Vol. 2 of 4 FEP-01/457/2013/C Central Kowloon Route Kai Tak West Contract No. HY/2014/07 July 2019

Environmental Permit No. EP-457/2013/C

Central Kowloon Route

Independent Environmental Checker Verification

Kai Tak West (HY/2014/07)

· · · · · · · · · · · · · · · · · · ·	11111 11111 11 000 (11 1/201 // 01 //
Reference Document/Plan	
Document/ Plan to be Certified / Verified:	Monthly EM&A Report No.16 (July 2019)
Date of Report:	7 August 2019 (Rev. 1)
Date received by IEC:	7 August 2019

Reference EP Condition

Works Contract

Environmental Permit Condition: 3.4

Submission of Monthly EM&A Report of the Project

3.4 Four hard copies and one electronic copy of monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of each reporting month throughout the entire construction period. The EM&A Reports shall include a summary of all non-compliance. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of the submission shall be provided to the Director upon request by the Director.

IEC Verification

I hereby verify that the above referenced document/ $\frac{1}{plan}$ complies with the above referenced condition of EP-457/2013/C and FEP-01/457/2013/C.

Mondy 20.

Ms Mandy To Date: 12 August 2019

Independent Environmental Checker

Our ref: 0436942_IEC Verification Cert_KTW_Monthly EM&A Rpt No.16.docx

Gammon Construction Limited

Central Kowloon Route

Works Contract HY/2014/07 – Central Kowloon Route – Kai Tak West

Monthly EM&A Report for July 2019

[August 2019]

	Name	Signature
Prepared & Checked:	Ray Cheng	The
Reviewed, Approved & Certified:	Y T Tang	Contain

Version: 0	Date:	12	August 2019

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Gammon Construction Limited and is given for its sole benefit in relation to and pursuant to Contract HY/2014/07 and may not be disclosed to, quoted to or relied upon by any person other than Gammon Construction Limited without our prior written consent. No person (other than Gammon Construction Limited into whose possession a copy of this report comes may rely on this plan without our express written consent and Gammon Construction Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

		Page
EXEC	CUTIVE SUMMARY	1
1	INTRODUCTION	3
1.1 1.2	Purpose of the ReportReport Structure	
2	PROJECT INFORMATION	4
2.1 2.2 2.3 2.4	Background Site Description Construction Programme and Activities Project Organization	
2.5	Status of Environmental Licences, Notification and Permits	7
3 3.1 3.2 3.3	ENVIRONMENTAL MONITORING REQUIREMENTS Construction Dust Monitoring Construction Noise Monitoring Landscape and Visual	8 11
4	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	13
5	MONITORING RESULTS	14
5.1 5.2 5.3 5.4	Construction Dust MonitoringRegular Construction Noise MonitoringWaste ManagementLandscape and Visual	14 15
6	ENVIRONMENTAL SITE INSPECTION AND AUDIT	16
6.2 6.3 6.4 6.5	Summary of Monitoring ExceedancesSummary of Environmental Non-ComplianceSummary of Environmental ComplaintsSummary of Environmental Summon and Successful Prosecutions	17 17
7	FUTURE KEY ISSUES	18
7.1 7.2 7.3	Construction Programme for the Next Three Month Key Issues for the Coming Month Monitoring Schedule for the Coming Month	18
8	CONCLUSIONS AND RECOMMENDATIONS	19
8.1 8.2	ConclusionsRecommendations	

List of Tables

Table 2.1	Construction Activities in the reporting month	5
Table 2.2	Contact Information of Key Personnel	
Table 2.3	Status of Environmental Licenses, Notifications and Permits	7
Table 3.1	Air Quality Monitoring Equipment	8
Table 3.2	Location of Construction Dust Monitoring Station	8
Table 3.3	Noise Monitoring Parameters, Frequency and Duration	11
Table 3.4	Noise Monitoring Equipment for Regular Noise Monitoring	11
Table 3.5	Noise Monitoring Stations during Construction Phase	11
Table 3.6	Noise Monitoring Parameters, Frequency and Duration	12
Table 4.1	Status of Required Submission under Environmental Permit	13
Table 5.1	Summary of 24-hour TSP Monitoring Result in the Reporting Period	14
Table 5.2	Summary of 1-hour TSP Monitoring Result in the Reporting Period	14
Table 5.3	Summary of Construction Noise Monitoring Results in the Reporting Period	14
Table 6.1	Observations and Recommendations of Site Audit	16
Table 7.1	Construction Activities in the coming three month	18

List of Figures

Figure 1.1	Site Layout Plan
i iguio i.i	Oito Layout i laii

Figure 3.1 Location of Air Quality Monitoring Station
Figure 3.2 Locations of Noise Monitoring Station

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organization Structure
Appendix C	Implementation Schedule of Environmental Mitigation Measures
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Noise Monitoring Results and their Graphical Presentations
Appendix I	Event and Action Plan
Appendix J	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix K	Monthly Summary Waste Flow Table

AECOM Asia Co. Ltd. ii August 2019

EXECUTIVE SUMMARY

Central Kowloon Route – Kai Tak West (CKR-KTW; Contract No. HY/2014/07) (hereafter called "the Project") covers part of the construction of the Central Kowloon Route (CKR).

The Project comprises the follow works:

- 50x30m access shaft with noise enclosure at Ma Tau Kok (MTK):
- 100m long cut-and-cover (C&C) tunnel at MTK;
- Demolition and re-provisioning of MTK Public Pier;
- 160m long underwater tunnel (UWT) (Stage 1):
- 210m long UWT (Stage 2);
- 60m long C&C tunnel at Kai Tak;
- 130m long depressed road and 200m long underpass at Kai Tak;
- 390m long underground tunnel ventilation adit at Kai Tak;
- · Seawall demolition and construction of new landing steps; and
- Barging Point enclosure and conveyor system.

The EM&A programme commenced on 4 April 2018. The impact EM&A for the Project includes air quality and noise monitoring.

This is the sixteenth monthly EM&A Report presenting the EM&A works carried out during the period between 1 and 31 July 2019. As informed by the Contractor, major activities in the reporting period were:

Locations	Site Activities
Kai Tak	Pipe piling
	Pre-drill works
	Socket H-pile installation
	Watermain diversion
	Construction of ventilation adit
	Construction of at-grade road and associated backfilling works
	ELS removal at ventilation adit
Ma Tau Kok	Temporary Traffic Management implementation
	Project signboard construction
	Pipe piling works
	Soft excavation
	ELS installation & decking works for access shaft
	Existing drainage diversion works
	Fresh water pipe installation works
	Excavation works for landing steps
Kowloon Bay	Pipe pile construction
	Wall tie installation and temporary reclamation for stage 1
Barging Point	Barging point operation

Breaches of Action and Limit Levels for Air Quality

All 24-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month

All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.

AECOM Asia Co. Ltd. 1 August 2019

Breaches of Action and Limit Levels for Noise

Regular Noise Monitoring

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

One (1) complaint (received by Environmental Protection Department on 23 July 2019) was referred by the Contractor on 25 July 2019, the investigation report for the complaint was finalized on 31 July 2019.

No notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the next three months included:

Locations	Site Activities
Kai Tak	Pipe piling Pre-drill works, Socket H-pile installation Watermain diversion Construction of ventilation adit Construction of at-grade road and associated backfilling works ELS removal at ventilation adit Excavation and ELS installation at cut & cover tunnel
	Depressed road and underpass
Ma Tau Kok	 Temporary Traffic Management implementation Project signboard construction Soft and rock excavation ELS installation & decking works for access shaft Pipe piling works for cut and cover tunnel Existing drainage diversion works Fresh water pipe installation works Excavation works for landing steps
Kowloon Bay	 Pipe pile construction Wall tie installation and temporary reclamation for stage 1 temporary reclamation Excavation for stage 1 underwater tunnel Construct cradle K-frame tower and sliding system Truss installation
Barging Point	Barging point operation

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water pollution control, and waste management.

AECOM Asia Co. Ltd. 2 August 2019

1 INTRODUCTION

Gammon Construction Limited was commissioned by the Highways Department as the Civil Contractor for Works Contract HY/2014/07. AECOM Asia Company Limited (AECOM) was appointed by Gammon Construction Limited as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the sixteenth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period between 1 and 31 July 2019.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organized as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 CKR is a dual 3-lane trunk road across central Kowloon linking the West Kowloon in the west and the Kai Tak Development (KTD) in the east. The CKR will be about 4.7 km long with an underground tunnel section of about 3.9 km long, in particular, there will be an underwater tunnel of about 370 m long in Kowloon Bay to the north of the To Kwa Wan Typhoon Shelter. It will connect the West Kowloon Highway at Yau Ma Tei Interchange with the road network at Kowloon Bay and the future Trunk Road T2 at KTD which will connect to the future Tseung Kwan O Lam Tin Tunnel (TKO-LTT) and Cross Bay Link (CBL). CKR, Trunk Road T2 and TKO-LTT will form a strategic highway link, namely Route 6, connecting West Kowloon and Tseung Kwan O. In addition, 3 ventilation buildings, which will be located in Ya Ma Tei, Ho Man Tin and ex-Kai Tak airport area, are proposed to ensure acceptable air quality within the tunnel.
- 2.1.2 The Environmental Impact Assessment (EIA) Report for Central Kowloon Route (Register No.: AEIAR-171/2013) was approved on 11 July 2013 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) for CKR was granted on 9 August 2013 (EP No.: EP- 457/2013) for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-457/2013/C) was issued by the Director of Environmental Protection (DEP) on 16 January 2017. Further Environmental Permit (EP No. FEP-01/457/2013/C) for CKR Kai Tak West was issued on 28 February 2018.
- 2.1.3 The construction of the CKR had been divided into different sections. This Work Contract HY/2014/07 Kai Tak West (KTW) ("The Project") will include a road which is a trunk road, including new roads, and major extensions or improvements to existing roads; a road fully enclosed by decking above and by structure on the sides for more than 100 m; and reclamation works (including associated dredging works) more than 1 ha in size and a boundary of which is less than 100 m from an existing residential area.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under this Project include:
 - (a) construction of approximately 160m long cut-and-cover tunnel and 370m long underwater tunnel between the tunnel section at Ma Tau Kok and the depressed road of the CKR within Kai Tak Development;
 - (b) reconstruction of the seawall at Ma Tau Kok public pier, and the sloping seawall at the Former Kai Tak Airport Runway;
 - (c) construction of approximately 125m long depressed road and 200m long underpass of the CKR within Kai Tak Development;
 - (d) construction of approximately 360m long underground tunnel ventilation adit of the CKR;
 - (e) reconstruction of Kowloon City Ferry Pier Public Transport Interchange; and
 - (f) other associated works.

AECOM Asia Co. Ltd. 4 August 2019

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarized in **Table 2.1**.

Table 2.1 Construction Activities in the reporting month

Locations	Site Activities
Kai Tak	Pipe piling
	Pre-drill works
	Socket H-pile installation
	Watermain diversion
	Construction of ventilation adit
	Construction of at-grade road and associated backfilling works
	ELS removal at ventilation adit
Ma Tau Kok	Temporary Traffic Management implementation
	Project signboard construction
	Pipe piling works
	Soft excavation
	ELS installation & decking works for access shaft
	Existing drainage diversion works
	Fresh water pipe installation works
	Excavation works for landing steps
Kowloon Bay	Pipe pile construction
	Wall tie installation and temporary reclamation for stage 1
Barging Point	Barging point operation

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organization

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarized in **Table 2.2.**

Table 2.2 Contact Information of Key Personnel

Party	Role	Position Name		Telephon e	Fax
Arup-Mott MacDonald Joint Venture	Residential Engineer (ER)	Engineer's Representative	Mr. Jeffrey Lau	2268 3640	2268 3954
ERM	Independent Environmental Checker (IEC)	Independent Environmental Checker	Ms. Mandy To	2271 3313	2723 5660
		Contracts Manager	Mr. Alan Yan	2516 8823	2516 6260
Gammon	Contractor	Environmental Manager	Ms Michelle Tang	9267 8866	2516 6260
		Environmental Officer	Ms. Phoebe Ng		
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9392	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.3**.

Table 2.3 Status of Environmental Licenses, Notifications and Permits

Permit / License No.	Valid Period		.			
/ Notification/ Reference No.	From	То	Status	Remarks		
Further Environmental Permit						
FEP-01/457/2013/C	28 Feb 2018	End of Project	Valid			
Wastewater Discharge	License					
WT00030290-2018	22 Mar 2018	31 May 2023	Valid	Ma Tau Kok		
WT00030668-2018	27 Apr 2018	30 Apr 2023	Valid	Site Office at Kai Tak West		
WT00030358-2018	27 Apr 2018	30 Apr 2023	Valid	Kai Tak West		
WT00030333-2018	27 Apr 2018	30 Apr 2023	Valid	Barging Point at Portions 4B & 4C		
WT00030330-2018	27 Apr 2018	30 Apr 2023	Valid	Kowloon Bay		
Construction Noise Pe	ermit					
PP-RE0021-19	20 May 2019	15 Nov 2019	Valid	Percussive Piling at Stage 1 Temporary Reclamation Area		
GW-RE0125-19	28 Feb 2019	27 Aug 2019	Valid	Barging Point Operation at Kai Tak Barging Point		
GW-RE0134-19	7 Mar 2019	6 Sep 2019	Valid	Pumping Test and System at Ma Tau Kok		
GW-RE0345-19	6 May 2019	05 Jul 2019	Valid until 05 Jul 2019	General Works at Kai Tak		
GW-RS0524-19	05 Jul 2019	29 Sep 2019	Valid on 05 Jul 2019	General Works at Kai Tak		
GW-RE0595-19	30 Jul 2019	29 Sep 2019	Valid on 30 Jul 2019	Welding and backfilling at Stage 1 Underwater Tunnel		
PP-RE0010-19	1 Apr 2019	30 Sep 2019	Valid	Percussive Piling at Kai Tak Area (at grade road and underpass)		
Chemical Waste Produ	ucer Registratio	n				
5118-247-G2347-47	30 Jan 2018	End of Project	Valid			
5118-247-G2347-48	30 Jan 2018	End of Project	Valid			
Marine Dumping Perm	nit					
Billing Account for Co	nstruction Was	te Disposal				
7029909	22 Jan 2018	End of Project	Account Active			
			Account Active	Billing Account for Disposal of		
7031949	3 Jul 2019	4 Oct 2019	(Renewed on 3 Jul 2019)	Construction Waste (by vessels)		
Notification Under Air Pollution Control (Construction Dust) Regulation						
429442	5 Jan 2018	5 Jul 2025	Notified			

AECOM Asia Co. Ltd. 7 August 2019

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manual, measurement of 24-hour and 1-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days, and 1-hour TSP monitoring should be done at least 3 times every 6 days while the highest dust impact is expected. The Action and Limit Levels of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

- 3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring station. The HVS meets all the requirements of the EM&A Manual.
- 3.1.3 A portable direct reading dust meter was used to carry out the 1-hour TSP monitoring.
- 3.1.4 Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170)
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3)

Monitoring Locations

3.1.5 The monitoring station for construction dust monitoring pertinent to the Project has been identified based on the approved EM&A Manual for the Project. The location of the construction dust monitoring station is summarized in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Location of Construction Dust Monitoring Station

Location	Monitoring Station	Description
E-A14a ^[1]	Block B of Merit Industrial Centre	Rooftop (13/F)

Note:

Monitoring Methodology

- 3.1.6 24-hour TSP Monitoring
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each other;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) The sampler was located more than 20 meters from any dripline.

