inspection Information

mapeetion information	
Checklist Reference Number	190222
Date	22 February 2019 (Friday)
Time	14:30 - 16:00

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
190222-002	 A. Water Quality The soak away method from the wetsep tank is not recommended, Contractor should implement an alternate system to discharge water according to discharge license. 	A6iii
190222-R05	 Cut-off drain near the temporary bridge should be enhanced to avoid any construction runoff from 	A2
190222-003	The tires of dump trucks after using the wheel washing facility were observed muddy, Contractor should improve the wheel washing facility.	A14i
	B. EcologyNo environmental deficiency was identified during site inspection.	
	C. Land ContaminationNo environmental deficiency was identified during site inspection.	
	D. Landscape & VisualNo environmental deficiency was identified during site inspection.	
190222-O01 190222-R04	 E. Air Quality Part of the exposed site areas were observed dry. The Contractor was reminded to ensure the implementation of watering should cover all site areas. Hoarding should be erected along the site area near the temporary bridge. 	E5 E10
	 F. Construction Noise Impact No environmental deficiency was identified during site inspection. 	
190222-R06 190222-R07	 G. Waste / Chemical Management Chemical containers should be stored properly with drip tray to avoid any on site contamination. A number of drip trays were observed filled with sediments 	G8 G8
	H. Permits/LicencesNo environmental deficiency was identified during site inspection.	
	 I. Others Follow-up on previous audit section (Ref. No.:190213), follow up action is required for items 190213-O02, 190213-O04, 190213-O05, 190213-O06, 190213-R09 and 190213-R11 which are renamed as 190222-O01, 190222-R07, 190222-O02, 190222-O03, 190222-O04 and 190222-R05 respectively. 	

	Name	Signature	Date
Recorded by	Jonathan Lee	M	26 February 2019
Checked by	Dr. Priscilla Choy	nt	26 February 2019

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

Environmental Observations Identified during the Environmental Site Inspection (22 February 2019)

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

Ref No: 190222-R07

Impact: Waste/ Chemical Management (G8)

Details:

• A number of drip trays were observed filled with sediments

Environmental Team for Development of Lok Ma Chau Loop

Land Decontamination and Advance Engineering Works – Design and Construction

<u>Rectification Actions taken by the Contractor for Environmental Deficiencies</u> <u>Identified during Previous Audit Session</u>

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop

Environmental Team for Development of Lok Ma Chau Loop

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
Construc	tion Dust	Impact					L
S3.8	D1- DP1/DP 2	Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road is proposed to achieve dust removal efficiency of 92.1%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	#
		less than 1.6 L/m2 to achieve the respective dust removal efficiencies					
S3.8	D2-	The contractor shall follow the procedures and requirements	Reduce air pollution	Contractor	All construction	Construction	
	DP1/DP	given in the Air Pollution Control (Construction Dust) Regulation	emission from construction		sites	stage	
	2	All vehicles shall be shut down in intermittent use	vehicles and plants				
		Only well-maintained plant should be operated on-site to					۸
		avoid emission of dark smoke					۸
		Valid No-Road Mobile Machinery (NRMM) labels should					
		be provided to regulated machines					*
S3.8	D2-	Following dust suppression measures should also be	Minimize dust impact at the	Contractor	All construction	Construction	#
	DP1/DP	throughout the construction Phase	nearby sensitive receivers		sites	stage	
	2	 Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 					Λ
		 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads: 					Λ
		 A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones; 					٨
		The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious					^

EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
Log Ref		recommended Measures &	implement the	measures	Implement the	Status
		Main Concerns to address	measures?		measures?	
	 sheeting to ensure that the dusty material do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, 	Main Concerns to address	measures?		measures?	*
	 building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry public for the scaffold is a canopy for the scaffold is a canopy should be totally be accurate to the scaffold is a canopy should be totally enclosed by impervious sheeting; 					
	EM&A Log Ref	EM&A Recommended Mitigation Measures Log Ref sheeting to ensure that the dusty material do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting;<	EM&A Recommended Mitigation Measures Objectives of the recommended Measures & Main Concerns to address Log Ref sheeting to ensure that the dusty material do not leak from the vehicle; Main Concerns to address Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. The portion of any road leading only to construction site that is within 30m of a vehicle entrace or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any are a that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to th	EM&A Recommended Mitigation Measures Objectives of the recommended Measures & Main Concerns to address Implement the measures? sheeting to ensure that the dusty material do not leak from the vehicle; • Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcorres; • Where are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. • The portion of any read leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuous(); • Any area that involves demolition activities should be sprayed with water or a dust suppression chemical continuous(); • Any area that involves demolition activities should be sprayed with water or a dust supression chemical continuous(); • Any area that involves demolition activities should be sprayed with water or a dust supression chemical continuous(); • Any area that involves demolition activities should be sprayed with water or a dust supression chemical	EMAA Recommended Mitigation Measures Objectives of the recommended Measures & Main Concerns to address Who to Location of the measures Implement the usable sheeting to ensure that the dusty material do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be provided as far as practicable is on tales than 2.4m high should be provided as far as practicable along the site boundary with provision for public consign. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction pariod. The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven diffuing, curing, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be syrated with water or a dust suppression chemical continuously. Any area that involves demolition activities should be syrated with water or a dust suppression chemical continuously; Any area that involves demolition activities should be provided to a cronces the scatfolding inform the erits founde vet; Where a scatfolding is erected around the perimeter of a building under construction,	EMAA Recommended Mitigation Measures Objectives of the recommended Measures & Main Concerns to address Who to Implement the measures? Location of the measures? When to Implement the measures? sheeting to ensure that the dusty material do not leak from the vehicle; sheeting to ensure that the dusty material do not leak from the vehicle; measures? implement the measures? When to address sheeting to ensure that the dusty material do not leak from the vehicle; measures? implement the measures? implement the measures? When to address measures? measures? implement the measures? implement the measures? When the rand social box paved with corrects, the action the rand social box paved with corrects, bituminous materials or hardcores; when the provided as far as paracleabel and the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. The potion of any rand leading only to construction site that is within 30m of a vanicle entrance or asi should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical timmediately provide to movid and immediately after the activities so as to maintain the entire surface wet; When a sa to maintain the entire surface wet; When a sa to maintain the enting should be provided to movid to perived to the highest l

