

CONTRACT NO: HY/2020/08

FLYOVER FROM KWAI TSING INTERCHANGE

UPRAMP TO KWAI CHUNG ROAD UNDER ENVIRONMENTAL PERMIT NO. EP-541/2017/A

MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

OCTOBER 2024

CLIENTS:

Highways Department

PREPARED BY:

Lam Environmental Services Limited

19/F Remex Centre, 42 Wong Chuk Hang Road, Hong Kong

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: <u>info@lamenviro.com</u> Website: <u>http://www.lamenviro.com</u>

CERTIFIED BY:

Raymond Dai Environmental Team Leader

DATE:

14 November 2024

NATURE & TECHNOLOGIES (HK) LIMITED

技 環 保 (香 港)有 限 公 Unit 2410, 24/F., Fortis Tower, 77-79 Gloucester Road, Wanchai, Hong Kong 香港灣仔告士打道 77-79 號富通大廈 24 樓 10 室 Tel 電話: (852) 2877 3122 Fax 傳真: (852) 2511 0922 Email 電郵: enquiry@nt.com.hk Website 網址: http://www.nt.com.hk

Date: 14th November 2024

百

Highways Department Works Division Works Section / NT 7th Floor, Trade and Industry Tower, 3 Concorde Road, Kowloon

Dear Sirs,

Contract No. HY/2020/08 Flyover From Kwai Tsing Interchange Upramp to Kwai Chung Road Independent Environmental Checker

科

Monthly Environmental Monitoring and Audit Report for October 2024

We refer to the Contract No. HY/2020/08 Flyover From Kwai Tsing Interchange Upramp to Kwai Chung Road under Environmental Permit No. EP-541/2017/A Monthly Environmental Monitoring and Audit Report certified by the Environmental Team. We hereby verified the Monthly Environmental Monitoring and Audit Report for October 2024 in accordance with the Condition 3.4 of EP-541/2017/A.

Should you have any query, please feel free to contact the undersigned at 8493 5543.

Yours Sincerely,

Vega Wong Independent Environmental Checker

c.c.

WSP (Attn: Mr. Stephen Ho/Mr. Eric Hon) [by Email: Stephen.YC.Ho@wsp.com; Eric.Hon@wsp.com] Lam Environmental Services Limited (Attn: Mr. Raymond Dai) [by Email: raymonddai@lamenviro.com]

TABLE OF CONTENTS

1	INTROD	UCTION	5
	1.1 1.2	Scope of the Report Structure of the Report	
2	PROJEC	T BACKGROUND	6
	2.1 2.2 2.3	Background Project Organization and Contact Personnel Construction Activities	6
3	STATUS	OF REGULATORY COMPLIANCE	9
	3.1 3.2	Status of Environmental Licensing and Permitting under the Project. Status of Submission under the EP-541/2017/A	
4	MONITO	RING REQUIREMENTS	10
	4.1 4.2	Noise Monitoring Air Monitoring	
5	MONITO	RING RESULTS	16
	5.1 5.2 5.3	Noise Monitoring Results Air Monitoring Results Waste Management	16
6	COMPLI	ANCE AUDIT	18
	6.1 6.2 6.3 6.4	Noise Monitoring Air Quality Monitoring Review of the Reasons for and the Implications of Non-compliance Summary of action taken in the event of and follow-up on non- compliance	18 18
7		NMENTAL SITE AUDIT	
' 8	-	AINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	-
o 9			
Э	CONCLU	JSION	22

LIST OF TABLES

- Table 2.1
 Contact Details of Key Personnel
- Table 3.1
 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project
- Table 3.2 Summary of submission status under EP-541/2017/A
- Table 4.1
 Noise Monitoring Station
- Table 4.2
 Noise Monitoring Equipment
- Table 4.3
 Action and Limit Level for Noise Monitoring
- Table 4.4
 Air Monitoring Station
- Table 4.5 Air Quality Monitoring Equipment
- Table 4.6
 Action and Limit Level for Air Quality Monitoring
- Table 5.1 Summary of Quantities of Inert C&D Materials
- Table 5.2
 Summary of Quantities of C&D Wastes
- Table 7.1 Summary of Environmental Inspections
- Table 7.2 Summary of Landscape Site Inspections
- Table 8.1 Cumulative Statistics on Complaints
- Table 8.2
 Cumulative Statistics on Successful Prosecutions
- Table 9.1Construction Activities and Recommended Mitigation Measures in Coming
Reporting 3 Months