AECOM Asia Co. Ltd. 8 August 2019

^[1] The air monitoring station proposed in the EM&A Manual (i.e. Wyler Gardens with ID: E-A14) was not available for impact dust monitoring, therefore impact monitoring was conducted at E-A14a as an alternative which was agreed by the ER, IEC and EPD.

- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

3.1.7 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(i) Turn the power on.

AECOM Asia Co. Ltd. 9 August 2019

- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG]
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.
- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.8 The schedule for environmental monitoring in July 2019 is provided in Appendix F.

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarizes the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit Levels of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238)
Acoustic Calibrator	B&K (Model No. 4231)

Monitoring Locations

3.2.3 The monitoring stations for construction noise monitoring pertinent to the Project have been identified based on the approved EM&A Manual for the Project. Locations of the noise monitoring stations are summarized in **Table 3.5** and shown in **Figure 3.2**.

Table 3.5 Noise Monitoring Stations during Construction Phase

Location	Monitoring Station	Description	Measurement
E-N12a [1]	19 Hing Yan Street	Rooftop (9/F)	Façade
E-N21a [1]	Block B of Merit Industrial Centre	Rooftop (13/F)	Free field [2]

Notes:

Monitoring Parameters, Frequency and Duration

3.2.4 **Table 3.6** summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

AECOM Asia Co. Ltd. 11 August 2019

The noise monitoring stations proposed in the EM&A Manual (i.e. Grand Waterfront Tower 3 with ID: E-N12 and Hang Chien Court Block J with ID: E-N21) were not available for impact noise monitoring, therefore impact monitoring was conducted at E-N12a and E-N21a as an alternative which was agreed by the ER, IEC and EPD.
 A correction of +3 dB(A) was made to the free field measurements.

Table 3.6 Noise Monitoring Parameters, Frequency and Duration

Location	Parameter and Duration	Frequency
E-N12a and E-N21a	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Methodology

3.2.5 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Facade measurement was made at E-N12a.
- (c) Free field measurements was made at monitoring location E-N21a. A correction of +3 dB(A) shall be made to the free field measurements.
- (d) The battery condition was checked to ensure the correct functioning of the meter.
- (e) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (f) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (g) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (h) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (i) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.6 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.7 The schedule for environmental monitoring in July 2019 is provided in Appendix F.

AECOM Asia Co. Ltd. 12 August 2019

3.3 Landscape and Visual

3.3.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C**. Status of required submissions under the EP during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 of EP- 457/2013/C and Condition 3.4 of FEP-01/457/2013/C	Monthly EM&A Report for June 2019	12 July 2019

AECOM Asia Co. Ltd. 13 August 2019

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP and 1-hour TSP are summarized in Table 5.1 and Table
 5.2 respectively. Detailed air quality monitoring results and daily extract of meteorological observations are presented in Appendix G.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
E-A14a	31.2	17.9 – 59.3	197.3	260

Table 5.2 Summary of 1-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
E-A14a	66.1	60.2 – 72.2	302.4	500

- 5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.3 No Action and Limit Level exceedance was recorded for 1-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.4 The event and action plan is annexed in **Appendix I**.
- 5.1.5 Major dust sources during the monitoring included construction dust and nearby traffic emission.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.3** and the monitoring data is provided in **Appendix H**.

Table 5.3 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
E-N12a	64.7 – 69.1	75
E-N21a	61.0 – 67.6	75

- 5.2.2 No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.
- 5.2.3 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.4 The event and action plan is annexed in **Appendix I**.
- 5.2.5 Major noise sources during the monitoring included construction noise from the Project site and nearby traffic noise.

AECOM Asia Co. Ltd. 14 August 2019

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor, Total 17,881 m³ of inert C&D material was generated, 10 m³ inert C&D material was disposed at the Public Fills, 2,254 m³ was reused in the Contract and 15,617 m³ was reused in other contract in the reporting month. 75,240 kg general refuse was generated and sent to NENT Landfill in the reporting month. No metals, plastics and paper/cardboard packaging were collected by recycle contractor in the reporting month. 1,400 L of chemical waste was collected by licensed contractor in the reporting period. No Type 1, 2 and 3 Marine sediment was disposed at Confined Marine Disposal Facility to the East of Sha Chau. The waste flow table is annexed in **Appendix K**.
- 5.3.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 3, 17 and 31 July 2019. A summary of the site inspection is provided in **Appendix C**. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

AECOM Asia Co. Ltd. 15 August 2019

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 5 site inspections were carried out on 3, 10, 17, 24 and 31 July 2019. Joint inspections with the IEC, ER, the Contractor and the ET were conducted on 17 July 2019. In addition, no joint inspection with EPD, ER and the Contractor was conducted in July 2019 to check the compliance of the dumping permit condition. No non-compliance was recorded during the site inspection. Details of observations recorded during the site inspections are presented in **Table 6.1.**

Table 6.1 Observations and Recommendations of Site Audit

Table 6.1	Observations and Recommendations of Site Audit		
Parameters	Date	Observations and Recommendations	Follow-up
	17 Jul 2019	Exposed area was observed without sufficient watering for the dust suppression at Kai Tak. The Contractor was advised to provide regular watering on the exposed area.	The item was rectified by the Contractor on 19 Jul 2019.
Air Quality	24 Jul 2019	Decolorize NRMM label was observed on the power pack at barge which located near the steel platform. The Contractor was reminded to replace the NRMM label.	The item was rectified by the Contractor on 29 Jul 2019.
	31 Jul 2019	 NRMM label was not observed on the drill rig at Kai Tak. The Contractor was reminded to affix the proper NRMM label on the restricted machinery. 	The item will be followed up in next site inspection.
Noise	24 Jul 2019	Breaker head of excavator was observed without wrapping with the acoustic material during breaking activity at at-grade road of Kai Tak. The Contractor was reminded to provide wrapping at the breaker heard to minimize the noise impact.	The item was rectified by the Contractor on 25 Jul 2019.
	03 Jul 2019	 Accumulated muddy water was observed near the waterfront at Landing Step Area. The Contractor was reminded to pump out the muddy water in timely manner to avoid the muddy water run out from site to water. 	The item was rectified by the Contractor on 05 July 2019.
Water Quality	10 Jul 2019	Gap was observed at the silt curtain which near the steel platform. The Contactor was reminded to seal the gap to ensure the efficiency of silt curtain.	The item was rectified by the Contractor on 13 July 2019
Quanty		Oil stain was observed on the bare ground at Ma Tau Kok. The Contractor was reminded to clean up the oil stain in timely manner and dispose of as chemical waste.	The item was rectified by the Contractor on 11 Jul 2019.
	31 Jul 2019	Oil drum was observed stored without drip tray at Steel Platform. The Contractor was reminded to provide a drip tray for oil spillage prevention.	The item will be followed up in next site inspection.
Waste/ Chemical Management	Nil	Nil	Nil
Landscape & Visual	Nil	Nil	Nil
Permits/ Licenses	Nil	Nil	Nil

6.1.3 Most of follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period. No follow-up action requested by EPD during the site inspection in the reporting month.

AECOM Asia Co. Ltd. 16 August 2019

6.2 Summary of Monitoring Exceedances

- 6.2.1 All 24-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 6.2.2 All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 6.2.3 No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.
- 6.2.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

6.3 Summary of Environmental Non-Compliance

6.3.1 No environmental non-compliance was recorded in the reporting month.

6.4 Summary of Environmental Complaints

6.4.1 One (1) complaint (received by Environmental Protection Department on 23 July 2019) was referred by the Contractor on 25 July 2019, the investigation report for the complaint was finalized on 31 July 2019. Cumulative statistics on environmental complaints is provided in **Appendix J.**

6.5 Summary of Environmental Summon and Successful Prosecutions

6.5.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

AECOM Asia Co. Ltd. 17 August 2019

7 FUTURE KEY ISSUES

7.1 Construction Programme for the Next Three Month

7.1.1 The major construction works between August and October 2019 is provided in **Table 7.1**.

Table 7.1 Construction Activities in the coming three month

Locations	Site Activities		
Kai Tak	Pipe piling		
	Pre-drill works,		
	Socket H-pile installation		
	Watermain diversion		
	Construction of ventilation adit		
	Construction of at-grade road and associated backfilling works		
	ELS removal at ventilation adit		
	Excavation and ELS installation at cut & cover tunnel		
	Depressed road and underpass		
Ma Tau Kok	Temporary Traffic Management implementation		
	Project signboard construction		
	Soft and rock excavation		
	ELS installation & decking works for access shaft		
	Pipe piling works for cut and cover tunnel		
	Existing drainage diversion works		
	Fresh water pipe installation works		
	Excavation works for landing steps		
Kowloon Bay	Pipe pile construction		
	Wall tie installation and temporary reclamation for stage 1 temporary		
	reclamation		
	Excavation for stage 1 underwater tunnel		
	Construct cradle		
	K-frame tower and sliding system		
	Truss installation		
Barging Point	Barging point operation		

7.2 Key Issues for the Coming Month

7.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, and waste management.

7.3 Monitoring Schedule for the Coming Month

7.3.1 The tentative schedule for environmental monitoring in August 2019 is provided in **Appendix F**.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- 8.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 8.1.2 All 24-hour TSP monitoring results complied with the Action / Limit Level at in the reporting month.
- 8.1.3 All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 8.1.4 No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.
- 8.1.5 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 8.1.6 5 nos. of environmental site inspections and no site inspections with EPD were carried out in July 2019. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 8.1.7 One (1) complaint (received by Environmental Protection Department on 23 July 2019) was referred by the Contractor on 25 July 2019, the investigation report for the complaint was finalized on 31 July 2019.
- 8.1.8 No notification of summons and successful prosecution were received in the reporting month.

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

- The Contractor was reminded to affix the proper NRMM label and replace the decolorized NRMM label on the restricted machinery.
- The Contractor was advised to provide regular watering on the exposed area.

Construction Noise Impact

 The Contractor was reminded to provide wrapping at the breaker heard to minimize the noise impact.