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		 impervious sheeting or placed in an area sheltered on the top and the 3 sides; Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked 					Δ.
		 with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and 					*
		 Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					۸
S3.8	D4-	Implement regular dust monitoring under EM&A programme during the	Monitoring of dust impact	Contractor	Selected	Construction	۸
	DP1/DP	construction stage.			representative	stage	
	2				dust		
					monitoring station		
Construc	tion Nois	e Impact	·	·		•	·
S4.8	N-CP1-	 Implement the following good site management practices: Only well-maintained plant should be operated on-site and 	Control construction	Contractor	All construction	Construction	
	DP1/DP	plant should be serviced regularly during the construction	airborne		sites	stage	
	2	 programme; Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work 	noise				^
		 periods or should be throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; 					Α

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		 Mobile plant should be sited as far away from NSRs as possible and practicable; Material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 					л Л
S4.8	N-CP2-	Install temporary site hoarding (approx 2.4m high) located on the	Reduce the construction	Contractor	All construction	Construction	۸
	DP1/DP	The conditions of the hoardings shall be properly maintained	noise levels at low-level		sites where	phase	
	2	throughout the construction period.	zone of NSRs through		practicable		
			partial screening.				
S4.8	N-CP3-	Install movable noise barriers and full enclosure, screen the	Screen the noisy plant items	Contractor	All construction	Construction	۸
	DP1/DP	noisy plants including air compressor and generator.	to be used at all construction		sites where	phase	
	2		sites		practicable		
S4.8	N-CP4-	Use of "Quiet" Plant and Working Methods	Reduce the noise levels of	Contractor	All construction	Construction	۸
	DP1/DP		plant items		sites where	phase	
	2				practicable		
S4.8	N-CP5-	Sequencing operation of construction plants where practicable.	Operate sequentially within	Contractor	All construction	Construction	۸
	DP1/DP		the same work site to reduce		sites where	phase	
	2		the construction airborne		practicable		
			noise				
S4.8	N-CP6-	Setting the concrete lorry mixer at around 25m away from the	Reduce the noise levels	Contractor	Sections with	Construction	۸
	DP2	Road	from concrete lorry mixer		NSRs along Ha	phase	
					Wan Tsuen Road		
					and Lok Ma Chau		
					Road		
S4.8	N-CP8-	Provide temporary noise barrier during construction phase.	Control airborne noise from	Contractor	Refer to Figure 4-	Construction	۸
	DP2		construction access road		8 of the EIA report	phase	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
			traffic				
S4.8	N-CP7-	Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	۸
	DP2/N-		noise levels at the selected		representative	phase	
	CP6-		representative locations		noise monitoring		
	DP1				station		
Water Qu	ality Impa	act (Construction Phase)					
S5.7	W1-CP-	Construction Runoff and Site Drainage	Minimize water quality	Contractor	All construction	Construction	
	DP1/DP	In accordance with the Practice Note for Professional Persons on	impact from construction site		sites where	phase	
	2	Construction Site Drainage, Environmental Protection	runoff and general		practicable		
		Department, 1994 (ProPECC PN 1/94), construction phase mitigation	construction activities				
		measures,					
		where appropriate, should include the following:					۸
		Control Plan					
		At the start of site establishment, perimeter cut-off drains					#
		to direct off-site water around the site should be					
		constructed with internal drainage works and erosion and					
		sedimentation control facilities implemented. Channels					
		(both temporary and permanent drainage pipes and					
		culverts), earth bunds or sand bag barriers should be					
		provided on site to direct stormwater to silt removal					
		actinities. The design of the temporary on-site drainage					
		system will be undertaken by the contractor prior to the					
		Diversion of natural stormwater should be provided as far					
		as possible. The design of temporary on-site drainage					٨
		as possible. The design of temporary off-site or alliage					
		construction machinery and equipments in order to avoid					
		or minimize polluted runoff. Sedimentation tarks with					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		sufficient capacity, constructed from pre-formed individual					
		cells of approximately 6 to 8 m3 capacities,					
		are recommended as a general mitigation measure which					
		can be used for settling surface runoff prior to disposal.					
		The system capacity shall be flexible and able to handle					
		multiple inputs from a variety of sources and suited to					
		applications where the influent is pumped.					
		The dikes or embankments for flood protection should be					
		implemented around the boundaries of earthwork areas.					٨
		Temporary ditches should be provided to facilitate the					
		runoff discharge into an appropriate watercourse, through					
		a silt/sediment trap. The silt/sediment traps should be					
		incorporated in the permanent drainage channels to					
		enhance deposition rates.					
		The design of efficient silt removal facilities should be					٨
		based on the guidelines in Appendix A1 of ProPECC PN					
		1/94. The detailed design of the sand/silt traps should be					
		undertaken by the contractor prior to the commencement					
		of construction.					
		Construction works should be programmed to minimize					
		surface excavation works during the rainy seasons (April					
		to September). All exposed earth areas should be					٨
		completed and vegetated as soon as possible after					
		earthworks have been completed. If excavation of soil					
		cannot be avoided during the rainy season, or at					
		any time of year when rainstorms are likely, exposed					
		slope surfaces should be covered by tarpaulin or other					
		means.					
		All drainage facilities and erosion and sediment control					
		structures should be regularly inspected and maintained					
		to ensure proper and efficient operation at all times and					#
		particularly following rainstorms. Deposited silt and grit					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		should be removed regularly and disposed of by					
		spreading evenly over stable, vegetated areas.					
		Measures should be taken to minimise the ingress of site					
		drainage into excavations. If the excavation of trenches in					K
		wet periods is necessary, it should be dug and backfilled					
		in short sections wherever practicable. Water pumped out					
		from trenches or foundation excavations should be					
		discharged into storm drains via silt removal facilities.					
		All open stockpiles of construction materials (for example,					*
		aggregates, sand and fill material) of should be covered					
		with tarpaulin or similar fabric during rainstorms.					
		Measures should be taken to prevent the washing away					
		of construction materials, soil, silt or debris into any					
		drainage system.					
		 Manholes (including newly constructed ones) should 					۸
		always be adequately covered and temporarily sealed so					
		as to prevent silt, construction materials or debris being					
		washed into the drainage system and storm runoff being					
		directed into foul sewers.					
		Precautions to be taken at any time of year when					۸
		rainstorms are likely, actions to be taken when a					
		rainstorm is imminent or forecasted, and actions to be					
		taken during or after rainstorms are summarized in					
		Appendix A2 of ProPECC PN 1/94. Particular attention					
		should be paid to the control of silty surface runoff during					
		storm events.					
		All vehicles and plant should be cleaned before leaving a					
		construction site to ensure no earth, mud, debris and the					٨
		like is deposited by them on roads. An adequately					
		designed and sited wheel washing facilities should be					
		provided at every construction site exit where practicable.					
		Wash-water should have sand and silt settled out and					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		 removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheelwash bay to prevent vehicle tracking of soil and silty water to public roads and drains. Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. Regular environmental audit on the construction site should be carried out in order to prevent any malpractices. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the meander, wetlands and fish ponds. 					Α Α Α Α
S5.7	W3-CP- DP1/DP 2	 Groundwater from Contaminated Area No mitigation measure is required for groundwater treatment in LMC Loop. 	Minimize groundwater quality impact from contaminated area	Contractor	Areas where contamination is found.	Construction phase	^