LIST OF FIGURES

- Figure 1.1 Project Layout
- Figure 2.1 Project Organization Chart
- Figure 4.1 Locations of Noise Monitoring Stations
- Figure 4.2 Locations of Air Quality Monitoring Stations

LIST OF APPENDICES

Appendix 3.1Environmental Mitigation Implementation ScheduleAppendix 4.1Action and Limit LevelAppendix 4.2Copies of Calibration CertificatesAppendix 4.3Wind dataAppendix 5.1Monitoring Schedule for Reporting Month and Next Reporting MonthAppendix 5.2Noise Monitoring Results and Graphical PresentationsAppendix 5.3Air Quality Monitoring Results and Graphical PresentationsAppendix 5.4Monthly Summary Waste Flow TableAppendix 6.1Event and Action PlansAppendix 6.2Summary of Notification of ExceedanceAppendix 8.1Complaint LogAppendix 9.1Construction Programme

EXECUTIVE SUMMARY

- i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report October 2024 of Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road under Environmental Permit no. EP-541/2017/A (Hereafter as "the Project"). The construction works of the Project was commenced on 20 September 2021. This is the 35th EM&A report presenting the environmental monitoring findings and information recorded during the period of 01 October 2024 to 31 October 2024. The cut-off date of reporting is at the end of each reporting month.
- ii. In the reporting month, the principal work activities conducted are as follow:
 - Tree preservation works
 - Construction of Pier for Bridge H
 - Erection of falsework for Bridge H Deck
 - Dismantling of falsework for Bridge G Deck
 - Formwork erection and fixing rebar at Bridge H
 - Drainage works near H7
 - Installation of Temporary Lighting for Kwai Chung Road
 - Erection of falsework for Staircase Existing NF303 Footbridge
 - Demolition of Existing NF303 Footbridge

Air Quality Monitoring

- iii. 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring was conducted at three monitoring stations. 24-hour TSP shall be sampled at least once in every 6 days, while sampling for 1-hour TSP shall be at least 3 times in every 6 day in the reporting month.
- iv. No action or limit level exceedance was recorded in this reporting period.

Noise Monitoring

- v. Noise monitoring was conducted at three noise monitoring stations once per week in the reporting month.
- vi. Limit level of noise monitoring station NMC-01 has adjusted to 65dB(A) during examination period.
- vii. Limit level exceedances were recorded at NMC-01 & NMC-03 in this reporting period. As the baseline level of NMC-01 & NMC-03 are higher than the measured average noise level, the noise monitoring results are not considered as noise exceedances.
- viii. Due to power interruption and malfunctioning of High Volume Sampler (HVS), the TSP monitoring result obtained at AMC01 on 22 Oct 2024 was considered invalid. The TSP monitoring at AMC01 was resumed on 23 Oct 2024 after repairing of HVS.

Site Inspections and Audit

ix. The Environmental Team (ET) conducted weekly site inspections on 3, 7, 17, 24 and 31 October 2024 and biweekly landscape inspection on 7 and 24 October 2024. IEC attended the joint site inspection on 7 October 2024, while reminders on routine environmental mitigation measures were recommended.

Complaints, Notifications of Summons and Successful Prosecutions

x. No environmental complaint, notification of summons and successful prosecution regarding the construction works was recorded in the reporting period.

Reporting Changes

xi. There are no particular reporting changes.

Future Key Issues

xii. In coming reporting 3 months, the scheduled construction activities and the recommended mitigation measures are listed as follows:

Key Construction Works	Recommended Mitigation Measures
 Tree preservation works Piling works for Bridge H Erection of falsework for Bridge H Deck Construction of Deck for Bridge G & H Formwork erection and fixing rebar at Bridge H Drainage works near H7 Demolition of Existing NF303 Footbridge Construction of granite wall Road Diversion works near Pier H7 	 Regular maintenance and protection of all existing retained and transplanted trees Implement proper dust mitigation measures to prevent potential dust nuisances to nearby sensitive receivers during piling works Implement proper measures to prevent silt or debris being deposited or washed into existing drainage systems Implement proper noise mitigation measures to prevent potential noise nuisances to nearby sensitive receivers, with attention on restricted hour work activities Provision of protection to ensure no runoff out of site area or direct discharge into public drainage system