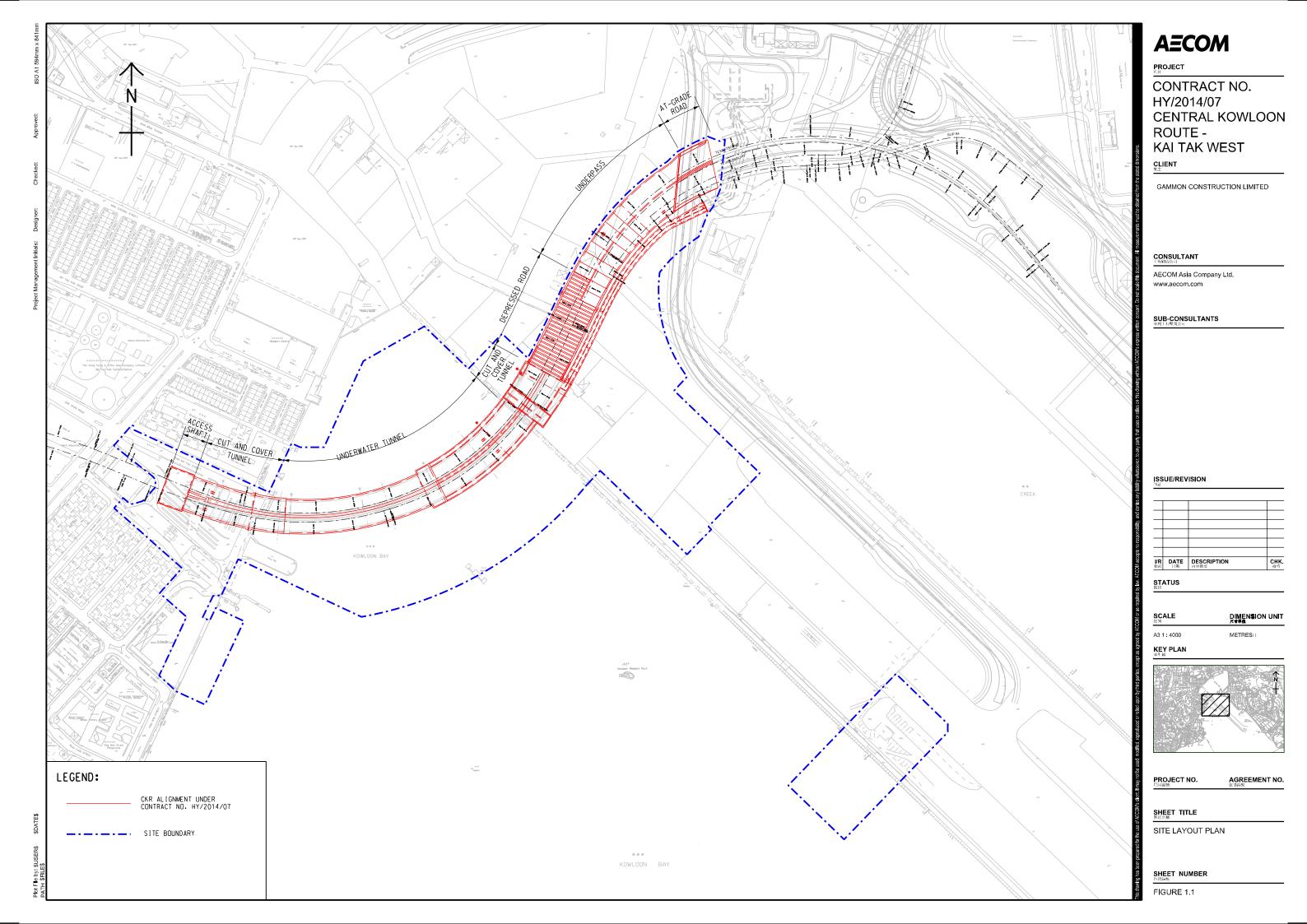
Water Quality Impact

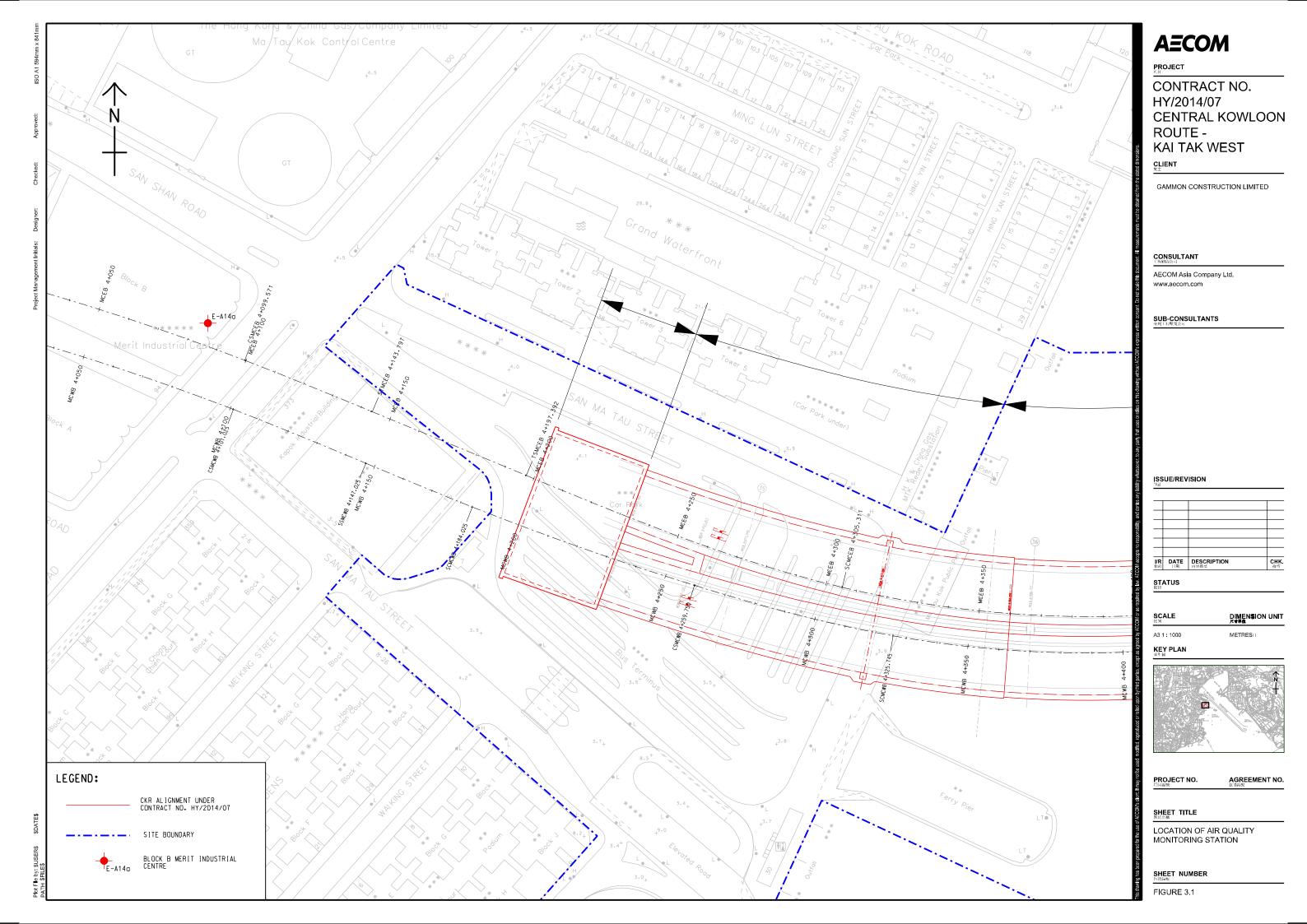
- The Contractor was reminded to pump out the muddy water in timely manner to avoid the muddy water run out from site to water.
- The Contactor was reminded to seal the gap to ensure the efficiency of silt curtain.
- The Contractor was reminded to clean up the oil stain in timely manner and dispose of as chemical waste.
- The Contractor was reminded to provide a drip tray for oil spillage prevention.

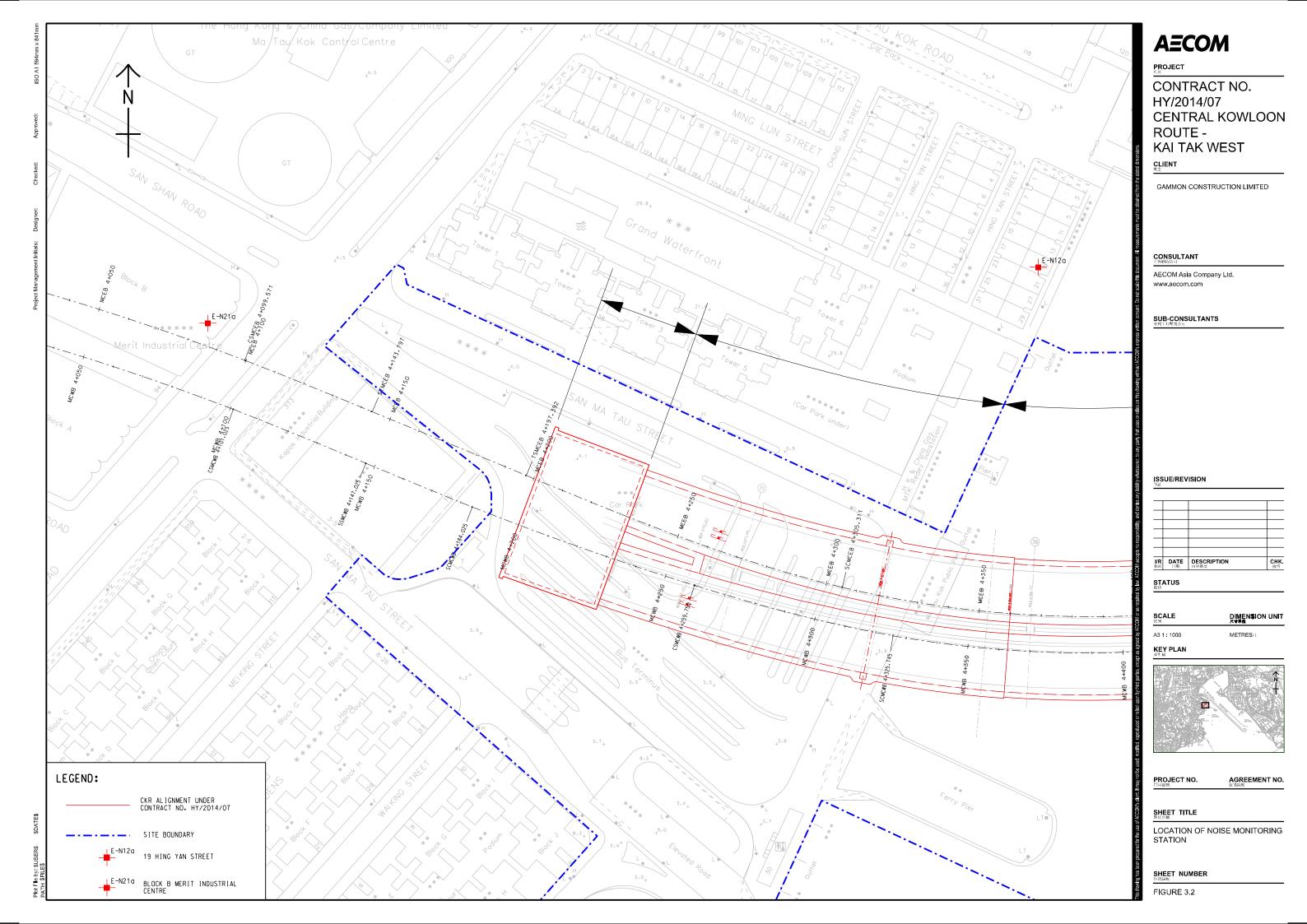
Chemical and Waste Management

• No specific observation was identified in the reporting month.

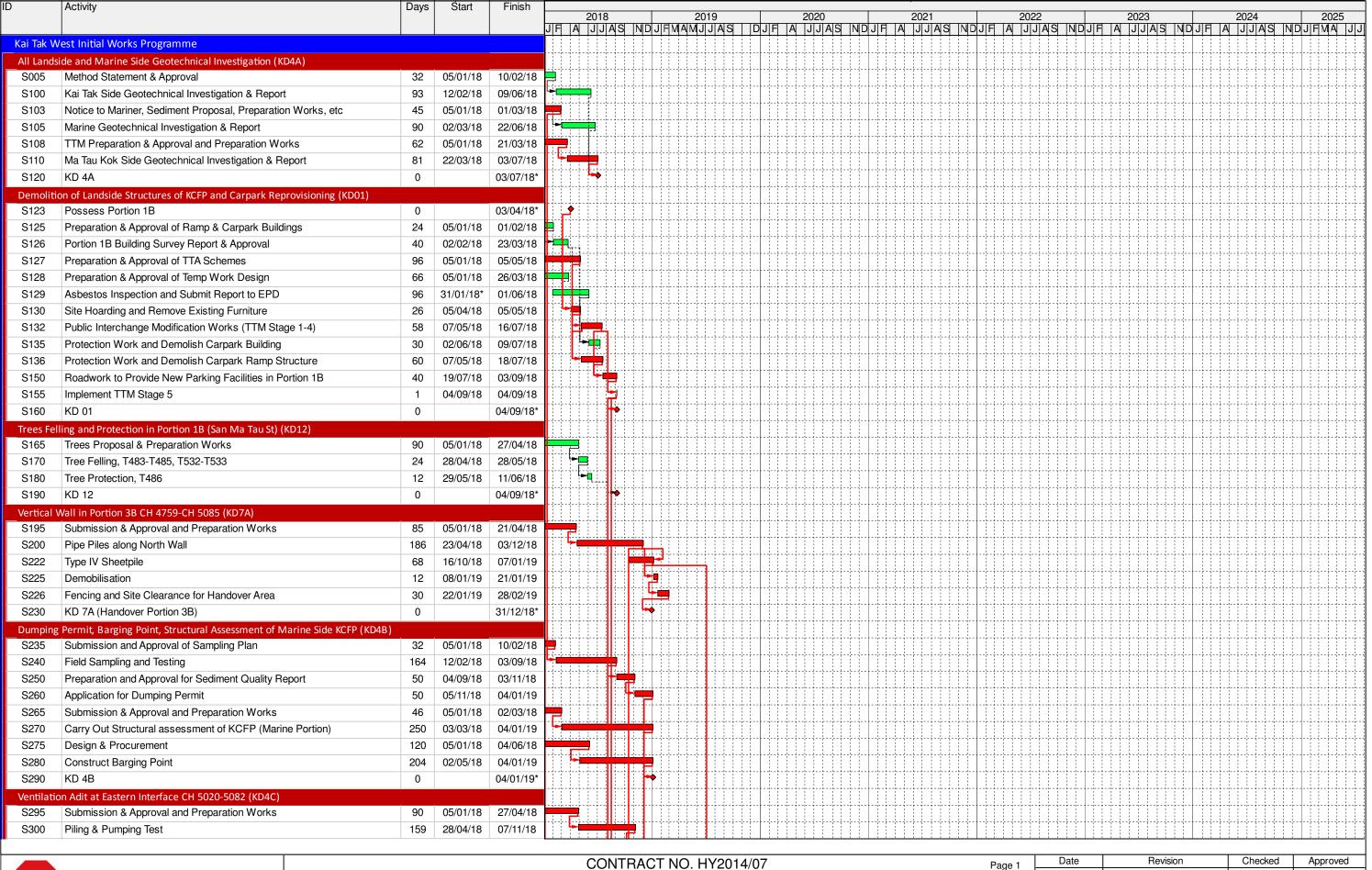
Landscape & Visual Impact


• No specific observation was identified in the reporting month.


AECOM Asia Co. Ltd. 19 August 2019

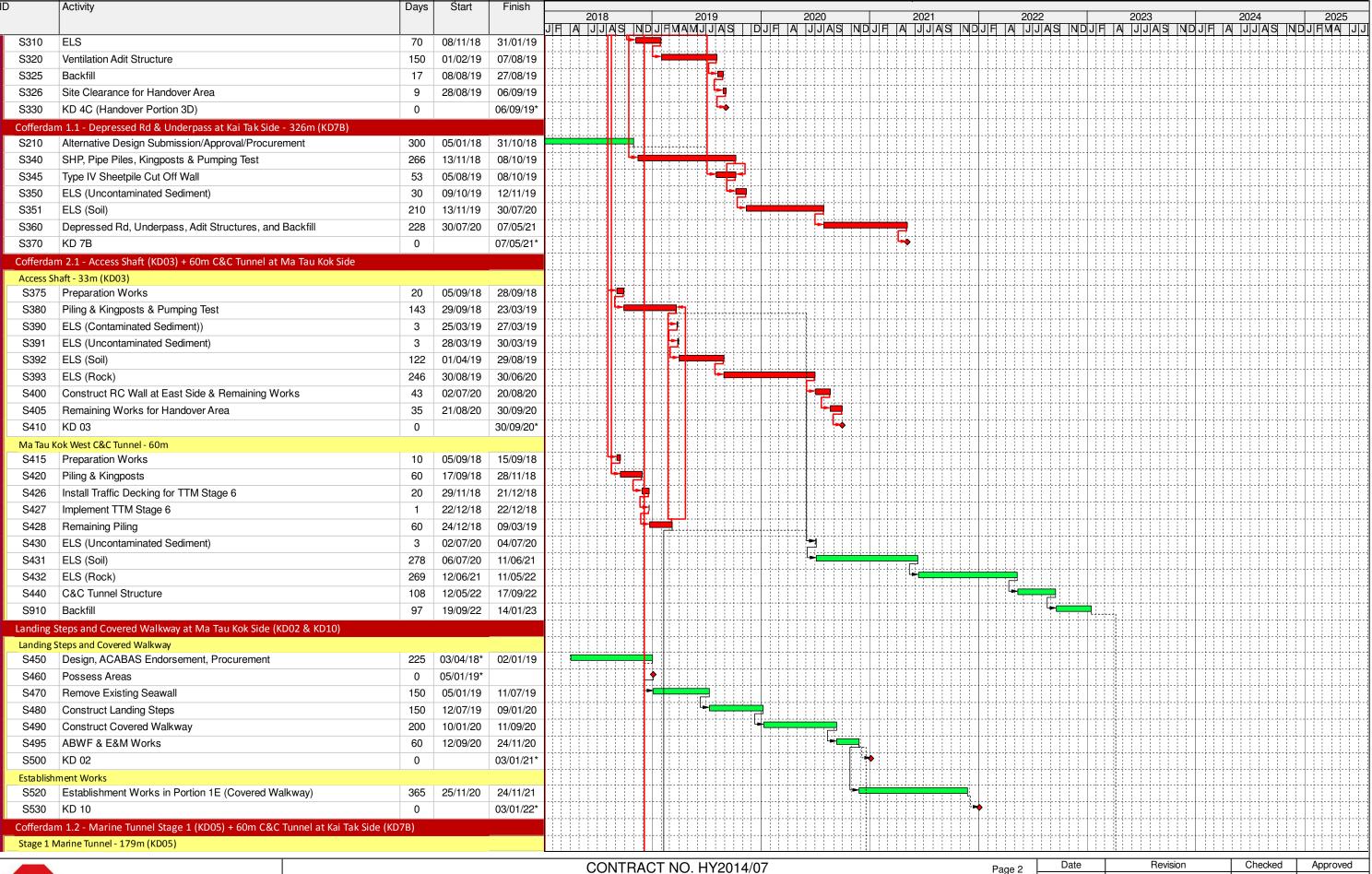

Permits/licenses

• No specific observation was identified in the reporting month.