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		 Additional investigation is required to identify if contaminated groundwater is found If the investigation results indicated that the groundwater to be generated from construction works would be contaminated, the contaminated groundwater should be either discharged into recharged wells, or properly treated in compliance with the requirements of Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters. If recharged well method were used, the groundwater quality in the recharged well should not be affected by recharging operation, i.e. the pollution levels of the recharged groundwater should not be higher than that in the recharging wells. If treatment and discharge method were used, the design of wastewater treatment facilities, such as active carbon and petrol interceptor, should be submitted to the EPD and a discharge license should be obtained under the WPCO through the Designed Officers of EPD. 					Α
S5.7	W3-CP-	Sewage from Workforce	Minimize water quality from	Contractor	All construction	Construction	
	DP1/DP 2	 Portable chemical toilets and sewage holding tanks should be provided for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets to cater 0.15m3/day/employed populations and be responsible for appropriate disposal and maintenance. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project. Regular environmental audit on the construction site should be 	sewage effluent		sites where practicable	phase	Α

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		conducted in order to provide an effective control of any					
		malpractices and achieve continual improvement of environmental					
		performance on site.					
S5.7	W4-CP-	Riverbanks Formation	Minimize water quality	Contractor	Riverbank works	Construction	
	DP1	In order to prevent sediment transport during riverbank works,	impact from riverbank works			Phase	
		deployment of silt curtain should be implemented, especially when					۸
		construction works encroach or occur in close distance to water					
		body. It is recommended to carry out all the riverbank works					
		within a cofferdam or diaphragm wall.					
		Water quality of the Shenzhen River and the meander would be					۸
		monitored to ensure effectiveness of the implemented mitigation					
		measures.					
S5.7	W1-CP-	Bio-remediation in Shenzhen River	Minimize water quality	Contractor	Shenzhen River	Construction	
	BR	Water quality monitoring and audit is recommended to ensure that	impact from bio-remediation		where practicable	phase	۸
		the proposed bio-remediation operation would not result in	of Shenzhen River				
		adverse water quality impact. Details of the water quality					
		monitoring programme are presented in the EM&A Manual. If					
		unacceptable water quality impact in the receiving water is					
		recorded, additional measures such as slowing down, or					
		rescheduling of works should be implemented as necessary.					
S5.7	W5-CP-	Construction of Bridge Crossing	Minimize water quality	Contractor	Construction sites	Construction	
	DP2	Good site management as stipulated in ProPECC PN1/94 should	impact from construction of		for bridge crossing	phase	۸
		be fully implemented to avoid polluted liquid or solid wastes from	bridge crossing		where practicable		
		falling into the WSRs.					
		All the fishponds will be drained and no fishpond will be affected					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		by bridge crossing.					
		In the meander, cofferdam or diaphragm walls should be deployed					۸
		for protecting fish ponds or nearby rivers during bridge pier					
		construction and or road widening work at fishponds.					
		For the low level viaducts crossing the small streams at Ma Tso					۸
		Lung, Ping Hang and channel near Lung Hau Road, precast					
		structures will be used such that there will be no construction					
		work in the water streams, and thus, to avoid direct water quality					
		impacts.					
Waste Ma	anageme	nt (Construction Waste)					
S7.6	WM1-	Waste Reduction Measures	Reduce waste generation	Contractor	All construction	Construction	
	DP1/DP	Waste reduction is best achieved at the planning and design phase, as			sites where	phase	
	2	well as by ensuring the implementation of good site practices. The following recommendations are proposed to achieve reduction:			practicable		
		Segregate and store different types of waste in different					۸
		containers, skip or stockpiles to enhance reuse or recycling of					
		materials and their proper disposal;					
		proper storage and site practices to minimize the potential for					*
		damage and contamination of construction materials;					
		plan and stock construction materials carefully to minimize					۸
		amount of waste generated and avoid unnecessary generation of					
		waste;					
		sort out demolition debris and excavated materials from					
		demolition works to recover reusable/recyclable portions (i.e.					۸
		soil, broken concrete, metal etc.);					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		 provide training to workers on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling. 					Λ
S7.6	WM2- DP1/DP 2	Prepare Waste Management Plan and submit to the Engineer for approval	Minimize waste generation during construction	Contractor	All construction sites	Construction phase	N/A
S7.6	WM2-	Good Site Practice	Minimize waste generation	Contractor	All construction	Construction	
	DP1/DP 2	 The following good site practices are recommended throughout the construction activities: Nomination of an approved personnel, such as a site manager, to be responsible for the implementation of good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; Training of site personnel in site cleanliness, appropriate waste management procedures and concepts of waste reduction, reuse and recycling; Provision of sufficient waste disposal points and regular collection for disposal; Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; 	during construction		sites	phase	۸ ۸ ۸ ۸
S7.6	WM4-	<u>Storage of Waste</u>	Minimize waste generation	Contractor	All construction	Construction	
	DP I/DP		during construction		siles	pnase	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
	2	 impacts: Waste such as soil should be handled and stored well to ensure secure containment; Stockpiling area should be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; Different locations should be designated to stockpile each material to enhance reuse; 					Λ Λ
S7.6	WM5- DP1/DP 2	 <u>Collection and Transportation of Waste</u> The following recommendation should be implemented to minimize the impacts: Remove waste in timely manner; Employ the trucks with cover or enclosed containers for waste transportation; Obtain relevant waste disposal permits from the appropriate authorities; and Disposal of waste should be done at licensed waste disposal facilities. 	Minimize waste impact from storage	Contractor	All construction sites	Construction phase	л л л
S7.6	WM6- DP1/DP 2	 <u>Excavated and C&D Material</u> Wherever practicable, C&D materials should be segregated from other wastes to avoid contamination and ensure acceptability at Public Fill Reception Facilities areas or reclamation sites. The following mitigation measures should be implemented in handling the excavated and C&D materials: Maintain temporary stockpiles and reuse excavated fill material for backfilling; Carry out on-site sorting; 	Minimize waste impacts from excavated and C&D material	Contractor	All construction sites	Construction phase	Λ

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Make provisions in the Contract documents to allow and promote					۸
		the use of recycled aggregates where appropriate; and					
		Implement a trip-ticket system for each works contract to ensure					٨
		that the disposal of C&D materials are properly documented and					
		verified.					
		The recommended C&D materials handling should include:					
		On-site Sorting of C&D Materials					۸
		Reuse of C&D Materials					۸
		Use of Standard Formwork and Planning of Construction					۸
		Materials Purchasing					
		Provision of Wheel Wash Facilities					۸
		Details refer to Section 7.6.1.4 of the EIA report.					
S7.6	WM7-	Contaminated Soil	Remediate contaminated	Contractor	All construction	Construction	
	DP1/DP	As a precaution, it is recommended that standard good site practice	soil		sites where	phase	N/A
	2	should be implemented during the construction phase to minimize any			applicable		
		mitigation measures to minimize the potential environmental					
		implications arising from the handling of contaminated materials refer					
		to Land Contamination Section.					
S7.6	WM8-	Chemical Waste	Control the chemical waste	Contractor	All construction	Construction	
	DP1/DP	If chemical wastes are produced at the construction site, the	and ensure proper storage,		sites	phase	*
	2	Contractors should register with EPD as chemical waste	handling and disposal				
		producers. Chemical wastes should be stored in appropriate					
		containers and collected by a licensed chemical waste contractor.					
		Chemical wastes (e.g. spent lubricant oil) should be recycled at					
		an appropriate facility as far as possible, while the chemical waste					
		that cannot be recycled should be disposed of at either the					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Chemical Waste Treatment Centre, or another licensed facility, in					
		accordance with the Waste Disposal (Chemical Waste) (General)					
		Regulation.					
S7.6	WM9-	<u>General Waste</u>	Minimize production of the	Contractor	All construction	Construction	
	DP1/DP	General refuse should be stored in enclosed bins separately from	general refuse and avoid		sites	phase	۸
	2	construction and chemical wastes. Recycling bins should also be	odour, pest and litter impacts				
		placed to encourage recycling.					
		Preferably enclosed and covered areas should be provided for					۸
		general refuse collection and routine cleaning for these areas					
		should also be implemented to keep areas clean.					
		A reputable waste collector should be employed to remove					۸
		general refuse on a daily basis.					
S7.6	WM10-	<u>Sewage</u>	Minimize production of	Contractor	All construction	Construction	
	DP1/DP	The WMP should document the locations and number of portable	sewage impacts		sites	phase	۸
	2	chemical toilets depending on the number of workers, land					
		availability, site condition and activities.					
		Regularly collection by licensed collectors should be arranged to					۸
		minimize potential environmental impacts.					
S7.6	WM11-	<u>Sediment</u>	Minimize waste impacts	Contractor	All construction	Construction	
	DP2	The following mitigation measures are recommended during	from sediment		sites	phase	
		transportation and stockpiling:					
		stockpiling area(s) must be properly designed and closed to the					۸
		dredging locations as far as possible;					
		Stockpiling area(s) should be lined with impermeable sheeting					۸
		and bunded;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		stockpiles should be properly covered by impermeable sheeting;					۸
		vehicles delivering the sediments should be covered, and truck					۸
		bodies and tailgates should be sealed to prevent any discharge					
		during transportation;					
		bulk earth moving equipments should be utilized as much as					۸
		possible to minimize workers' handling and contact of the					
		excavated materials; and					
		personal protective clothing should be provided to site workers.					۸
		In case contamination of excavated materials is confirmed after testing,					
		the mitigation measures described in Land Contamination Impacts					
		section should also be implemented to minimize potential environmental					
		impacts.					
Land Cor	ntaminati	on	-				
S8.7	LC1-	Remediation of arsenic-contaminated soil	To remediate arsenic-	Project	LMC Loop,	Prior to	
	DP2	"Solidification/Stabilization" (S/S) treatment method was	contaminated soil	Proponent/	contaminated	commencement of	۸
		proposed for the remediation of arsenic-contaminated soil.		Contractor	area	construction works	
		Toxicity Characteristic Leaching Procedure (TCLP) test should be				within the	
		undertaken after S/S in order to ensure that the contaminant will				contaminated area	
		not leach to the environment. Unconfined Compressive Strength					
		(UCS) test should be conducted, and not less than 1MPa should					
		be met prior to the backfilling or stockpiled for future reuse within					
		the study area. Off-site disposal or reuse of the solidified material					
		is not allowed.					
S8.7	LC1-	Excavation and Transportation	To minimise the potential	Contractor	Contaminated		
	DP1/DP	Excavation profiles must be properly designed and executed with	environmental impacts		area		^