1 Introduction

1.1 Scope of the Report

- 1.1.1. Lam Environmental Services Limited (LES) has been appointed to work as the Environmental Team (ET) under Environmental Permit (EP) no. EP-541/2017/A to implement the Environmental Monitoring and Audit (EM&A) programme as stipulated in the EM&A Manual of the approved Environmental Impact Assessment (EIA) Report for Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road (Register No.: AEIAR-190/2015).
- 1.1.2. In accordance with Clause 3.4 stated in EP-541/2017/A, 3 hard copies and 3 electronic copies of Monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of each reporting month.
- 1.1.3. According to Section 10.3.1 of the Project EM&A Manual, the Monthly EM&A Report should be submitted within 10 working days of the end of each reporting month, with the first report due in the month after construction commences.

1.2 Structure of the Report

Section 1	Introduction – details the scope and structure of the report.		
Section 2	Project Background - summarizes background and scope of the project, site		
	description, project organization and contact details of key personnel during the		
	reporting period.		
Section 3	Status of Regulatory Compliance - summarizes the status of valid		
	Environmental Permits / Licenses during the reporting period.		
Section 4	Monitoring Requirements - summarizes all monitoring parameters,		
	monitoring methodology and equipment, monitoring locations, monitoring		
	frequency, criteria and respective event and action plan and monitoring		
	programmes.		
Section 5	Monitoring Results - summarizes the monitoring results obtained in the		
	reporting period.		
Section 6	Compliance Audit - summarizes the auditing of monitoring results, all		
	exceedances environmental parameters.		
Section 7	Environmental Site Audit – summarizes the findings of weekly site inspections		
	undertaken within the reporting period, with a review of any relevant follow-up		
	actions within the reporting period.		
Section 8	Complaints, Notification of summons and Prosecution – summarizes the		
	cumulative statistics on complaints, notification of summons and prosecution		
Section 9	Conclusion		

2 Project Background

2.1 Background

- 2.1.1. In order to cater the future traffic growth and prevent traffic congestion in the future during peak traffic flow hour at Tsuen Wan Road (TWR) near Kwai Tsing Interchange (KT I/C), an additional southbound lane (a separate viaduct) is introduced on TWR and connected to the existing lane on the west side of Kwai Chung Road (KCR). Widening of existing carriageway is also proposed to improve the road section to cope with the future traffic growth.
- 2.1.2. Based on the current design, the remaining capacity available on the two segregated KCR carriageways will be utilised for this proposed flyover. Location and layout of the proposed road works is shown in *Figure 1.1*.
- 2.1.3. The Project consists of a designated project under Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) which is Item A.8 A road or railway bridge more than 100m in length between abutments.
- 2.1.4. The major components of the Project under Environmental Permit (EP) (EP No. EP-541/2017/A) comprises: (i) an additional southbound lane from the west side of elevated Tsuen Wan Road to at-graded Kwai Chung Road; (ii) a widened section on the east side of elevated Tsuen Wan Road connecting Kwai Tsing Interchange upramp; (iii) modification of Kwai Chung Road; (iv) provision of noise mitigation measures; (v) demolition and re-provision of the existing footbridge NF303; and (vi) ancillary works including other associated road works, utilities diversion, street furniture and traffic aids, public lighting, drainage, landscaping, electrical and mechanical works.

2.2 Project Organization and Contact Personnel

- 2.2.1 Highways Department is the overall project controllers for the Project. For the construction phase of the Project, Project Engineer / Supervisor, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.2.2 The project organization and lines of communication with respect to environmental protection works are shown in *Figure 2.1*. Key personnel and contact particulars are summarized in *Table 2.1*:

Party	Role	Post	Name	Contact No.	Contact Fax
Highways Department (HyD)	Project Proponent	Chief Engineer	Vincent WONG	3903 6888	3188 3418
WSP (Asia) Limited	Supervisor's Representative	Resident Engineer	Eric HON	2320 2012	2320 2166
		Site Agent	Mr. Lo Yuen Cheong	9123 7342	
Peako Engineering Co. Limited	Contractor	Sub Agent/ Environmental Supervisor	Mr. Gary Ng	9187 1694	2398 8301
		Environmental Officer	Mr. Wong Chi Yuen	9199 3188	
Nature & Technologies (HK) Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Vega WONG	2877 3122	2511 0922
Lam Environmental Services Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Raymond DAI	2882 3939	2882 3331