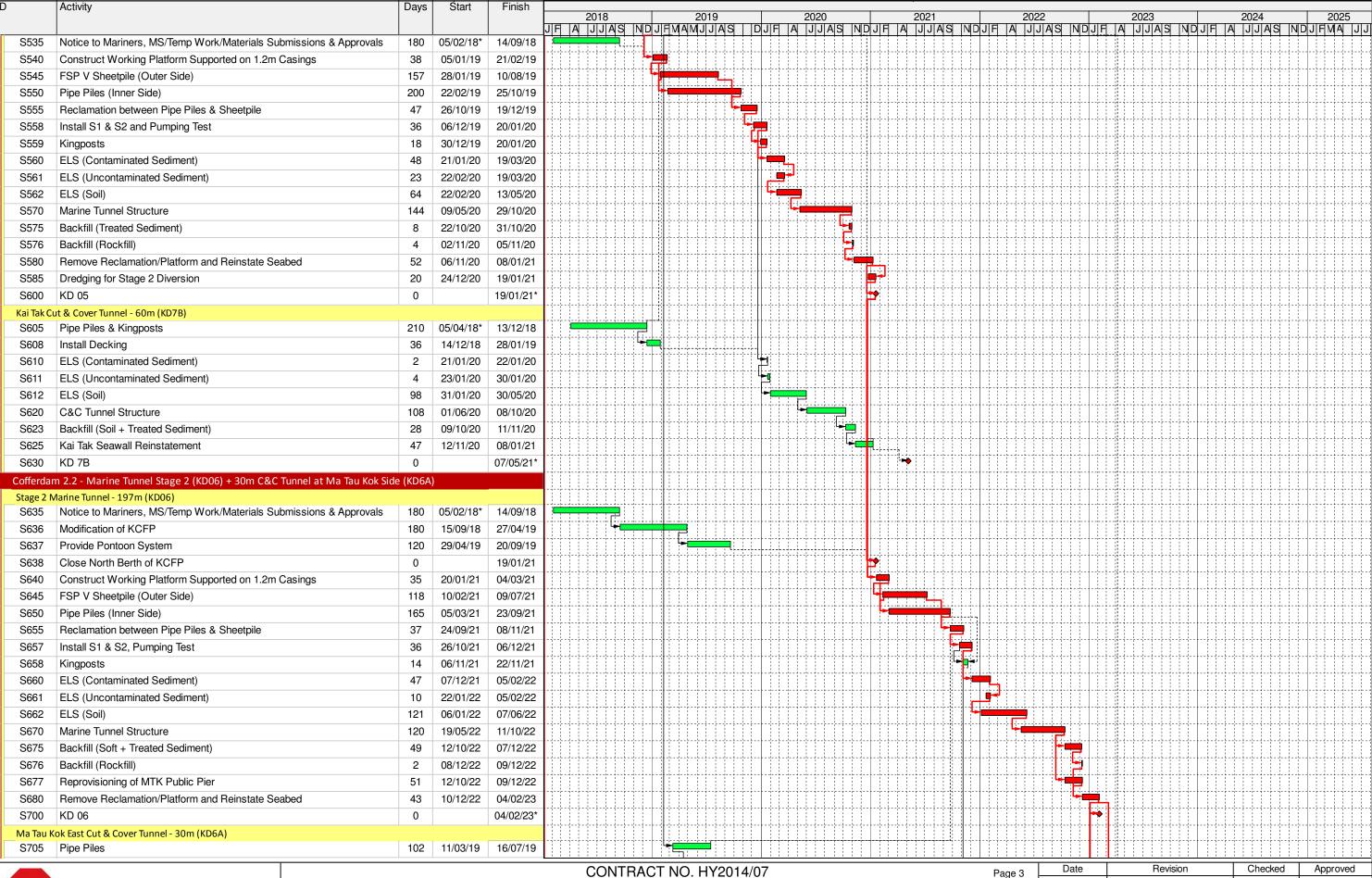
APPENDIX A

Construction Programme



CENTRAL KOWLOON ROUTE - KAI TAK WEST

INITIAL WORKS PROGRAMME (IWP)


Date	Revision	Checked	Approved
05 Jan 18	IWP		

CENTRAL KOWLOON ROUTE - KAI TAK WEST
INITIAL WORKS PROGRAMME (IWP)

Date	Revision	Checked	Approved
05 Jan 18	IWP		

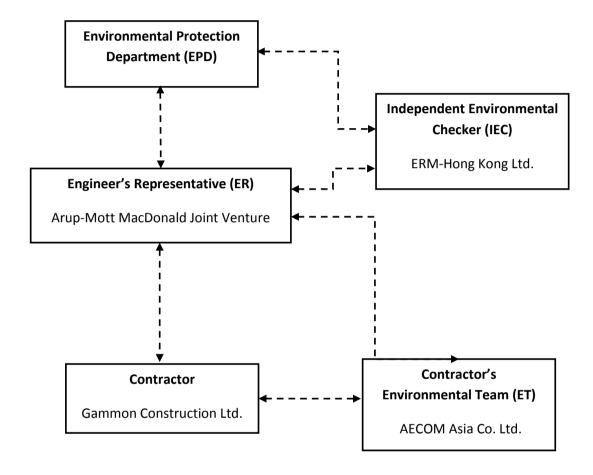
CENTRAL KOWLOON ROUTE - KAI TAK WEST
INITIAL WORKS PROGRAMME (IWP)

Date	Revision	Checked	Approved
05 Jan 18	IWP		

)	Activity	Days	s Start	Finish	sh																	
						2018		2019 J F <u>M</u> AMJ J AS	DUE	2020	AISL IND LIE	2021 - IAI J.I.IIAIS	NDJE	2022	SUNDUL	2 FI ALT	.023 .11.11AIS	IND.		2024 . . A S		2025 MAL.
S706	Kingposts	16	16/05/19	03/06/19			O IND		10011 1	1 00	AIS INDIO		INDUIT	14 101014	S INDOI		د امامان	IND	רו ויוי	JUJAA	INDOIT	VI 7
S710	ELS (Contaminated Sediment)	2	07/12/21	08/12/21		1-1-1-		+-:-:					9	<u> </u>		- - - -						
S711	ELS (Uncontaminated Sediment)	2	09/12/21	10/12/21									-1									
S712	ELS (Soil)	139	11/12/21	06/06/22		1111																
S713	ELS (Rock)	8	07/06/22	15/06/22		1111								<u>-</u>								
S720	C&C Tunnel Structure	72	16/06/22	08/09/22			{ } {}	+				.+		t-]							
S722	Backfill	49	09/09/22	08/11/22			{} { {	+				+		;;;;;;; <u>;</u>		- - - - -				-		
S725	Ma Tau Kok Seawall Reinstatement	53	29/11/22	04/02/23												# 11						
S730	KD 6A	0		06/05/23*												-						
U Trougl	n Structures and At-Grade Road Area (KD07)		·	· 																		
S740	Repossess Portion 3D	0	05/10/21*									1		,,,,,,, 								
S745	Sheetpile & Pumping Test	68	05/10/21	23/12/21										;;;;; 								
S750	ELS (Soil)	143	24/12/21	23/06/22									-									
S760	Construct Trough Structure	120	24/06/22	15/11/22																		
S770	Backfill & Remove Sheetpile	120	03/09/22	31/01/23										-								
S775	Roadwork for At-Grade Road	77	01/02/23	06/05/23											-							
S780	KD 07	0		06/05/23*												-						
Kowloon	City Ferry Pier Public Transport Interchange Reinstatement (KD09)																					
S790	All works Completed at Ma Tau Kok Side	0		06/05/23												- '						
S800	Remove Decking, Roads and Drains (TTM Stages 7-10)	344	08/05/23	04/07/24																		
S810	KD 09	0		05/07/24*		<u> </u>																
_	ation and Protection of Trees (KD13)																					
S820	Trees Survey, Proposal, and Approval	90	05/01/18																			
S830	Implement measures for Trees Protection/Preservation	365	28/04/18		<u> </u>																	
S840	KD 13	0		05/07/24*													-41					
_	aining Works and Roadwork for Opening to the Public (KD08)					ļ. ļ. ļ																
S850	All works Completed at both Kai Tak & Ma Tau Kok Sides	0		04/07/24																. 🟲	<u>.i.</u>	
S860	Reinstate Affected Road Areas & Traffic Diversions	120	05/07/24	25/11/24	 			<u> </u>						ļ. ļ								
S870	Reinstate Affected Areas	30	26/11/24	02/01/25		ļ. ļ. ļ								ļ							7	
S880	KD 08	0		02/01/25*	.	ļ. ļ. ļ	 	 				.+		; ;		4-4-4-4						
_	ment Works (KD11)				 	ļ. ļ. ļ												- - - -		<u>. </u>	<u>.i.i.l.i.i</u> .	
S890	Establishment Works (Except in Portion 1E) Period	365	06/07/24		.																	
S900	KD 11	0		05/07/25*																		

CONTRACT NO. HY2014/07

CENTRAL KOWLOON ROUTE - KAI TAK WEST


INITIAL WORKS PROGRAMME (IWP)

Page 4	Date	Revision	Checked	Approved
3 -	05 Jan 18	IWP		

APPENDIX B

Project Organization Structure

Appendix B Project Organization Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

Appendix C – Environmental Mitigation Implementation Schedule

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Air Quality	(Construction	on Phase)					
S4.3.10	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	@
S4.3.10	D2	• Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.3 L/m² to achieve the dust removal efficiency.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	@
\$4.3.10	D3	 Proper watering of exposed spoil should be undertaken throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	V
		sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading;					V
		 Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; 					V
		A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones.					V
		 The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be 					V
		provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than					V
		2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;					V

AECOM Asia Co. Ltd.

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		 The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust 					V
		suppression chemical continuously; • Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities					V
		 so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the biject level of the scaffolding. 					V
		 from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; 					V
		 Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; 					V
		 Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and 					V
		 Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					V
\$4.3.10	D5	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected representative dust monitoring station	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	on Noise (Airb			T		l	
S5.4.1	N1	 Implement the following good site practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be 	Control construction airborne noise	Contractor	All construction sites	Construction stage	V
		shut down between work periods or should be throttled down to a minimum; • plant known to emit noise strongly in one direction, where possible, be orientated so					V
		that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;					V
		 mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 					V
S5.4.1	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	Reduce the construction noise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites	Construction stage	V
S5.4.1	N3	Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressors, generators and handheld breakers etc	Screen the noisy plant items to be used at all construction sites	Contractor	All construction sites where practicable	Construction stage	@
S5.4.1	N4	Use "Quiet plants"	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	V
S5.4.1	N5	Loading/unloading activities should be carried out inside the full enclosure of mucking out points	Reduce the noise levels of loading/unloading activities	Contractor	Mucking out locations	Construction stage	V

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		Recommended	implement the	measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to Address				
S5.4.1	N6	Sequencing operation of construction plants where practicable.	Operate	Contractor	All	Construction	V
			sequentially within		construction	stage	
			the same work site		sites where		
			to reduce the		practicable		
			construction				
			airborne noise				
S5.4.1	N7	Implement a noise monitoring under EM&A programme.	Monitor the	Contractor	Selected	Construction	V
			construction		representative	stage	
			noise levels at the		noise		
			selected		monitoring		
			representative		station		
			locations				
S5.5.2	N8	Install temporary noise barriers along the works area at temporary Kowloon City Ferry Pier	Reduce temporary	Contractor	Kowloon City	Different	N/A
		Public Transport Interchange	PTI noise		Ferry Pier	construction	
						stages	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended	Who to implement the	Location of the measure	When to implement the	Implementation Status
	Log itei		Measures & Main	measures?	illeasure	measures?	Status
			Concern to	measures:		ilicasures:	
			Address				
Water Oual	lity (Constru	Iction Phase)	Address				
S6.9.1.1	W1	In accordance with the Practice Note for Professional Persons on Construction Site	To minimize water	Contractor	All	Construction	
00.01.11		Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction			construction sites	stage	
		phase mitigation measures shall include the following:	construction site		where practicable	Juago	
		Construction Runoff	runoff and general		miere praemeasie		
		At the start of site establishment (including the barging facilities), perimeter cut-off	•				V
		drains to direct off-site water around the site should be constructed with internal					
		drainage works and erosion and sedimentation control facilities implemented.					
		Channels (both temporary and permanent drainage pipes and culverts), earth bunds					
		or sand bag barriers should be provided on site to direct stormwater to silt removal					
		facilities. The design of the temporary on-site drainage system will be undertaken					
		by the contractor prior to the commencement of construction.					
		The dikes or embankments for flood protection should be implemented around the					@
		boundaries of earthwork areas. Temporary ditches should be provided to facilitate					
		the runoff discharge into an appropriate watercourse, through a site/sediment trap.					
		The sediment/silt traps should be incorporated in the permanent drainage channels					
		to enhance deposition rates.					
		The design of efficient silt removal facilities should be based on the guidelines in					V
		Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand					
		traps should be 5 minutes under maximum flow conditions. Sizes may vary					
		depending upon the flow rate, but for a flow rate of 0.1 m3/s a sedimentation basin					
		of 30m3 would be required and for a flow rate of 0.5 m3/s the basin would be 150					
		m3. The detailed design of the sand/silt traps shall be undertaken by the contractor					
		prior to the commencement of construction.					
		All exposed earth areas should be completed and vegetated as soon as possible					V
		after earthworks have been completed, or alternatively, within 14 days of the					
		cessation of earthworks where practicable. Exposed slope surfaces should be					
		covered by tarpaulin or other means.					
		The overall slope of the site should be kept to a minimum to reduce the erosive					V
		potential of surface water flows, and all traffic areas and access roads protected by					
		coarse stone ballast. An additional advantage accruing from the use of crushed					
		stone is the positive traction gained during prolonged periods of inclement weather					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		 and the reduction of surface sheet flows. All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be 					V
		removed regularly and disposed of by spreading evenly over stable, vegetated areas. • Measures should be taken to minimize the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal					V
		 facilities. Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction 					V
		 materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. 					V
		 Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are funneling in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, 					V
		 especially for areas located near steep slopes. All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. 					V
		The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		 Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled 					@ V
		 and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. 					V
		 Adopt best management practices All the earth works involving should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. 					V V
S6.9.1.2	W2	 Tunnelling Works and Underground Works Cut-&-cover tunneling work should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge The wastewater with a high concentration of SS should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater. Direct discharge of the bentonite slurry (as a result of D-wall and bored 7unneling construction) is not allowed. It should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	water quality impact from tunneling works	Contractor	All tunneling portion	Construction stage	N/A
S6.9.1.3	W3	Sewage Effluent Portable chemical toilets and sewage holding tanks are recommended for handling	To minimize water quality	Contractor	All construction sites	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
					where practicable		
S6.9.1.5	W4	 and be responsible for appropriate disposal and maintenance. Groundwater from Potential Contaminated Area: No direct discharge of groundwater from contaminated areas should be adopted. A discharge license under the WPCO through the Regional Office of EPD for groundwater discharge should be applied. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed during the process of discharge license application. The compliance to the Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters (TM-DSS) and the existence of prohibited substance should be confirmed. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, the contaminated groundwater should be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. TPH) to undetectable range. All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-DSS and should be discharged into the foul sewers. If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Section 2.3 of TM- 	from contaminated area	Contractor	Excavation areas where contamination is found.	Construction stage	V
		DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substances such as TPH products should be removed as necessary by installing					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S6.7.2.1	W5	the petrol interceptor. Temporary Reclamation During temporary reclamation, regular litter / rubbish clearance and avoidance of illegal discharges within the embayed marine water should be undertaken. During temporary reclamation, the perimeter silt curtain should be deployed.	To minimize water quality impact from temporary reclamation	Contractor	Temporary Reclamation	Construction stage	N/A
S6.9.1.6	W6	 Accidental spillage In order to prevent accidental spillage of chemicals, the following is recommended: All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	accidental spillage	Contractor	All construction sites where practicable	Construction stage	@ V V
S6.9.2.2	W7	 Dredging Works The following good practice shall apply for the dredging works: Install efficient silt curtains, i.e. at least 75% SS reduction, at the point of seawall dredging to control the dispersion of SS; Implement water quality monitoring to ensure effective control of water pollution and recommend additional mitigation measures required; The decent speed of grabs should be controlled to minimize the seabed impact and to reduce the volume of over-dredging; All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; The dredging rates by closed grab dredgers for temporary marine channel outside pipepile wall shall be less than 1,500 m³/day and 125 m³/hour (without concurrent dredging with T2 in dry season only) or 750 m³/day and 62.5 m³/hour for other conditions respectively. Dredging works shall be only for the provision marine channel. No dredging work is 		Contractor	Kai Tak Barging Point during dredging works	Dredging period	@ N/A N/A N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
			Address				
		 required for temporary reclamation; and The workfront of temporary reclamation shall be surrounded by cofferdams and the associated excavation and backfilling works for temporary reclamation shall have no contact with seawater. 					N/A
\$6.9.2.2	W8	 While WSR 2 (Planned Kai Tak Cooling Water Intake). is a planned receiver, the project proponent shall liaise with the project proponent of District Cooling System (DCS) for Kai Tak Development on the implementation programme prior to wet season dredging. In case the DCS would be operated during the dredging period of CKR, additional silt screen to the cooling water intake shall be provided to WSR 2. The following specific mitigation measures shall apply for the dredging works: In dry season, the dredging rate shall be less than 1500m³/day if no concurrent 	sediment suspension during dredging if the District Cooling System for Kai Tak	Contractor	Kai Tak Barging Point during dredging works	Dredging period	N/A V
		projects.	be operated in the				v
			same period				V
		 Dredging works shall be only for the provision marine channel. No dredging work is required for temporary reclamation. 	l -				V
		The workfront of temporary reclamation shall be surrounded by cofferdams and the associated excavation and backfilling works for temporary reclamation shall have no contact with seawater.					N/A
		 In case the DCS would be operated during the dredging period of CKR, silt screen shall be provided for WSR2. 					N/A
S6.9.2	W9	 Handling of Dredged Sediment / Barging Operation: All barges should be fitted with tight bottom seals to prevent leakage of materials during transport; Barges or hoppers should not be filled to a level that will cause overflow of materials or polluted water during loading or transportation; All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; and Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. 	disturbance during dredged sediment handling/barging operation	Contractor	All land- based site and proposed Kwai Chung barging point	Construction stage	N/A
		 Mitigation measures for land-based activities as outlined above should be applied to minimise water quality impacts from site runoff and open stockpile spoils at the 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		Recommended	implement the	measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to				
			Address				
		proposed barging facilities where appropriate.					
S6.9	W10	Implement a marine water quality monitoring programme	Monitor marine	Contractor	At identified	Prior to and	V
			water quality prior		monitoring	during dredging	
			to and during		location	period	
			dredging period				