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
	2	attention to the relevant requirements for environment, health and	arising from the handling of				۸
		safety;	contaminated materials				
		In case the soil to be excavated is situated beneath the					۸
		groundwater table, it may be necessary to lower the groundwater					
		table by installing well points or similar means;					
		Excavation should be carried out during dry season as far as					۸
		possible to minimise contaminated runoff from contaminated soils;					
		Stockpiling site(s) should be lined with impermeable sheeting and					
		bunded. Stockpiles should be properly covered by impermeable					۸
		sheeting to reduce dust emission during dry season or					
		contaminated run-off during rainy season. Watering should be					
		avoided on stockpiles of contaminated soil to minimise					
		contaminated runoff;					
		Supply of suitable clean backfill material after excavation, if					۸
		required;					
		Vehicles containing any excavated materials should be suitably					۸
		covered to limit potential dust emissions or contaminated run-off,					
		and truck bodies and tailgates should be sealed to prevent any					
		discharge during transport or during wet season;					
		Speed control for the trucks carrying contaminated materials					
		should be enforced; and					^
		Vehicle wheel washing facilities at the site's exit points should be					
		established and used.					^
S8.7	LC3-	Solidification/Stabilization	To minimize the potential	Contractor	Contaminated	The course of	
	DP1/DP	The loading, unloading, handling, transfer or storage of cement	environmental impacts		area	remediation	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
	2	should be carried out in an enclosed system;	arising from the handling of				
		Mixing process and other associated material handling activities	contaminated materials				۸
		should be properly scheduled to minimise potential noise impact					
		and dust emission;					
		The mixing facilities should be sited as far apart as practicable					۸
		from the nearby noise sensitive receivers;					
		Mixing of contaminated soil and cement / water / other additive(s)					۸
		should be undertaken at a solidification plant to minimise the					
		potential for leaching;					
		Runoff from the solidification / stabilization area should be					۸
		prevented by constructing a concrete bund along the perimeter of					
		the solidification / stabilization area;					
		The run-off contained in the concrete bund area along the					۸
		perimeter of the paved solidification / stabilization area, if any,					
		will be collected, stored and used for the mixing process of					
		cement / contaminated soil;					
		If stockpile of treated soil is required, the stockpiling site(s)					۸
		should be lined with impermeable sheeting and bunded.					
		Stockpiles should be properly covered by impermeable sheeting					
		to reduce dust emission during dry season or site run-off during					
		rainy season; and					
		If necessary, there should be clear and separated areas for					۸
		stockpiling of untreated and treated materials.					
Landsca	pe and Vi	sual Impact (Construction Phase)					
S11.5.4	L-CP1-	Preservation and Protection of Existing Trees (Good Site	Avoid disturbance and	Detailed design	Within project site	Detailed design	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
Table11.5.	DP1	Practice)	protection of existing trees	consultant/		and construction	
9		The proposed works should avoid disturbance to the existing		Contractor		phase	۸
		trees within and close to the works areas. The tree					
		preservation proposals shall be coordinated with the layout					
		and design of the engineering and architectural works at					
		detailed design phase for further retention of individual trees.					
		It is recommended that a full detailed tree survey and felling					۸
		application will be undertaken and submitted for approval by					
		the relevant government departments in accordance with					
		ETWB TCW No. 3/2006, 'Tree Preservation'. This will be					
		conducted during the detailed design phase of the project and					
		submitted to DLO for approval. The methodology and scope					
		including the programme for the tree survey and felling					
		application are also subject to the approval of the relevant					
		authorities.					
		Trees which are not in conflict with the proposals would be					
		retained and shall be protected by means of fencing during					۸
		construction phase to prevent damage to tree canopies and					
		root zones from vehicles and storage of materials.					
		Specifications for the protection of existing trees will be provided					
		during the preparation of the detailed tree survey by					۸
		Detailed Design consultants at detailed design and					
		construction phase.					
S11.5.4	L-CP2-	Works Area and Temporary Works Areas (Good Site Practice)	Minimize landscape impacts	Contractor	The whole project	Construction	
Table	DP1/DP	The construction sequence and construction programme shall			area where	phase	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
11.5.9	2	be optimized in order to minimize the duration of impact.			applicable		
		Construction site controls shall be enforced including the					
		storage of materials, the location and appearance of site					۸
		accommodation and site storage; and the careful design of site					
		lighting to prevent light spillage.					
		The temporary works areas shall be restored to its original					
		condition or enhanced through the introduction of new					
		amenity areas or planting areas following the completion of					
		the construction phase.					
	L-CP3-	Advance Implementation of Mitigation Planting	Minimize landscape impacts	Contractor	The whole project	Construction	
	DP1/DP	Replanting of existing / disturbed vegetation shall be			area where	phase	۸
	2	undertaken at the earliest possible stage of the construction			applicable		
		phase of the project using predominantly native plant species					
		although ornamental species may be used for roadside					
		planting and amenity areas.					
	L-CP4-	Transplantation of Existing Trees	Minimize landscape impacts	Contractor	The whole project	Construction	
	DP1/DP	Some specimens have relatively higher amenity value which			area where	phase	۸
	2	are in conflict with the proposals shall be considered for			applicable		
		transplantation. For trees affected by the proposed					
		infrastructure works the final receptor sites shall be preferably					
		adjacent to their current locations alongside of the alignment					
		to retain their contribution to the local landscape context. For					
		the LMC Loop the receptor locations will be selected to allow					
		the trees to be moved directly to their final locations in					
		accordance with the detailed landscape proposals.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		The transplanting proposals are subject to review at the					۸
		detailed design phase and to agreement-in-principle with the					
		relevant management and maintenance agents and/or					
		government departments. The implementation programme for					
		the proposed works shall reserve sufficient time for the					
		advanced tree transplanting preparation works to enhance the					
		survival of the transplanted trees.					
		The transplanting proposals will be subject to the findings of					
		the detailed tree survey and felling application to be					
		undertaken by the detailed design consultants and following					
		approval by the relevant departments.					
	L-CP6-	Creation of Wetland and Landscape Buffer	Compensation of the loss of	Project	The whole project	Detailed design,	
	DP1/DP	The existing reedbed acquired for development areas for the	landscape resources	Proponent/	area where	construction and	۸
	2	project will be reinstated as part of the Ecological Area. The		Detailed design	applicable	operational phases	
		reinstatement shall be undertaken at the earliest possible stage		consultant/			
		during the construction phase of the project.		Contractor/			
		Creation of 12.78ha of Ecological Area (EA) containing reed		Operator			۸
		marsh and marsh will be created at the southern portion of the					
		LMC Loop, and a 50m width landscape buffer area will be set					
		up in between the EA and the development area. Wetland					
		creation concepts please refer to Figure 11.9zf and Chapter 12					
		Ecology Impact Assessment of this EIA.					
		Native tree and shrub mix will be utilised for the creation of					٨
		landscape buffer along northern edge of EA to support the					