2.3 Construction Activities

- 2.3.1 In the reporting month, the principal work activities conducted are as follows:
 - Tree preservation works
 - Construction of Pier for Bridge H
 - Erection of falsework for Bridge H Deck
 - Dismantling of falsework for Bridge G Deck
 - Formwork erection and fixing rebar at Bridge H
 - Drainage works near H7
 - Installation of Temporary Lighting for Kwai Chung Road
 - Erection of falsework for Staircase Existing NF303 Footbridge
 - Demolition of Existing NF303 Footbridge

- 2.3.2 In coming reporting 3 months, the scheduled construction activities are listed as follows:
 - Tree preservation works
 - Piling works for Bridge H
 - Erection of falsework for Bridge H Deck
 - Construction of Deck for Bridge G & H
 - Formwork erection and fixing rebar at Bridge H
 - Drainage works near H7
 - Demolition of Existing NF303 Footbridge
 - Construction of granite wall
 - Road Diversion works near Pier H7

3 Status of Regulatory Compliance

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project

Permits and/or Licences	Permit. No. / Account No.	Valid From	Expiry Date	Status
Notification pursuant to Air Pollution Control (Construction Dust) Regulation	Acknowledged by EPD on 21 June 2021.			
WPCO Discharge Licence	WT00040637-2022	25 Mar 2022	N/A	Valid
Environmental Permit	EP-541/2017/A	19 Nov 2020	N/A	Valid
Billing Account for Disposal of Construction Waste	7040908	14 July 2021	End of the Project	Valid
Registration as a Chemical Waste Producer	8834-326-P3431-01	08 July 2021	N/A	Valid
Construction Noise Permit	GW-RW0923-24	01 October 2024	31 December 2024	Valid

3.1.2. Implementation status of the recommended mitigation measures during this report month is presented in <u>Appendix 3.1</u>.

3.2 Status of Submission under the EP-541/2017/A

3.2.1. A summary of the current status on submission under EP-541/2017/A is shown in *Table 3.2*.

Table 3.2 Summary of submission status under EP-541/2017/A

EP Condition	Submission	Date of First Submission	Date of Latest Submission
Condition 1.12	Notification of Commencement Date of Works	27 July 2021	26 August 2021
Condition 2.3	Submission of Management Organization of Main Construction Companies	2 July 2021	4 May 2022
Condition 2.4	Submission of Landscape Plan	26 July 2021	19 April 2023
Condition 2.5	Submission of Traffic Noise Mitigation Plan	26 July 2021	20 January 2023
Condition 3.3	Submission of Baseline Monitoring Report	6 September 2021	28 January 2022

4 Monitoring Requirements

4.1 Noise Monitoring

NOISE MONITORING STATIONS

4.1.1. The noise monitoring stations for the Project are listed and shown in *Table 4.1* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for environmental monitoring.

Monitoring Station ID	Noise Sensitive Receivers	Measurement Type	Monitoring Location
NMC01	Lai King Catholic Secondary School	Free-Field	Roof Floor
NMC02	Fung King House	Free-Field	Roof Floor
NMC03	HKEAA-Lai King Assessment Centre	Free-Field	Ground Floor

 Table 4.1
 Noise Monitoring Station

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

4.1.2. For daytime construction work on normal weekdays (0700-1900 Monday to Saturday), one set of 30-min measurement shall be carried out at each NMS every week. Measurement procedures shall be referred to the Noise Control Ordinance-TM. Construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). L_{eq}(30min) shall be used as the monitoring parameter. As supplementary information for data auditing, statistical results such as L₁₀ and L₉₀ shall also be obtained for reference.

MONITORING EQUIPMENT

4.1.3. Noise monitoring was performed using sound level meter at the designated monitoring locations. The sound level meters shall comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator shall be deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in *Table 4.2*.