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		Construction Waste)	To the second	T _	T	T	T
\$7.4.1	WM1	 On-site sorting of C&D material ■ Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at the source sites as far as practicable and stored at designated stockpile areas preventing them from delivering to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc should also be explored. 	concrete batching plants and be turned into concrete for structural use	Contractor	All construction sites	Construction stage	V
\$7.5.1	WM2	 Construction and Demolition Material Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt 'Selective Demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. 	generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	V V V V
S7.5.1	WM3	C&D Waste Standard formwork or pre-fabrication should be used as far as practicable in order to	Good site practice to minimize the waste	Contractor	All construction	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended	Who to implement	Location of the measure	When to implement the	Implementation Status
			Measures & Main	the		measures?	
			Concern to Address	measures?			
		minimise the arising of C&D materials. The use of more durable formwork or plastic facing	generation and recycle		sites		
		for the construction works should be considered. Use of wooden hoardings should not be					
		used, as in other projects. Metal hoarding should be used to enhance the possibility of	as practicable so as to				
		recycling. The purchasing of construction materials will be carefully planned in order to	reduce the amount for				
		avoid over ordering and wastage.	final disposal				
		The Contractor should recycle as much of the C&D materials as possible on-site. Public					V
		fill and C&D waste should be segregated and stored in different containers or skips to					
		enhance reuse or recycling of materials and their proper disposal. Where practicable,					
		concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be					
		used by scrap steel mills. Different areas of the sites should be considered for such					
		segregation and storage.					
S7.5.1	WM5	<u>Land-based and Marine-based Sediment</u>	To control pollution due	Contractor	Along CKR	Construction	N/A
		All construction plant and equipment shall be designed and maintained to minimize the	to marine sediment		alignment	Stage	
		risk of silt, sediments, contaminants or other pollutants being released into the water					
		column or deposited in the locations other than designated location;					
		All vessels shall be sized such that adequate draft is maintained between vessels and the					
		sea bed at all states of the tide to ensure that undue turbidity is not generated by					
		turbulence from vessel movement or propeller wash;					
		Before moving the vessels which are used for transporting dredged material, excess					
		material shall be cleaned from the decks and exposed fittings of vessels and the excess					
		materials shall never be dumped into the sea except at the approved locations;					
		Adequate freeboard shall be maintained on barges to ensure that decks are not washed					
		by wave action.					
		The Contractors shall monitor all vessels transporting material to ensure that no dumping					
		outside the approved location takes place. The Contractor shall keep and produce logs					
		and other records to demonstrate compliance and that journeys are consistent with					
		designated locations and copies of such records shall be submitted to the engineers;					
		The Contractors shall comply with the conditions in the dumping licence.					
		All bottom dumping vessels (Hopper barges) shall be fitted with tight fittings seals to their					
		bottom openings to prevent leakage of material;					
		The material shall be placed into the disposal pit by bottom dumping;					
		• Contaminated marine mud shall be transported by spit barge of not less than 750m ³					
		capacity and capable of rapid opening and discharge at the disposal site;					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended	Who to implement	Location of the measure	When to implement the	Implementation Status
			Measures & Main	the		measures?	
			Concern to Address	measures?			
		 Discharge shall be undertaken rapidly and the hoppers shall be closed immediately. 					
		Material adhering to the sides of the hopper shall not be washed out of the hopper and the					
		hopper shall remain closed until the barge returns to the disposal site.					
		 For Type 3 special disposal treatment, sealing of contaminant with geosynthetic 					
		containment before dropping into designated mud pit would be a possible arrangement. A					
		geosynthetic containment method is a method whereby the sediments are sealed in					
		geosynthetic containers and, the containers would be dropped into the designated					
		contaminated mud pit where they would be covered by further mud disposal and later by					
		the mud pit capping at the disposal site, thereby fulfilling the requirements for fully confined					
		mud disposal.					
S7.5.1	WM6	Chemical Waste	Control the chemical	Contractor	All	Construction	
		 Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal 	waste and ensure		construction	stage	V
		(Chemical Waste) (General) Regulation, should be handled in accordance with the Code	proper storage,		sites		
		of Practice on the Packaging, Labelling and Storage of Chemical Wastes.	handling and disposal.				
		 Containers used for the storage of chemical wastes should be suitable for the substance 					V
		they are holding, resistant to corrosion, maintained in a good condition, and securely					
		closed; have a capacity of less than 450 liters unless the specification has been approved					
		by the EPD; and display a label in English and Chinese in accordance with instructions					
		prescribed in Schedule 2 of the regulation.					
		 The storage area for chemical wastes should be clearly labelled and used solely for the 					V
		storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and					
		bunding of sufficient capacity to accommodate 110% of the volume of the largest container					
		or 20 % of the total volume of waste stored in that area, whichever is the greatest; have					
		adequate ventilation; covered to prevent rainfall entering; and arranged so that					
		incompatible materials are adequately separated.					
		 Disposal of chemical waste should be via a licensed waste collector; be to a facility 					V
		licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which					
		also offers a chemical waste collection service and can supply the necessary storage					
		containers; or be to a reuser of the waste, under approval from the EPD.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	Implementation
	Log Ref		Recommended	implement	the measure	implement the	Status
			Measures & Main	the		measures?	
			Concern to Address	measures?			
S7.5.1	WM7	General Refuse	Minimize production of the	Contractor	All	Construction	
		General refuse generated on-site should be stored in enclosed bins or compaction units	general refuse and avoid		construction	stage	V
		separately from construction and chemical wastes.	odour, pest and litter		sites		
		 A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled him for their denseit should 					@ V
		 are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. 					V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended	Who to implement the	Location of the measure	When to implement the	Implementation Status
	Log Itel		Measures & Main	measures?	measure	measures?	Otatus
			Concern to Address				
Land Conta	mination						
S8.10,	LC1	Land contamination investigation works (including field works and laboratory testing at the	Minimize the	Contractor	EBH1, EBH2	Commencement	
S8.12 &		Kowloon City Ferry Pier Public Transport Interchange (KCFP-PTI) and the To Kwa Wan	potentially adverse		and EBH3	of construction	
Appendi		Vehicle Examination Centre (TKW-VEC) were carried out from 14 April 2018 to 2 January	environmental			works at the	
x 8.4		2019. In order to minimise the potentially adverse environmental impacts arising from the	impacts arising from			Kowloon City	
		handling of potentially contaminated materials, the following environmental mitigation	the handling			Ferry Pier Public	
		measures are proposed during the course of soil excavation, stockpiling and backfilling works:	of potentially			Transport	
		Excavation profiles must be properly designed and executed.	contaminated			Interchange (PTI)	N/A
		• Stockpiling site(s) shall be lined with impermeable sheeting and bunded. Stockpiles shall	materials			(for EBH1 &	N/A
		be fully covered by impermeable sheeting to reduce dust emission.				EBH2) and the	
		• Excavation and stockpiling should be carried out during dry season as far as possible to				works area	N/A
		minimise potentially contaminated runoffs from the Concerned Soil.				adjacent to the	
		• The truck transferring Concerned Soil shall be covered entirely by impervious sheeting to				To Kwa Wan	N/A
		ensure that the dusty materials do not leak from the truck.				Vehicle	
		• Temporary fencing or warning ribbons will be provided to the boundary of excavation,				Examination	N/A
		slope crest and temporarily stockpiled areas. Where necessary, the exposed areas should				Centre (for	
		be temporarily covered with impermeable sheeting during heavy rainstorm.				EBH3)	

EIA Ref.	EM&A Log Ref		Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Landscape			Cook Cita Management	Minimina	Controptor	\	Canatavatian	
S10.10.1 Table 10.11	LV3	•	Good Site Management Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance. Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.		Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV4	•	Screen Hoarding Decorative screen hoarding should be erected to screen the public from the construction area. It should be designed to be compatible with the existing urban context.	Minimize visual impact	Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV5	•	Lighting Control during Construction All lighting in the construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residencies and GIC. The contractor shall consider other security measures, which shall minimize the visual impacts.	Minimize visual impact	Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV6	•	Erosion Control The potential for soil erosion shall be reduced by minimizing the extent of vegetation disturbance on site and by providing a protective cover over newly exposed soil.	Minimize landscape impact	Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV7	•	Tree Protection & Preservation Carefully protected during construction. Tree protection measures will be detailed at the Tree Removal Application stage and plans submitted to the relevant Government Department for approval in due course in accordance with ETWB TC no. 3/2006.	•	Contractor	Within Project Site	Design and Construction Phase	V
S10.10.1 Table 10.11	LV9	•	Compensatory Planting For trees unavoidably affected by the Project that have to be removed, where practical transplantation will be chosen as the top priority method of removal but if this is not possible or practical compensatory planting will be provided for trees unavoidably felled. All felled trees shall be compensated for by planting trees to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006. Compensatory tree planting may be incorporated into public open spaces and along roadside amenity areas affected by the construction works and therefore be part of the bigger wider planting plans. Onsite compensation planting is preferred but if necessary,		Contractor	Within Project Site and designated off-site locations	Construction Phase	N/A

AECOM Asia Co. Ltd.

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		additional receptor sites outside the Works Area shall be agreed separately with Government during the Tree Felling Application process.					
S10.10.1 Table 10.11	LV10	Screen Planting Tall screen/buffer trees, shrubs and climbers should be planted, in so far as is possible, to soften and screen proposed structures such as roads and central strip, vertical edges and buildings and to enhance streetscape greening effect where appropriate. Indiscriminate use of trees for screening must be avoided and the principle of 'right tree for the right place' must be followed. This detail will be provided at the Detailed Design stage. This measure may additionally form part of the compensatory planting and will improve and create a pleasant pedestrian environment.	landscape.	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV11	 Green Roof Roof greening will be established on ventilation and administration buildings to reduce exposure to untreated concrete surfaces and particularly mitigate visual impact to VSRs at high levels. 	· ·	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV12	 Reinstatement All works areas, excavated areas and disturbed areas for tunnel construction and temporary road diversion or any other proposed works shall be reinstated to former conditions or better, with reasonable landscape treatment and to the satisfaction of the relevant Government departments. (Specific mitigation for disturbance to public open space is detailed separately under LV14) 	·	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV14	 Landscape enhancement Implement a comprehensive landscape plan to maximize the greening opportunity and create a unique landscape for the project to blend in with the surrounding, including in reprovisioned areas. In particular: landscape enhancement of re-provisioned Public Transport Interchange; landscape deck on tunnel portals; viaduct planters for trailer planting; vertical greening of piers and walls with climbers or trailer planting; roadside planting i.e. planting along central dividers and on road islands e.g. in the middle of roundabouts. (Roadside planting i.e. at the road edge and not in the central divider or road island, and vertical greening may be considered part of Screen Planting). Purpose-built maintenance access without temporary traffic arrangement must be 		Contractor	Along tunnel alignment	Construction phase	N/A

AECOM Asia Co. Ltd.