		creation of avifauna habitat from ecologist perspectives as					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		well as enhance the aesthetic and landscape diversity within					
		the LMC Loop Development.					
		Creation of minimum 11.72 Ha. of permanent compensatory					۸
		off-site wetland areas at Sam Po Shue and Hoo Hok Wai. For					
		the potential locations for off-site wetlands please refer to					
		Figure 11.9zf and 11.9zh, Chapter 2 Project Description and					
		Chapter 12 Ecology Impact Assessment of this EIA.					
	V-CP5-	Coordination with Concurrent Projects	Minimize landscape impacts	Contractor	The whole project	Construction	
	DP1/DP	Coordinated implementation programme with concurrent			area where	phase	N/A
	2	projects to minimise impacts and where possible reduce the			applicable		
		period of disturbance.					
Ecology	(Construe	ction Phase)					
S12.7	E1-DP1	Disturbance to Fish Ponds at HHW	On the disturbance to fish	Detailed design	Fish ponds at	Detailed design,	
		• Development set back a minimum of 23m from the edge Meander.	ponds at HHW	consultant/	HHW and LMC	construction phase	N/A
		Management of fish pond habitat to enhance ecological value		Contractor			N/A
		to twice existing value, in order to compensate for					
		disturbance to large waterbirds.					
		Creation and establishment will occur prior to					
		commencement of substantive works associated with any					N/A
		element of the project for which fish pond compensation is					
		required.					
		Construction phase					
		Erection of a 3m high, dull green site boundary fence to					*
		minimise disturbance to wetland habitats caused by human					
		activity in LMC Loop.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
S12.7	E2-DP1	Construction run-off	Minimise the indirect impact	Contractor	Seawall,	During	
		Temporary sewerage and drainage will be designed and	from the increasing			construction	۸
		installed to collect wastewater and prevent it from entering	suspended solids and				
		nearby water bodies;	pollutants in LMC Meander				
		Proper locations well away from nearby water bodies will be					۸
		used for temporary storage of materials (i.e. equipment,					
		filling materials, chemicals and fuel) and temporary stockpile					
		of construction debris and spoil, and these will be identified					
		before commencement of works;					
		To prevent muddy water entering nearby water bodies, work					#
		sites close to nearby water bodies will be isolated, using such					
		items as sandbags or silt curtains with lead edge at bottom					
		and properly supported props. Other protective measures will					
		also be taken to ensure that no pollution or siltation occurs to					
		the water gathering grounds of the work site;					
		If temporary access along a riverbed is unavoidable, this will					٨
		be kept to the minimum in width and length. Temporary river					
		crossings will be supported on stilts above the river bed;					
		Stockpiling of construction materials, if necessary, will be					٨
		properly covered and located away from nearby water					
		bodies;					
		Construction debris and spoil will be covered and/or properly					۸
		disposed of as soon as possible to avoid being washed into					
		nearby water bodies;					
		Construction effluent, site run-off and sewage will be					٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		properly collected and/or treated. Wastewater from any					
		construction site will be minimised via the following in					
		descending order: reuse, recycling and treatment;					
		Proper locations for discharge outlets of wastewater					۸
		treatment facilities well away from sensitive receivers will be					
		identified (i.e. treated wastewater will not be discharged into					
		LMC Meander, natural streams, marsh, reedbed, active or					
		abandoned fish ponds);					
		Adequate lateral support will be erected where necessary in					^
		order to prevent soil/mud from slipping into the Ecological					
		Area or LMC Meander;					
		Site boundary will be clearly marked and any works beyond					^
		the boundary strictly prohibited;					
		Regular water monitoring and site audit will be carried out at					^
		adequate points along LMC Meander, and at the outfalls of					
		the natural streams around LMC Loop. If the monitoring and					
		audit results show that pollution occurs, adequate measures					
		including temporarily cessation of works will be considered.					
S12.7	E3-	Pollutant Runoff to Downstream areas from Accidental Spillage	Minimize indirect impact	Contractor/	Area within project	Construction	
	DP1/DP	Prepare an emergency contingency plan	from pollutant runoff to	Operator	site near streams	phase and	N/A
	2	The plan will include, but not be limited to, the following:	downstream areas from			operation phase	
		- Potential emergency situations;	accidental spillage				
		- Chemicals or hazardous materials used on-site (and					
		their location);					
		- Emergency response team;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		- Emergency response procedures;					
		- List of emergency telephone hotlines;					
		- Locations and types of emergency response equipment;					
		- Training plan and testing for effectiveness.					
S12.7	E4-	Use opaque, non-transparent, non-reflective noise barriers for	Minimize the mortality	Developer /	Area within project	Detailed design,	۸
	DP1/DP	all developments associated with the Project.	impacts on birds	Detailed design	site	construction and	
	2	Design of buildings should not incorporate use of night-time		consultant/		operation phases	۸
		lighting at or near top of buildings, highly reflective materials		contractor/			
		should not be used where vegetation is adjacent and glass		operator			
		surfaces should not be angled upwards in a way that reflects					
		the sky. Unnecessary lighting should be eliminated.					
		Appropriate glass and façade treatments should be used					
		where required to minimise impact. Unnecessary lighting					
		should be avoided.					
		These include the following:					
		Fritting, or the placement of ceramic lines or dots on glass,					۸
		has little effect on the human-perceived transparency of the					
		window but creates a visual barrier to birds outside. This					
		treatment also has the advantage of reducing air conditioning					
		loads by lowering heat gain, while still allowing light					
		transmission for interior spaces. It is most successful when					
		the frits are applied on the outside surface. Frosted glass has					
		similar effects.					
		Angled glass may be used only for smaller panes in buildings					۸
		with a limited amount of glass.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		The use of glass that reflects UV light (primarily visible to					٨
		birds, but not to humans) acts to reduce collision.					
		Film and art treatment allow glass surfaces to be used a					۸
		medium of expression, often related to the nature and use of					
		the building, as well indicating to birds their impenetrability.					
		Lightweight external screens can be added to windows or					۸
		become a façade element of larger buildings, and are suitable					
		where non-operable windows are prevalent, which is often					
		the case in modern buildings in HK.					
		In terms of reducing night-time mortality impacts, eliminating					
		unnecessary lighting is one of the easiest methods, and has the					
		added advantage of saving energy and expense. Potential impacts					
		of nocturnal avian collision with buildings should be minimised by not					
		creating sky glow from the use of night-time lighting at or near the					
		top of buildings or other structures. In addition to avoiding uplighting,					
		light spillage should be minimised, while green and blue lights					
		should be used where possible. As far as possible, lights should be					
		controlled by motion sensors, and building operations should be					
		managed in such a way as reduce or eliminate night lighting near					
		windows. The potential advantages of removing unnecessary					
		lighting in terms of reducing the carbon footprint of the LMC Loop					
		development are obvious.					
S12.7	E5-	Minimize loss of natural vegetation along LMC Meander,	Minimize impacts on	Detailed design	Construction site	Detailed design,	۸
	DP1/DP	and suitable replacement planting with possible installation	Eurasian Otter	consultant/	within the project	construction phase	
	2	of otter holts and the provision of potential feeding area and		Contractor			
		spraint locations for otters in the stabilized bank subject to					
		detailed design.					
		No significant change to velocity of water flow, water level					۸