Table 4.2 Noise Monitoring Equipment

Equipment	Brand/Model	Series Number
Integrated Sound Level Meter	LxT1	0005062
Acoustic Calibrator	HLES-02	2019612870

4.1.4. The calibration certificates of the noise monitoring equipment are attached in Appendix 4.2.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

4.1.5. Monitoring Procedure

- (a) The monitoring station shall normally be at a point 1m from the exterior of the sensitive receiver's building façade and be at a position 1.2m above the ground.
- (b) Façade measurements were made at the monitoring locations. For free-field measurement, a correction factor of +3 dB (A) would be applied.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
- (e) Frequency weighting: A, Time weighting: Fast, Measurement time set: continuous 5 mins
- (f) Prior and after to the noise measurement, the meter was checked using the acoustic calibrator for 94dB (A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than ±1 dB (A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- 4.1.6. Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The sound level meter and calibrator were calibrated at yearly intervals.

CONSTRUCTION NOISE LEVEL

4.1.7. The construction noise level refers the corrected noise level based on the calculated difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level exceeds the Measured Noise Level, no correction would be applied and the Construction Noise Level would be indicated as below baseline noise level (<BL).</p>

EVENT AND ACTION PLAN

4.1.8. Noise Standards for Daytime Construction Activities are specified under EIAO-TM. The Action and Limit levels for construction noise are defined in *Table 4.3* and <u>Appendix 4.1</u>. Should non-compliance of the criteria occurs, action in accordance with the Event and Action Plan in <u>Appendix 6.1</u> shall be carried out.

Table 4.3	Action and Limit Level for Noise Monitoring

Monitoring	Monitoring Action Level		Limit Level (dB(A))			
Station		0700-1900 hrs on normal weekdays	0700-2300 hrs on holidays (including Sundays); and 1900-2300 hrs on all days ²	2300-0700 hrs of all days		
NMC01	When one documented	65 / 70 ¹		45 / 50 / 55 ³		
NMC02	complaint is	75	60 / 65 / 70 ³	45 / 50 / 55 ³		
NMC03	received	65 / 70 ¹		45 / 50 / 55 ³		

Remark 1: Limit level of NMC01 and NMC03 reduce to 65 dB (A) during examination periods if any.

Remark 2: Construction noise during restricted hours is under the control of Noise Control Ordinance Limit Level to be selected based on Area Sensitivity Rating.

Remark 3: Limit Level for restricted hour monitoring shall act as reference level only. Investigation would be conducted on CNP compliance if exceedance recorded during restricted hour noise monitoring period.

4.2 Air Monitoring

AIR QUALITY MONITORING STATIONS

4.2.1. The air monitoring stations for the Project are listed and shown in *Table 4.4* and *Figure 4.2*. *Appendix 4.1* shows the established Action/Limit Levels for environmental monitoring.

Monitoring Station	Air Sensitive Receivers	Monitoring Location
AMC01	Lai King Catholic Secondary School	Roof Floor
AMC02	Fung King House	Roof Floor
AMC03A ¹	Ming King House	Roof Floor

Table 4.4 Air Quality Monitoring Station

Remark 1: Due to limited location access, lack of power supply and land availability problem for setting up air quality monitoring stations at HKEAA-Lai King Assessment Centre (AMC03) under EM&A manual, alternative monitoring location at Ming King House was proposed in accordance with Section 2.5.3 of the EM&A manual and proposal for alternative monitoring location was submitted to EPD for approval.

AIR MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.2.2. One-hour and 24-hour TSP levels should be measured to indicate the impacts of construction dust on air quality.
- 4.2.3. 24-hour TSP shall be sampled at least once in every 6 days, while sampling for 1-hour TSP shall be at least 3 times in every 6 days when the highest dust impact takes place.

12

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.2.4. 24-hour TSP Measuring Installation (HVS)
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following

criteria were considered in the installation of the HVS.

(b) No furnace or incinerator flues were nearby.

Lam Environmental Services Limited

- (c) Airflow around the sampler was unrestricted
- (d) 0.6 1.7 m³ per minute adjustable flow range
- (e) Equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
- (f) Installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
- (g) Equipped with a shelter to protect the filter and sampler;
- (h) Capable of operating continuously for a 24-hour period.