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	Implementation
	Log Ref		Recommended	implement the	the measure	implement the	Status
			Measures & Main	measures?		measures?	
			Concern to Address				
		provided and detailed design of landscape decks and planting, including details of					
		maintenance access locations, will be sent to maintenance and management parties for					
		endorsement and ensures these mitigation measures are feasible.					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		t (Construction and Operational Phase)	1		T	T	
S11.4.4	CH1	 The contractor should be alerted during the construction on the possibility of locating archaeological remains and as a precautionary measure, AMO shall be informed immediately in case of discovery of antiquities or supposed antiquities in the subject sites. 	heritage items which may	Contractor	During construction works for cut and cover tunnels	During the construction phase	N/A
S11.6 para 3	CH2	 The dredging contractor should be alerted during the construction on the possibility of locating archaeological remains, such as cannon and AMO shall be informed immediately in case of discovery of antiquities or supposed antiquities in the subject areas. 	heritage items which may	Contractor	During construction of underwater tunnel (north of To Kwa Wan Typhoon Shelter)	During the construction phase	N/A
S12.6.1, Table 12.2	CH8	 A monitoring system for settlement, vibration and tilting will be determined and implemented pending determination of the future grading. A monitoring proposal will be submitted to AMO before commencement of work if a historic building grade is accorded. 	from damage from	Contractor	Kowloon City Ferry Pier (CKR-13)	During the construction phase	N/A
S12.6.1, Table 12.2	CH9	 No mitigation is required at present. If the public pier is granted Grade 1, Grade 2 or Grade 3 status, the mitigation will be revised to adhere to the requirements for protective measures for Graded Historic Buildings 		Contractor	Ma Tau Kok Public Pier (CKR-16)	During the construction phase	N/A
S12.6.1, Table 12.2	CH10	 A monitoring system for settlement, vibration and tilting will be determined and implemented pending determination of the future grading. A monitoring proposal will be submitted to AMO before commencement of work if a historic building grade is accorded. 	from damage from	Contractor	The Kowloon City Vehicular Ferry Pier (CKR-17)	During the construction phase	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main	Who to implement the	Location of the measure	When to implement the measures?	Implementation Status
			Concern to Address	measures?			
EM&A Pro	ject						
S13.2	EM1	An Independent Environmental Checker needs to be	Control EM&A	Highways	All	Construction stage	V
		employed as per the EM&A Manual.	Performance	Department	construction		
					sites		
S13.2	EM2	1) An Environmental Team needs to be employed as per the	Perform environmental	Highways	All	Construction	V
-13.4		EM&A Manual.	monitoring & auditing	Department /	construction	stage	
		2) Prepare a systematic Environmental Management		Contractor	sites		V
		Plan to ensure effective implementation of the mitigation measures.					
		3) An environmental impact monitoring needs to be					V
		implementing by the Environmental Team to ensure all					
		the requirements given in the EM&A Manual are fully					
		complied with.					

Legends:

V = implemented;

X = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Action Level	Limit Level
E-A14a	Block B of Merit Industrial Centre	197.3 μg/m³	260 μg/m³

Table 2 Action and Limit Levels for 1-hour TSP

ID	Location	Action Level	Limit Level
E-A14a	Block B of Merit Industrial Centre	302.4 μg/m³	500 μg/m³

Table 3 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
E-N12a	19 Hing Yan Street	When one documented complaint is received	75 dB(A)
E-N21a	E-N21a Block B of Merit Industrial Centre When of documer complaint is re-		75 dB(A)