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			or water quality.					
		•	No direct lighting on Meander.					۸
			3m high, dull green site boundary fence for all developments					*
			associated with the project.					
			Pre-construction surveys for otter holts or natal dens will be					N/A
			conducted in LMC Loop before the commencement of					
			construction works. Work in the area of any otter holt found					
			to cease pending examination by experienced Ecologist. If in					
			use for breeding, works in the area will temporarily stop until					
			end of breeding activity.					
			No construction activities within 100m of LMC Meander					*
			between one hour prior to sunset and one hour after sunrise.					
			Provision of compensatory reed marsh in the Ecological					N/A
			Area in LMC Loop, including open water channels and					
			islands within the reed marsh, both of which features are					
			considered to be used by the species.					
S12.7	E8-DP2	•	Refer to E2 and E3	Prevent impacts on Rose	Contractor	Within project site	Construction	N/A
				Bitterling, small snakehead			phase	
				and Somanniathelphus				
				zanklon				
S12.7	E10-	•	Preserve undisturbed, semi-natural habitat conditions of	Minimize impacts on flight	Developer /	Within project site	Detailed design,	۸
	DP1		LMC Meander and adjacent areas of LMC Loop up to	line corridor from LMC Loop	Detailed design		construction and	
			approximately 150m in width in order to avoid disturbance to	development	consultant/		operation phases	
			core part of flight line corridor.		Contractor/			
		•	This area to comprise an Ecological Area largely constituting		Operator			N/A
EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation	
----------	---------	---	--------------------------	---------------	---------------------	------------------	----------------	
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status	
			Main Concerns to address	measures?		measures?		
		reed marsh and a 50m wide buffer zone densely planted with						
		shrubs and trees. Small number of low buildings (max						
		14mPD high, except the building height of on-site STW is						
		15mPD high) allowed in inner 25m of this area at a plot ratio						
		of 0.1.						
		At Ha Wan Tsuen entry point for many birds to LMC Loop					N/A	
		area provide a wider Ecological Area to minimise						
		disturbance from nearby buildings.						
		Further minimisation of impact by maintaining a lower					N/A	
		building height in areas adjacent to the buffer zone for the						
		EA. In addition, the sewage treatment works, which is						
		located near the point where many birds cross from the						
		Meander to HHW, should not exceed 15mPD.						
S12.7	E11-	Employ site boundary fence as long as possible. Use of	Minimize disturbance	Contractor	Within project site	Construction	۸	
	DP1	movable barrier for more intense site formation activity.	impacts of mitigation			phase		
		Provision of fencing with 30cm gap between the existing	provisions					
		reed marsh and LMC Meander during the establishment						
		period of Ecological Area and the gap will be closed once						
		established.						
		Restrict work to period from 0900h to 1700h. All major					*	
		works along the edge of LMC Meander and in the Ecological						
		Area will be conducted in the wet season.						
S12.7	E12-	Minimal night-time lighting	Minimize impacts on LMC	Contractor/	All	Construction and	٨	
	DP1/DP	No direct light on Meander	Meander	Operator		operation phases	۸	
	2							