4.2.5. 24-hour Measuring Procedures

- (a) The power supply was checked to ensure the HVS works properly.
- (b) The filter holder and the area surrounding the filter were cleaned.
- (c) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (d) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (e) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- (f) Then the shelter lid was closed and was secured with the aluminum strip.
- (g) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (h) A new flowrate record sheet was set into the flow recorder.
- (i) The flow rate of the HVS was checked and adjusted at around 1.2 m³ /min. The range specified in the EM&A Manual was between 0.6-1.7 m³ /min.
- (j) The programmable timer was set for a sampling period of 24 hrs + 1 hr, and the starting time, weather condition and the filter number were recorded.
- (k) The initial elapsed time was recorded.
- (I) At the end of sampling, the sampled filter was removed carefully and folded in halflength so that only surfaces with collected particulate matter were in contact.
- (m) It was then placed in a clean plastic envelope and sealed.
- (n) All monitoring information was recorded on a standard data sheet.
- (o) Filters were sent to laboratory for further testing.
- 4.2.6. 1-hour Measuring Procedures
 - (a) Check the calibration period of portable direct reading dust meter prior to monitoring (The direct reading dust meter was calibrated at 2-years interval and checked with High Volume Sampler (HVS) yearly, details refer to Section 2.5.4)
 - (b) Record the site condition near / around the monitoring stations.
 - (c) Install the portable direct reading dust meter to the monitoring location.
 - (d) Slide the power switch to turn the power on.
 - (e) Check of portable direct reading dust meter to ensure the equipment operation in normal condition.
 - (f) Select the period of measurement to 60mins.
 - (g) Check and set the correct time.
 - (h) Select the appropriate unit display for the equipment.

- Slide the power switch to turn the power off when the monitoring period ended (3 times 1 hour TSP monitoring per day).
- (j) Uninstall the portable direct reading dust meter
- (k) Collected the sampled data for analysis.

Remark: Procedures (c) to (h) may be different subject to the brands and models of portable direct reading dust.

LABORATORY MEASUREMENT / ANALYSIS

- 4.2.7. A clean laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments to handle the dust samples collected, shall be available for sample analysis, and equipment calibration and maintenance. The laboratory should be HOKLAS accredited or other internationally accredited laboratory.
- 4.2.8. Filter paper of size 8" x 10" shall be labelled before sampling. It shall be a clean filter paper with no pinholes, and shall be conditioned in a humidity-controlled chamber for over 24-hours and be pre-weighed before use for the sampling.
- 4.2.9. After sampling, the filter paper loaded with dust shall be kept in a clean and tightly sealed plastic bag. The filter paper shall then be returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with readout down to 0.1 mg. The balance shall be regularly calibrated against a traceable standard.
- 4.2.10. Maintenance and Calibration
 - (a) The direct reading dust meter was calibrated at 2-years interval and checked with High Volume Sampler (HVS) yearly to determine the accuracy and validity of the results measured.
 - (b) Checking of direct reading dust meter will be carried out in order to determine the conversion factor between the direct reading dust meter and the standard equipment, HVS. The comparison check is to be considered valid based on correlation coefficient checked by HOKLAS laboratory
- 4.2.11. High Volume Sampler (HVS Model TE-5170) completed with the appropriate sampling inlets were installed for the 24-hour TSP sampling. 1-hour TSP air quality monitoring was performed by using portable direct reading dust meters at each designated monitoring station, which was verified by IEC and approved by the Engineer's Representative (ER) on 16 July 2021 and 22 July 2021, respectively according to Section 2.2.2 and 2.3.6 of the Project EM&A Manual. The brand and model of the equipment are given in *Table 4.5*.

Table 4.5 Air Quality Monitoring Equipment

Lam Environmental Services Limited

Equipment	Brand and model	Series Number
		B19129
Portable direct reading	Aerocet 831	Y23154
dust meter	Aerocet 651	R14332
		B19128
		0200-0740 (HVS004)
High Volume Sampler	TE-5170	2649 (HVS014)
		2650 (HVS015)
Wind Anemometer	YiGu – YGY-FSXY12	21091630T0944