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

RECALIBRATION **DUE DATE:**

May 22, 2019

ertificate of

Calibration Certification Information

Cal. Date: May 22, 2018

Rootsmeter S/N: 438320

Ta: 296

°K

Operator: Jim Tisch

Pa: 749.3

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 0988

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3840	3.2	2.00
2	3	4	1	0.9840	6.4	4.00
3	5	6	1	0.8790	7.9	5.00
4	7	8	1	0.8420	8.7	5.50
5	9	10	1	0.6900	12.7	8.00

	~~~~	Data Tabulat	tion		
Vstd (m3)	Qstd (x-axis)	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ (y-axis)	Va	Qa (x-axis)	√∆H(Ta/Pa)
0.9883	0.7141	1.4090	0.9957	0.7195	0.8889
0.9841	1.0001	1.9926	0.9915	1.0076	1.2570
0.9821	1.1173	2.2278	0.9895	1.1257	1.4054
0.9811	1.1652	2.3365	0.9884	1.1739	1.4740
0.9758	1.4141	2.8179	0.9831	1.4247	1,7777
	m=	2.01748		m=	1.26331
QSTD[	b=	b= -0.02651		b=	-0.01673
	r=	0.99988	QA	r=	0.99988

Calculation	ons		
Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)		
Qstd= Vstd/ΔTime	Qa= Va/ΔTime		
For subsequent flow ra	ate calculations:		
Qstd= $1/m \left( \left( \sqrt{\Delta H \left( \frac{Pa}{Pstd} \right) \left( \frac{Tstd}{Ta} \right)} \right) \cdot b \right)$	$Qa = 1/m \left( \left( \sqrt{\Delta H \left( Ta/Pa \right)} \right) - b \right)$		

	Standard Conditions	
Tstd:	298.15 °K	
Pstd:	760 mm Hg	
	Key	
ΔH: calibrator	manometer reading (in H2O)	
ΔP: rootsmete	er manometer reading (mm Hg)	
Ta: actual abs	olute temperature (°K)	
Pa: actual bar	ometric pressure (mm Hg)	
b: intercept		
m: slope		_

## RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009



RECALIBRATION **DUE DATE:** 

June 6, 2020

## ertificate d alibration

**Calibration Certification Information** 

Cal. Date:

June 6, 2019

Run

Rootsmeter S/N: 438320

Ta: 295 Pa: 748.0 °K

mm Hg

Operator: Jim Tisch

Calibration Model #: TE-5025A

> 2 3

Calibrator S/N: 0988

Vol. Init Vol. Final (m3)				ΔP (mm Hg)	ΔH (in H2O)	
1	2	1	1.3640	3.2	2.00	
3	4	1	0.9680	6.3	4.00	
5	6	1	0.8680	7.8	5.00	
7	8	1	0.8250	8.7	5.50	
9	10	1	0.6800	12.6	8.00	

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
0.9900	0.7258	1.4101	0.9957	0.7300	0.8881				
0.9859	1.0185	1.9943	0.9916	1.0244	1.2560				
0.9839	1.1335	2.2296	0.9896	1.1401	1.4042				
0.9827	1.1911	2.3385	0.9884	1.1980	1.4728				
0.9775	1.4375	2.8203	0.9832	1.4458	1.7762				
	m=	1.98356		m=	1.24207				
QSTD[	b=	-0.02592	QA	b=	-0.01633				
	r=	0.99996		r=	0.99996				

	Calculation	S		
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime		Qa= Va/\DarrowTime	
	For subsequent flow rate	e calculatio	ns:	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

## RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

# AECOM Asia Company Limited Tisch TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

al. Date:				_	Choi wing Ho			
ai. Date.	17-May-19	_		Next Due Date:	17-Jւ	7-Jul-19		
odel No.:	TE-5170	Seria			o. 10380			
quipment No.:	A-001-15T							
			Amblant	No se divide				
	T- (10)	202 T	Ambient (			750 F		
Temperature	e, Ta (K)	303	Pressure, F	Pa (mmHg)		752.5		
		0	rifice Transfer Sta	andard Information	)			
Serial 1	No:	988	Slope, mc	2.01	748	Intercept, bc	-0.026	
Last Calibrat	on Date:	22-May-18		0.1.1	H (D /8/A)	(200/TE \1/2		
Next Calibrat	ion Date:	22-May-19		mc x Qstd + bc =	= [H x (Pa/760) x	(298/1a)]		
			Oalibustism of	TOD 0				
		C	Calibration of Orfice	i or sampler	HVS	S Flow Recorder		
Resistance Plate		T						
No.	DH (orifice), in. of water	[DH x (Pa/7)	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF		
		2.63		1.32	46.0	45.39	)	
18	7.1		2.03	1.02				
18 13	7.1 6.2		2.46	1.23	42.0	41.45	5	
			A-1040909	281802-5	42.0 37.0	41.45 36.5		
13	6.2		2.46	1.23				
13 10	6.2 5.0		2.46 2.21	1.23 1.11	37.0	36.5	)	
13 10 7	6.2 5.0 3.5 2.5 sion of Y on X 38.9459	0.	2.46 2.21 1.85	1.23 1.11 0.93	37.0 30.0 25.0	36.5 ² 29.60	)	
13 10 7 5 By Linear Regress	6.2 5.0 3.5 2.5 sion of Y on X 38.9459 cient* =		2.46 2.21 1.85 1.56	1.23 1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope, mw = Correlation Coeffice	6.2 5.0 3.5 2.5 sion of Y on X 38.9459 cient* =		2.46 2.21 1.85 1.56	1.23 1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress  Slope , mw =  Correlation Coefficient Coefficien	6.2 5.0 3.5 2.5 sion of Y on X 38.9459 cient* =	heck and recalibra	2.46 2.21 1.85 1.56  9983 ate.  Set Point (	1.23 1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope, mw = Correlation Coeffic If Correlation Coeffic	6.2 5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	heck and recalibrate we, take Qstd = 1.	2.46 2.21 1.85 1.56  9983 ate.  Set Point (30m³/min	1.23 1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope, mw = Correlation Coeffice	6.2 5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	heck and recalibrate we, take Qstd = 1.	2.46 2.21 1.85 1.56  9983 ate.  Set Point (30m³/min	1.23 1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope , mw = Correlation Coeffic If Correlation Coeffic	6.2 5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	heck and recalibrate  ve, take Qstd = 1.  "Y" value according	2.46 2.21 1.85 1.56  9983 ate.  Set Point (30m³/min ang to	1.23 1.11 0.93 0.79	37.0 30.0 25.0	36.5° 29.60 24.6°	)	
13 10 7 5  By Linear Regress Slope , mw = Correlation Coeffic From the TSP Field From the Regression	6.2 5.0 3.5 2.5 sion of Y on X 38.9459 cient* = ficient < 0.990, c	ve, take Qstd = 1. "Y" value accordir	2.46 2.21 1.85 1.56  9983 ate.  Set Point (30m³/min ang to	1.23 1.11 0.93 0.79 Intercept, bw =	37.0 30.0 25.0	36.5° 29.60 24.6°	)	

## AECOM Asia Company Limited Tisch TSP Mass Flow Controlled High Volume Air Sampler Field Calibration Report

Station	Block B, Merit In	dustrial Centre (	E-A14a)	Operator:	Choi Wing Ho		
Cal. Date:	17-Jul-19		***************************************	Next Due Date:	17-Se	ep-19	_
Model No.:	TE-5170	_		Serial No.	103	380	_
Equipment No.:	A-001-15T	_					-
			Ambient (	Condition			
Temperature	e. Ta (K)	306		Pa (mmHg)		749.5	
, oporata	0, 10, (1, 1)			<u> </u>			
		C	Prifice Transfer Sta	andard Information	n .		
Serial	No:	988	Slope, mc	1.98	3356	Intercept, bc	-0.02592
Last Calibrat	tion Date:	6-Jun-19		O-td   h-	- III (Do/760)	(209/Ta)1 ^{1/2}	
Next Calibra	tion Date:	6-Jun-20		mc x Qstd + bc =	= [H X (Pa//60) X	(298/1a)j	
			Calibration of	TSP Sampler			
			Orfice	10F Samplei	HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (CF	
18	7.2		2.63	1.34	46.0	45.0	8
13	6.2		2.44	1.24	42.0	41.1	6
10	4.9		2.17	1.11	37.0	36.2	6
7	3.5		1.83	0.94	29.0	28.4	2
5	2.6		1.58	0.81	24.0	23.5	2
By Linear Regress Slope , mw = Correlation Coeffi	41.0363 cient* =		9985	Intercept, bw =	-9.7	7254	-
*If Correlation Coef	ficient < 0.990, cr	neck and recalibr	ate.				
			Set Point (	Calculation			
From the TSP Field From the Regression		Y" value accordi	ng to	[(Pa/760) x (298/Ta	a)] ^{1/2}		
Therefore, Set Poin	nt; IC = ( mw x Qs	td + bw ) x [( 760	) / Pa ) x ( Ta / 298	)] ^{1/2} =		44.51	_
Remarks:	The second secon			We in			
QC Reviewer:	WS CH	AN	Signature:	RI		Date:	7/19

## **EQUIPMENT CALIBRATION RECORD**

Model			-	Laser Do SIBATA LD-3		itor		
Equipment No.: Sensitivity Adjustment Scale Setting:				A.005.07 557 CPI				
Operator:				Mike She		M)		
Standar	rd Equipment			-4				
Equipr Venue Model Serial	ment: : No.: No:	Cyb Seri Con Sen	sor: 12		ondary So 99803	chool) K _o : _12500		
	alibration Date*: ks: Recommend	-	ay 2019 for hardwa	re calibra	tion is 1 y	year		
Calibrat	tion Result	200				30 10		
	ivity Adjustment ivity Adjustment		- '		,	557 CP		
Hour	Date (dd-mm-yy)	Т	ime	Cond	dition R.H.	Concentration ¹ (mg/m³) <b>Y-axis</b>	Total Count ²	Count/ Minute ³ <b>X-axis</b>
1 2	04-05-19 04-05-19	09:15 10:15	- 10:15 - 11:15	(°C) 23.7 23.7	(%) 81 82	0.04765 0.05036	1914 2025	31.90 33.75
3	04-05-19 04-05-19	11:15 12:15	- 12:15 - 13:15	23.8	82 82	0.05251	2103	35.05
Note:		lata was m was logge	easured by d by Laser	Rupprecl Dust Mon	nt & Pata itor	0.05587 ashnick TEOM®	2231	37.18
Slope (	ar Regression of (K-factor): ation coefficient:	Y or X	0.0015 0.9977					
Validity	of Calibration F	Record:	4 May 20	20				
Remarks	s:							
	viewer: VIW F		Signo		4/			



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



## CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0914 03

Page

of

2

Item tested

Description

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.:

**B&K** 2238

**B&K** 

Serial/Equipment No.:

2800927

4188

Adaptors used:

2791211

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No .: Date of receipt:

14-Sep-2018

Date of test:

17-Sep-2018

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator

Model: B&K 4226 Serial No.

**Expiry Date:** 

Traceable to:

DS 360 DS 360 2288444 33873

61227

23-Aug-2019 24-Apr-2019 23-Apr-2019

CIGISMEC CEPREI

CEPREI

**Ambient conditions** 

Temperature:

21 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

## Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3 between the free-field and pressure responsess of the Sound Level Meter.

## Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Feng Junqi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

18-Sep-2018

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev C/01/02/2007



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



## CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0914 03

Page

2

### **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Took	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Test:	Subtest.	Status.	Unicertainty (ub)	racioi
Self-generated noise	Α	Pass	0.3	
	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
•	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	
	AND STATE OF THE S			

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
•	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Date:

Fung Chi Yip

17-Sep-2018

Checked by:

Shek Kwong Tal

Date:

18-Sep-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co. Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007



香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



## CERTIFICATE OF CALIBRATION

Certificate No.:

19CA0327 01-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K

Type/Model No.:

4231

Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

-

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer:

-

Request No.: Date of receipt:

27-Mar-2019

(N.004.03)

Date of test:

27-Mar-2019

## Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	20-Apr-2019	SCL
Preamplifier	B&K 2673	2743150	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	8903B	GB41300350	23-Apr-2019	CEPREI
Universal counter	53132A	MY40003662	24-Apr-2019	CEPREI

## Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

### Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
  and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

## Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements rare presented on page 2 of this certificate.

Feng Jungi

Approved Signatory:

Date:

29-Mar-2019

Company Chop:

SENGINE LERENG COMPANY STOS * OLY STOS * OL

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007



香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



## CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0327 01-02

Page:

2

1, Measured Sound Pressure Level

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

			(Output level in dB re 20 μPa)	
Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	Estimated Expanded Uncertainty dB	
1000	94.00	94.23	0.10	

#### 2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.014 dB

Estimated expanded uncertainty

0.005 dB

#### 3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0 1 Hz

Coverage factor k = 2.2

#### **Total Noise and Distortion** 4.

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.3 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yip

Fong Chun Wai

Date: 27-Mar-2019

Date:

29-Mar-2019

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co., Ltd

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

## APPENDIX F

**EM&A Monitoring Schedules** 

## Central Kowloon Route – Kai Tak West Impact Environmental Monitoring Schedule for July 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul
					24-hour TSP 1-hour TSP Noise	
7-Jul	8-Jul	9-Jul	10-Jul		12-Jul	13-Jul
				24-hour TSP 1-hour TSP Noise		
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
			24-hour TSP 1-hour TSP Noise			
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
		24-hour TSP 1-hour TSP Noise				
28-Jul		30-Jul	31-Jul			
The selection is subject to a	24-hour TSP 1-hour TSP Noise					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

## **Air Quality Monitoring Station**

E-A14a: Block B of Merit Industrial Centre

## **Noise Monitoring Stations**

E-N12a: 19 Hing Yan Street

E-N21a: Block B of Merit Industrial Centre

## **Monitoring Frequency**

24-hour TSP: Once every 6 days

1-hour TSP: 3 times every 6 days (as required in case of complaints)

## **Monitoring Frequency**

Once per week

# Central Kowloon Route - Kai Tak West **Tentative Impact Environmental Monitoring Schedule for August 2019**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Aug	2-Aug	3-Aug
						24-hour TSP 1-hour TSP
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
					24-hour TSP 1-hour TSP Noise	
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
				24-hour TSP 1-hour TSP Noise		
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
			24-hour TSP 1-hour TSP Noise			
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
		24-hour TSP 1-hour TSP Noise				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

#### **Air Quality Monitoring Station**

E-A14a: Block B of Merit Industrial Centre

#### **Noise Monitoring Stations**

E-N12a: 19 Hing Yan Street

E-N21a: Block B of Merit Industrial Centre

#### **Monitoring Frequency**

24-hour TSP: Once every 6 days

1-hour TSP: 3 times every 6 days (as required in case of complaints)

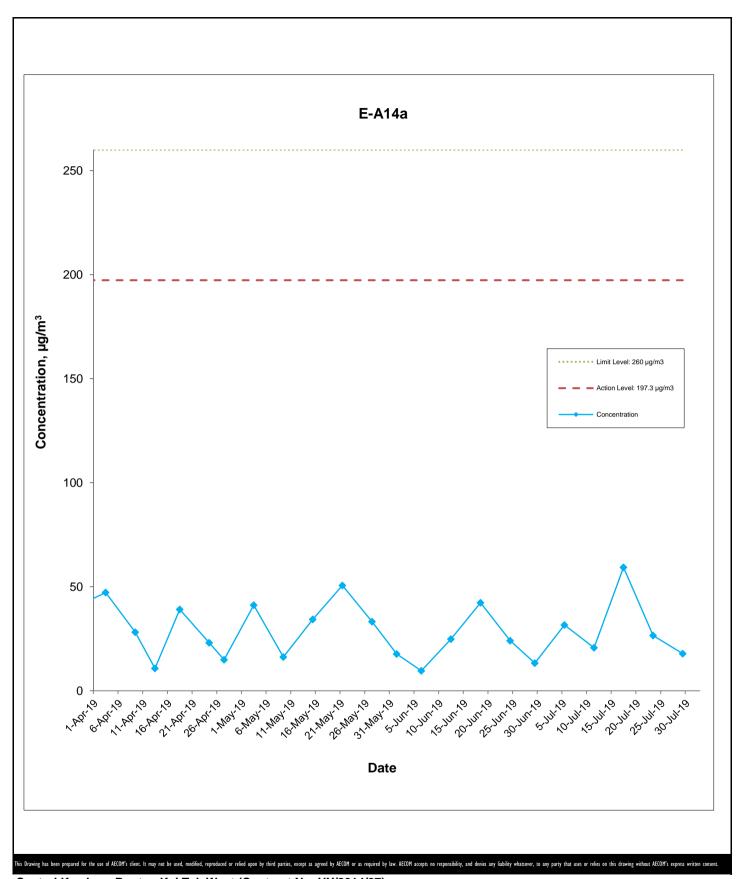
#### **Monitoring Frequency**

Once per week

## **APPENDIX G**

Air Quality Monitoring Results and their Graphical Presentations

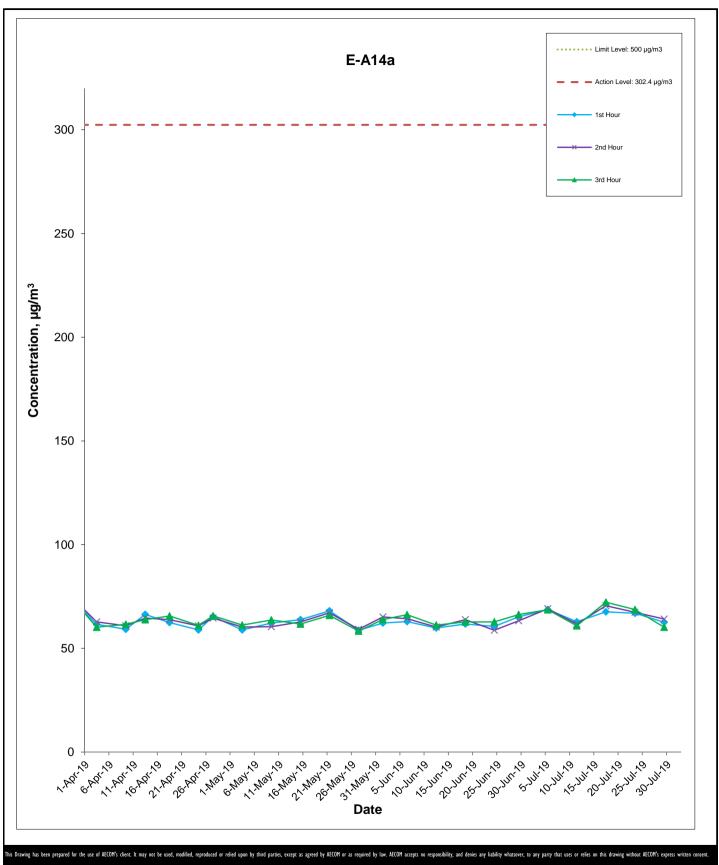
#### Appendix G Air Quality Monitoring Results


#### 24-hour TSP Monitoring Results at Station E-A14a (Block B, Merit Industrial Centre)

	Weather	Air	Atmospheric	Flow F	Flow Rate (m³/min.) Av.		Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.
Date	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³ )	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
5-Jul-19	Cloudy	29.5	1004.9	1.34	1.34	1.34	1931.0	2.6836	2.7446	0.0610	8298.32	8322.32	24.00	31.6
11-Jul-19	Sunny	28.8	1007.5	1.34	1.34	1.34	1931.0	2.7035	2.7435	0.0400	8322.32	8346.32	24.00	20.7
17-Jul-19	Cloudy	30.5	1001.4	1.34	1.34	1.34	1931.0	2.7160	2.8306	0.1146	8346.32	8370.32	24.00	59.3
23-Jul-19	Sunny	29.5	1005.3	1.34	1.34	1.34	1931.0	2.6868	2.7380	0.0512	8370.32	8394.32	24.00	26.5
29-Jul-19	Sunny	28.8	1006.6	1.34	1.34	1.34	1931.0	2.6944	2.7289	0.0345	8394.32	8418.32	24.00	17.9
													Average	31.2
													Minimum	17.9
													Maximum	59.3

# **Appendix G Air Quality Monitoring Results**

# 1-hour TSP Monitoring Results at Station E-A14a (Block B, Merit Industrial Centre)


	Start		1st Hour	2nd Hour	3rd Hour
	Time	Weather	Conc.	Conc.	Conc.
Date	(hh:mm)	Condition	(µg/m³)	(µg/m³)	(µg/m³)
5-Jul-19	10:50	Cloudy	68.7	69.1	68.6
11-Jul-19	12:40	Fine	62.8	61.7	60.9