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	tives of the Who to Location		When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
S12.7	E13-	•	Construction limited to wet season between the hours of 9am and	Minimize impacts from the	Contractor/	Pond habitat	Construction and	^
	DP2		5pm.	construction and operation	Operator	along alignment	operation phases	
		•	Use of opaque visual/noise barriers and planting of trees	disturbance impacts		(mainly Ha Wan		۸
			shrubs along length of road adjacent to fish ponds.			Tsuen Road)		
		•	Compensatory habitat management elsewhere to mitigate					۸
			wetland loss.					
S12.7	E16-	•	Provision of compensatory reed marsh in the Ecological Area	Protect Odonata	Project	Ecological area	EA established	۸
	DP1		will provide habitat suitable for Common Evening Hawker.		Proponent/		prior to	
		•	Measures designed to protect other fauna and water quality		Detailed design		construction and	۸
			will generally benefit odonata.		consultant/		manage at all	
					Contractor		phases	
					Operator			
S12.7	E14-	•	Replacement planting of native tree species relevant to Deep	Minimize the ecological	Contractor	Woodland and	Construction	۸
	DP2		Bay area and the area impacted. Planting to occur in tandem	impacts		shrubland habitat	phase	
			with that required for woodland loss arising			along Ha Wan		
						Tsuen Road		
S12.7	E15-	•	Use noise/visual barriers to minimise disturbance.	Minimize impacts on flight	Contractor	Construction site	Construction	۸
	DP2	•	Construction activities should not be carried out before	line corridor from Western		from Western	phase	*
			0900h or after 1700h in order to minimise disturbance to the	Connection Road		Connection Road		
			flight line corridor (and to mammals).					
S12.7	E16-	•	Use of opaque visual/noise barriers and roadside planting of trees	Minimize impacts on flight	Project	Construction site	Detailed design,	^
	DP2		and shrubs to minimize disturbance impacts.	line corridor from Western	Proponent/	from Western	construction and	
				Connection Road	Detailed design	Connection Road	operation phases	
					consultant/			