4.2.12. The calibration certificates of the air quality monitoring equipment are attached in <u>Appendix</u> <u>4.2.</u>

WIND DATA

4.2.13. Wind data monitoring equipment was set up at roof floor (about 15/F) of Fung King House for logging wind speed and wind direction such that the wind sensors were clear of obstructions or turbulence caused by building. The wind data monitoring equipment was re-calibrated at least once every six months and the wind directions were divided into 16 sections of 22.5 degrees each. The wind data obtained from the on-site wind station during the reporting period is provided in <u>Appendix 4.3.</u>

EVENT AND ACTION PLAN

4.2.14. The Action and Limit levels for construction air quality are defined in *Table 4.6* and <u>Appendix</u>
 <u>4.1</u>. Should non-compliance of the air quality criteria occur, action in accordance with the Event and Action Plan in <u>Appendix 6.1</u> shall be carried out.

Parameter	Monitoring Station	Action Level (µg/m ³)	Limit Level (µg/m³)
	AMC01	144.8	260.0
24-hour TSP Level	AMC02	144.3	260.0
	AMC03A	143.7	260.0
	AMC01	256.2	500.0
1-hour TSP Level	AMC02	256.7	500.0
	AMC03A	259.3	500.0

Table 4.6 Action and Limit Level for Air Quality Monitoring

5 Monitoring Results

- 5.0.1 The environmental monitoring will be implemented based on the division of works areas of each designed projects. Overall layout showing work areas and monitoring stations is shown in *Figure 2.1* and *Figure 4.1 4.2* respectively.
- 5.0.2 The environment monitoring schedules for reporting month and coming month are presented in <u>Appendix 5.1</u>.

5.1 Noise Monitoring Results

- 5.1.1 Noise monitoring results measured in this reporting period are reviewed and summarized. Details of noise monitoring results and graphical presentation can be referred in <u>Appendix 5.2</u>.
- 5.1.2 Limit level of noise monitoring station NMC-01 has adjusted to 65dB(A) during examination period.
- 5.1.3 Limit level exceedances were recorded at NMC-01 & NMC-03 in this reporting period. As the baseline level of NMC-01 & NMC-03 are higher than the measured average noise level, the noise monitoring results are not considered as noise exceedances.

5.2 Air Monitoring Results

- 5.2.1 Air quality monitoring results measured in this reporting period are reviewed and summarized. Details of air monitoring results and graphical presentation can be referred in <u>Appendix 5.3</u>.
- 5.2.2 No action or limit level exceedance was recorded in this reporting month.

5.3 Waste Management

1.1.1 The quantities of waste for disposal in the Reporting Period are summarized in *Table 5.1* and *Table 5.2*. The Monthly Summary Waste Flow Table is shown in <u>Appendix 5.4</u>. Whenever possible, materials were reused on-site as far as practicable.

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Hard Rock and Large Broken Concrete (Inert) (in '000m ³)	0	0	0

Table 5.1 Summary of Quantities of Inert C&D Materials

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Reused in this Contract (Inert) (in '000m ³)	0	0	0
Reused in other Projects (Inert) (in '000m ³)	0	0	0
Disposal as Public Fill (Inert) (in '000m ³)	0.2185	14.195	14.4135

Table 5.2 Summary of Quantities of C&D Wastes

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Metals (in '000kg)	0.0046	26.3311	26.3357
Paper / Cardboard Packing (in '000kg)	0.1376	1.9828	2.1204
Plastics (in '000kg)	0	0	0
Chemical Wastes (in '000kg)	0	0	0
General Refuses (in '000m ³)	0.0029	0.732	0.7349

6 Compliance Audit

- 6.0.1 The Event Action Plan for construction noise, air quality and water quality are presented in Appendix 6.1.
- 6.0.2 The summary of exceedance is presented in <u>Appendix 6.2.</u>

6.1 Noise Monitoring

6.1.1 Limit level exceedances were recorded at NMC-01 & NMC-03 in this reporting period. As the baseline level of NMC-01 & NMC-03 are higher than the measured average noise level, the noise monitoring results are not considered as noise exceedances.