17-Jul-19	11:35	Sunny	67.6	70.5	72.2
23-Jul-19	13:00	Sunny	66.9	67.4	68.7
29-Jul-19	13:20	Sunny	62.6	64.1	60.2
				Average	66.1
				Min	60.2
				Max	72.2

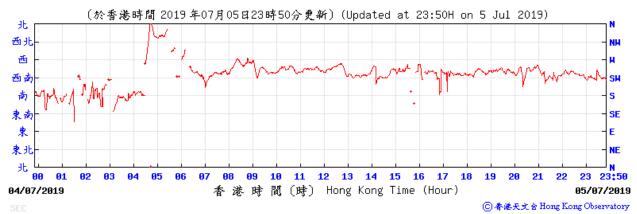


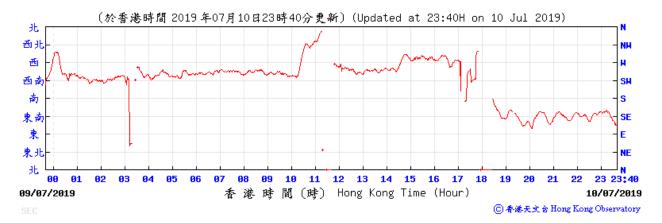
Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)



Date: August 2019 Appendix G




Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)

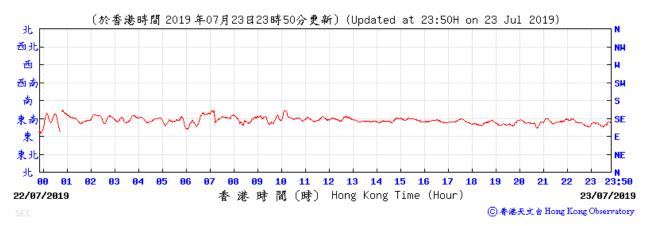


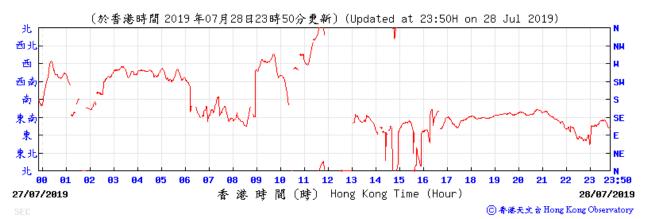

Date: August 2019 Appendix G


#### Data of Wind Direction Extracted from Kai Tak Wind Station of the Hong Kong Observatory



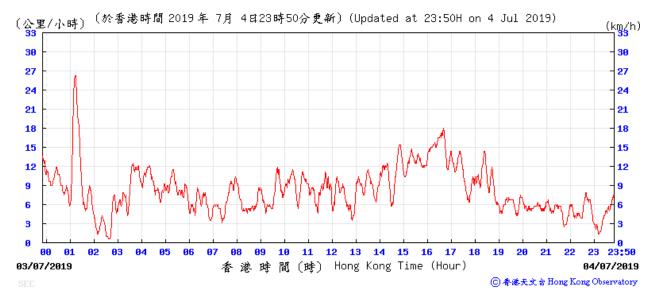




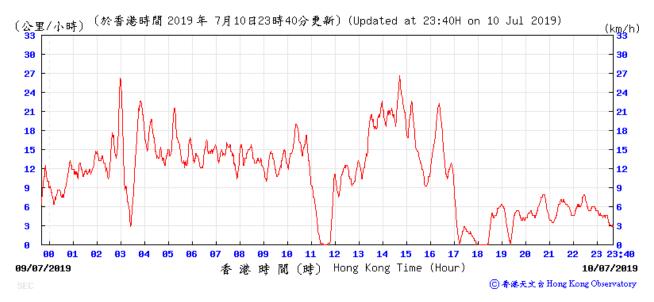







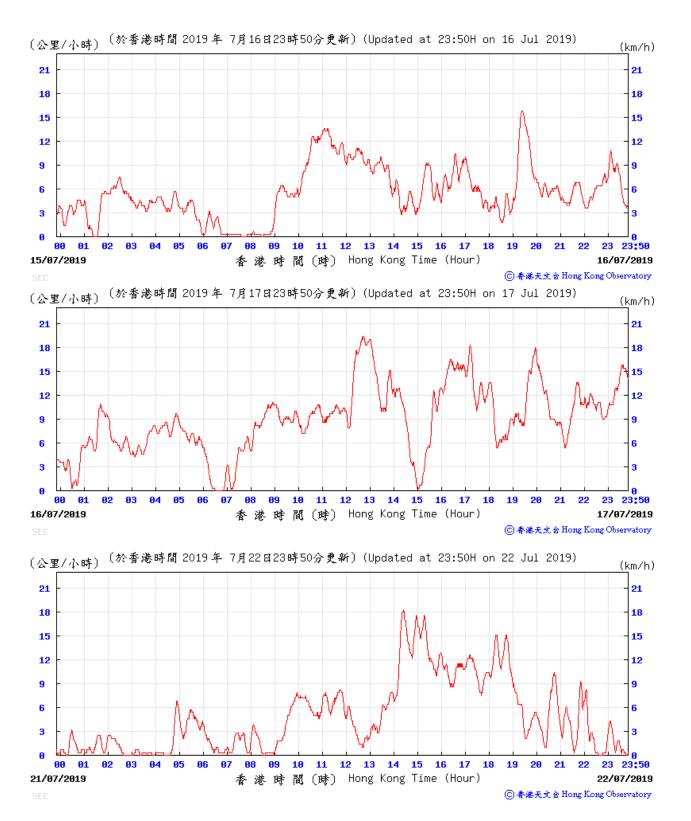





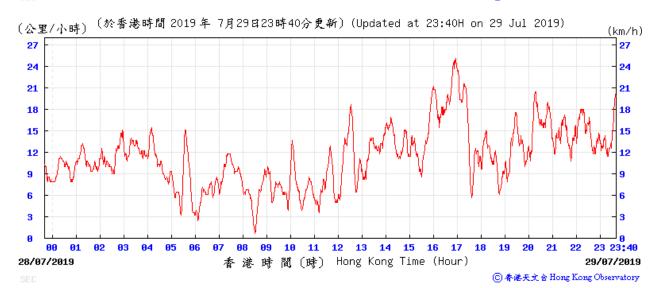





#### Data of Wind Speed Extracted from Kai Tak Wind Station of the Hong Kong Observatory
















# **APPENDIX H**

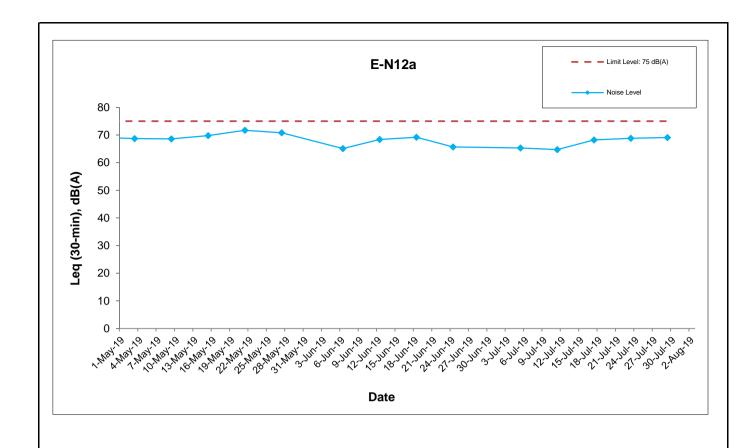
**Noise Monitoring Results and their Graphical Presentations** 

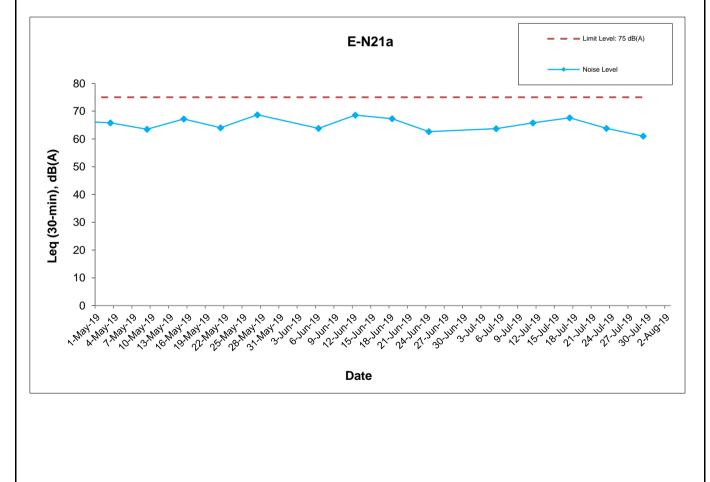
## Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station E-N12a (19 Hing Yan Street)

Date	Weather	Nois	e Level for	30-min, d	Limit Level,	Exceedance	
Duic	Condition	Time	L90	L10	Leq	dB(A)	(Y/N)
5-Jul-19	Sunny	14:05	63.5	67.0	65.3	75	N
11-Jul-19	Fine	14:40	62.7	66.9	64.7	75	N
17-Jul-19	Sunny	13:55	66.5	71.0	68.2	75	N
23-Jul-19	Sunny	14:00 65.5 70.5 68.8		75	N		
29-Jul-19	Sunny	14:00	65.5	71.0	69.1	75	N

Daytime Noise Monitoring Results at Station E-N21a (Block B of Merit Industrial Centre)


	Weather	Nois	e Level for	30-min, d	Limit Level,	Exceedance	
Date	Condition	Time	L90	L10	Leq	dB(A)	(Y/N)
5-Jul-19	Sunny	14:57	61.0	65.5 63.7		75	N
11-Jul-19	Fine	13:10	63.0	67.9	65.8	75	N
17-Jul-19	Sunny	14:53	65.1	69.2	67.6	75	N
23-Jul-19	Sunny	13:00 61.5 65.0 63.8		75	N		
29-Jul-19	Sunny	13:20	58.5	63.2	61.0	75	N


⁺ - Façade measurement.

^{# -} A correction of +3dB(A) was made to the free field measurement.

^{++ -} Free field measurement

^{* -} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school





Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)



Date: August 2019 Appendix H

## **APPENDIX I**

**Event Action Plan** 

# Appendix I Event Action Plan

**Event / Action Plan for Construction Dust Monitoring** 

EVENT  ACTION LEVEL  Exceedance for one sample  Exceedance for		AC	TION	
EVENT	ET	IEC	ER	Contractor
ACTION LEVEL	·			
	<ol> <li>Inform the Contractor, IEC and ER;</li> <li>Discuss with the Contractor and IEC on the remedial measures required;</li> <li>Repeat measurement to confirm findings;</li> <li>Increase monitoring frequency</li> </ol>	Check monitoring data submitted by the ET;     Check Contractor's working method;     Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of exceedance in writing.	Identify source(s), investigate the causes of exceedance and propose remedial measures;     Implement remedial measures;     Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples	1. Inform the Contractor, IEC and ER; 2. Discuss with the ER, IEC and Contractor on the remedial measures required; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency to daily; 5. If exceedance continues, arrange meeting with the IEC, ER and Contractor; 6. If exceedance stops, cease additional monitoring.	<ol> <li>Check monitoring data submitted by the ET;</li> <li>Check Contractor's working method;</li> <li>Review and advise the ET and ER on the effectiveness of the proposed remedial measures.</li> </ol>	Confirm receipt of notification of exceedance in writing;     Review and agree on the remedial measures proposed by the Contractor;     Supervise Implementation of remedial measures.	<ol> <li>Identify source and investigate the causes of exceedance;</li> <li>Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Amend proposal as appropriate.</li> </ol>

Gammon Construction Limited Central Kowloon Route – Kai Tak West

Appendix I Event Action Plan

Appendix I	Event Action Plan			
EVENT		ACT	TION	
EVENT	ET	IEC	ER	Contractor
LIMIT LEVEL Exceedance for one sample	Inform the Contractor, IEC, EPD and ER;     Repeat measurement to confirm findings;     Increase monitoring frequency to daily;     Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness.	Check monitoring data submitted by the ET;     Check the Contractor's working method;     Discuss with the ET, ER and Contractor on possible remedial measures;     Review and advise the ER and ET on the effectiveness of Contractor's remedial measures.	Confirm receipt of notification of exceedance in writing;     Review and agree on the remedial measures proposed by the Contractor;     Supervise implementation of remedial measures.	Identify source(s) and investigate the causes of exceedance;     Take immediate action to avoid further exceedance;     Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification;     Implement the agreed proposals;     Amend proposal if appropriate.
Exceedance for two or more consecutive samples	<ol> <li>Notify Contractor, IEC, EPD and ER;</li> <li>Repeat measurement to confirm findings;</li> <li>Increase monitoring frequency to daily;</li> <li>Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented;</li> <li>Arrange meeting with the IEC and ER to discuss the remedial measures to be taken;</li> <li>Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results;</li> <li>If exceedance stops, cease additional monitoring.</li> </ol>	<ol> <li>Check monitoring data submitted by the ET;</li> <li>Check the Contractor's working method;</li> <li>Discuss with ET, ER, and Contractor on the potential remedial measures;</li> <li>Review and advise the ER and ET on the effectiveness of Contractor's remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented;</li> <li>Supervise the implementation of remedial measures;</li> <li>If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.</li> </ol>	<ol> <li>Identify source(s) and investigate the causes of exceedance;</li> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Revise and resubmit proposals if problem still not under control;</li> <li>Stop the relevant portion of works as determined by the ER until the exceedance is abated.</li> </ol>

# Appendix I Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT		ACT	TION	
EVENT	ET	IEC	ER	Contractor
Exceedance of Action Level	<ol> <li>Notify the Contractor, IEC and ER;</li> <li>Discuss with the ER, IEC and Contractor on the remedial measures required; and</li> <li>Increase monitoring frequency to check mitigation effectiveness.</li> </ol>	Review the investigation results submitted by the contractor; and     Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor.	<ol> <li>Confirm receipt of notification of complaint in writing;</li> <li>Review and agree on the remedial measures proposed by the Contractor; and</li> <li>Supervise implementation of remedial measures.</li> </ol>	<ol> <li>Investigate the complaint and propose remedial measures;</li> <li>Report the results of investigation to the IEC, ET and ER;</li> <li>Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and</li> <li>Implement noise mitigation proposals.</li> </ol>
Exceedance of Limit Level	1. Notify the Contractor, IEC, EPD and ER;  2. Repeat measurement to confirm findings;  3. Increase monitoring frequency;  4. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented;  5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken;  6. Inform IEC, ER and EPD the causes and actions taken for the exceedances;  7. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and  8. If exceedance stops, cease additional monitoring.	<ol> <li>Check monitoring data submitted by the ET;</li> <li>Check the Contractor's working method;</li> <li>Discuss with the ER, ET and Contractor on the potential remedial measures; and</li> <li>Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor.</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented;</li> <li>Supervise the implementation of remedial measures; and</li> <li>If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.</li> </ol>	<ol> <li>Identify source and investigate the causes of exceedance;</li> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Revise and resubmit proposals if problem still not under control; and</li> <li>Stop the relevant portion of works as determined by the ER until the exceedance is abated.</li> </ol>

# Appendix I Event Action Plan

Event and Action Plan for Continuous Noise Monitoring

		ACTI	ON	
EVENT	ET	IEC	ER	CONTRACTOR
Action/Limit Level	1. Identify source; 2. Repeat measurement. If two consecutive measurements exceed Action/Limit Level, the exceedance is then confirmed; 3. If exceedance is confirmed, notify IEC, ER and Contractor; 4. Investigate the cause of exceedance and ckeck Contractor's working procedures to determine possible mitigation to be implemented; 5. Discuss jointly with the IEC, ER and Contractor and formulate remedial measures; and 6. Assess effectiveness of Contractor's remedial actions and keep IEC and ER informed of the results.	<ol> <li>Check monitoring data submitted by the Works Contract 1123 ET;</li> <li>Check the Contractor's working method;</li> <li>Discuss with the ER, Works Contract 1123 ET and Contractor on the potential remedial measures; and</li> <li>Review and advise the Works Contract 1123 ET and ER on the effectiveness of the remedial measures proposed by the Contractor.</li> </ol>	1. Confirm receipt of notification of exceedance in writing; 2. In consultation with the Works Contract 1123 ET and IEC, agree with the Contractor on the remedial measures to be implemented; 3. Ensure the proper implementation of remedial measures; and 4. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	<ol> <li>Identify source with the Works         Contract 1123 ET;</li> <li>If exceedance is confirmed,         investigation the cause of         exceedance and take immediate         action to avoid further         exceedance;</li> <li>Submit proposals for remedial         measures to the ER with copy to         the IEC and ET of notification;</li> <li>Implement the agreed         proposals;</li> <li>Liaise with ER to optimize the         effectiveness of the agreed         mitigation;</li> <li>Revise and resubmit proposals         if problem still not under control;         and</li> <li>Stop the relevant portion of         works as determined by the ER         until the exceedance is abated.</li> </ol>

## **APPENDIX J**

Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions

# Appendix J Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions

	Date	Subject	Status	Total no.	Total no.
	received			received	received since
				in this	project
				month	commencement
Environmental		Environmental Complaint No: EC_011_CKRKTW20190725_01_C018			
complaints		<u>Details of Complaint:</u>			
		A complaint was received by Environmental Protection Department on 23 July 2019 (EPD reference: 19-20635) and transferred it to the Contractor on 25 July 2019. The complaint was detailed as follows:  - Muddy water plume caused by marine works of			
		Central Kowloon Route – Kai Tak West, Kowloon on 23 July 2019.			
		Details of Investigation and findings:			
	23 July 2019 (Referred by	According to the Contractor's information, all marine construction works were only conducted within fully-enclosed silt curtain on 23 July 2019.	Closed	1	11
	the Contractor on 25 July 2019)	The regular site inspections were conducted by ET on 24 July 2019, no muddy water discharge from site was observed during the site inspection and no muddy plume was observed outside the silt curtain even during the pipe piling. In addition, proper screening was also erected near the section of pipe pile driving at inner side. All marine construction works were also conducted within the fully-enclosed silt curtain.			
		It is considered that the proper mitigation measures for the marine works were implemented and provided by the Contractor. In additional, no adverse observation was recorded during the regular site inspection by ET. The potential source for the muddy plume was not caused from the project. To conclude, this complaint is considered to be not project related.			
Notification of					
summons		-		0	0
Successful				0	0
prosecutions		<del>-</del>		U	U

Appendix J AECOM

## APPENDIX K

**Waste Flow Table** 

#### Appendix K Monthly Summary Waste Flow Table

#### Monthly Summary Waste Flow Table for 2019

		Actual Quantities of Inert C&D Materials Generated Monthly (Note 1)  Generated Disposed Reused												Actual Quantities of Non-inert C&D Materials (i.e. C&D Wastes) Generated Monthly					Actual Quantities of Contaminate d Soil Monthly		uantities of ed Sediment onthly	Actual Quantities of Marine-based sediment Monthly		
		(	Generated				Disp	osed			Reused			Recycled		Disp	osed	Reused	Reused	Dis	posed	Disposed		
Month	Fill Material	Artificial Material		rial	Total	Disposed as Public	Disposed as Public	Disposed as Public	Total	Reused in	Reused in	Total		Paper/		Chemical	General	Reused in	Reused in the Contract	Dispuseu a	at Designated Site	Dispose	ed at Designat	ted Site
	Soil and Rock	Broken Concrete	Asphalt	Building Derbis	Quantity Generated	Fills at TKO137	Fills at TM38	Fills at CWPFBP	Quantity Disposal	the Contract	Other Projects	Quantity Reused	Metals	packaging (Note 3)	eackaging (Note 3)	Waste	Refuse (Note 2)	the Contract	Type 1 (Cat. L)	Type 1 (Cat. M _p )	Type 2 (Cat. M _f , Cat. H)	Type 1 (Cat. L, Cat. M _p )	Type 2 (Cat. M _f , Cat. H, Cat. H _p )	Type 3 (Cat. H _f )
Unit	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000Kg)	('000Kg)	('000Kg)	('000L)	('000Kg)	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )	('000m ³ )
Jan	0.500	0.000	0.000	0.000	0.500	0.000	0.019	0.000	0.019	0.000	0.481	0.481	0.000	0.000	0.000	0.000	22.200	0.000	0.000	0.000	0.000	0.000	2.038	0.000
Feb	0.200	0.000	0.000	0.000	0.200	0.000	0.008	0.000	0.008	0.000	0.192	0.192	0.000	0.330	0.000	2.000	15.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar	0.313	0.000	0.000	0.000	0.313	0.000	0.005	0.000	0.005	0.308	0.000	0.308	60.889	0.000	0.008	0.600	29.790	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr	0.183	0.000	0.000	0.000	0.183	0.000	0.000	0.000	0.000	0.183	0.000	0.183	0.000	0.267	0.000	1.000	37.380	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May	0.144	0.000	0.000	0.000	0.144	0.000	0.030	0.000	0.030	0.083	0.031	0.114	44.950	0.246	0.000	1.800	33.230	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun	4.578	0.000	0.000	0.000	4.578	0.000	0.000	0.000	0.000	0.003	4.576	4.578	0.013	0.010	0.014	1.400	31.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SUB- TOTAL	5.919	0.000	0.000	0.000	5.919	0.000	0.062	0.000	0.062	0.577	5.280	5.857	105.852	0.853	0.022	6.800	168.890	0.000	0.000	0.000	0.000	0.000	2.038	0.000
Jul	17.881	0.000	0.000	0.000	17.881	0.000	0.010	0.000	0.010	2.254	15.617	17.872	0.000	0.000	0.000	1.400	75.240	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug																	•							
Sep																	•							
Oct																								
Nov																								
Dec																	-							
TOTAL	23.800	0.000	0.000	0.000	23.800	0.000	0.072	0.000	0.072	2.831	20.897	23.728	105.852	0.853	0.022	8.200	244.130	0.000	0.000	0.000	0.000	0.000	2.038	0.000

Notes: 1. Assume the density of fill is 2 ton/m³.

2. Refuse disposed to NENT landfill.