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
				Contractor			
				Operator			
Fisheries	: (Constru	uction Phase)					
S13.7	F4-	Reprovision of replacement Artificial Reefs(of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or	
						operation	
						phase	
S11.7	F2	Reduce re-suspension of sediments	Minimise marine water	Contractor	Seawall	During	N/A
		Limit dredging and works fronts.	quality impacts			construction	N/A
		Good site practices					N/A
		Strict enforcement of no marine dumping					N/A
		Spill response plan					N/A

Remarks: ^ Compliance of mitigation measure

* Recommendation was made during site audit but improved/rectified by the contractor

N/A Not Applicable at this stage as no such site activities were conducted in the reporting period (e.g. concrete batching plan, barging point, seawall dredging and filling, bored piling, landscaping works etc)

APPENDIX O WASTE GENERATION IN THE REPORTING MONTH

		Actual Quan	tities of Inert C&I) Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes G	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	0.0	0.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUB- TOTAL	0.0	0.0	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	0.0	0.0	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

APPENDIX P COMPLAINT LOG

Appendix P - Complaint Log

Log Ref.	Location	Received Date	Details of Complaint	Investigation/ Mitigation Action	Status

APPENDIX Q SUMMARY OF SUCCESSFUL PROSECUTION

Appendix Q - Summary of Successful Prosecution

Date of Successful Prosecution	Details of the Successful Prosecution	Status	Follow Up