6.2 Air Quality Monitoring

6.2.1 No action or limit level exceedance was recorded in this reporting period.

6.3 Review of the Reasons for and the Implications of Non-compliance

6.3.1 No environmental non-compliance was recorded in the reporting month.

6.4 Summary of action taken in the event of and follow-up on non-compliance

6.4.1 There was no particular action taken since no non-compliance was recorded in the reporting period.

7 Environmental Site Audit

- 7.0.1. Within this reporting month, weekly environmental site audits were conducted on 3, 7, 17, 24 and 31 October 2024 and biweekly landscape inspection on 7 and 24 October 2024.
- 7.0.2. No non-compliance was found during the environmental site inspection while reminders on environmental measures were recommended. Results and findings of these inspections in this reporting month are listed below in *Table 7.1 to 7.2*.

Item	Date	Reminder(s)/ Observation(s)	Action taken by Contractor	Outcome
20241003_1		The exposed soil should be covered properly to prevent dust.	Pending to be rectified by the Contractor	
20241003_2	03 October 2024	Measures should be provided to avoid soil leakage outside the site boundary.	Previous observed loose soil need to be attended to prevent runoff.	
20241007_1		Loose soil at the access shall be cleaned up to avoid escape to public road.	Loose soil at the access is cleaned to avoid escaping to public road.	
20241007_2	07 October 2024	Stockpiles at few locations shall be covered.	Stockpiles have been removed properly.	
20241007_3		NRMM Label of an excavator with serial number not match with forms.	NRMM label has been changed.	
20241017_1	17 October 2024	The accumulated rubbish at the site boundary should be cleaned regularly.	Rubbish at the site boundary has been removed	
20241024_1		Plastic bottles in the site should be cleaned.	Plastic bottles in the site have been cleared	
20241024_2	24 October 2024	Soil at the site boundary should be cleaned to prevent runoff to the traffic road.	Pending follow- up cleaning actions	
20241024_3		Stockpile should be covered when not using.	The non-using stockpiles have been cleared	
20241031_1	31 October 2024	Stockpiles should be covered properly.	Stockpiles had been cleared	

Table 7.1 Summary of Environmental Inspections

Table 7.2 Summary of Landscape Site Inspections

Item	Date	Reminder(s)/ Observation(s)	Action taken by Contractor	Outcome
20241007 _4		Follow-up 1: T175(Retained) shows no sign of improvement since March 2024, Contractor is advised to seek professional advice to confirm its health condition and the required treatment to resolve the outstanding situation.	The Contractor is investigating the condition of T175.	
20241007 _5	07 October 2024	Follow-up 2: T167: There was a broken branches over canopy. Noted: There was a tree fallen, which cross over the trees of the site.	Pending follow-up actions by contractors.	
20241007 _6		Follow-up 3: T172: Broken branch of tree is exposed which causes danger to the pedestrian.	The Contractor is investigating the condition of T172.	
20241024 _4		Follow-up 1: T175(Retained) shows no sign of improvement since March 2024, Contractor is advised to seek professional advice to confirm its health condition and the required treatment to resolve the outstanding situation	The Contractor is investigating the condition of T175.	
20241024 _5	24 October 2024	Follow-up 2: T167: There was a broken branches over canopy. Noted: There was a tree fallen, which cross over the trees of the site.	Pending follow-up actions by contractors.	
20241024 _6		Follow-up 3: T172: Broken branch of tree is exposed which causes danger to the pedestrian.	The Contractor is investigating the condition of T172.	

Remark 1: On 11 May 2023, the trees transplanted to off-site as the final operating landscape on Stonecutters Island were inspected (inspection started from the 1st week of May 2022 after the bulk transplant was completed at the end of April 2022), and no results were found to be followed up, these trees transplanted as the final operation landscape of Stonecutters Island have completed the 12-month operation stage landscape audit according to Article 6.2.3 of the EM&A Manual.

Remark 2: As confirmed by contractor, T135, T142, and T162 were removed on 30 October 2023, updated of Tree Preservation and Removal Proposal (TPRP) were submitted to HyD and LCSD on 12 December 2023.

8

Complaints, Notification of Summons and Prosecution

Lam Environmental Services Limited

- 8.0.1. No environmental complaint, notification of summons and successful prosecution regarding construction works was recorded in the reporting period.
- 8.0.2. The details of cumulative complaint log and updated summary of complaints are presented in *Appendix 8.1.*
- 8.0.3. Cumulative statistic on complaints and successful prosecutions are summarized in *Table 8.1* and *Table 8.2* respectively.

Table 8.1 Cumulative Statistics on Complaints

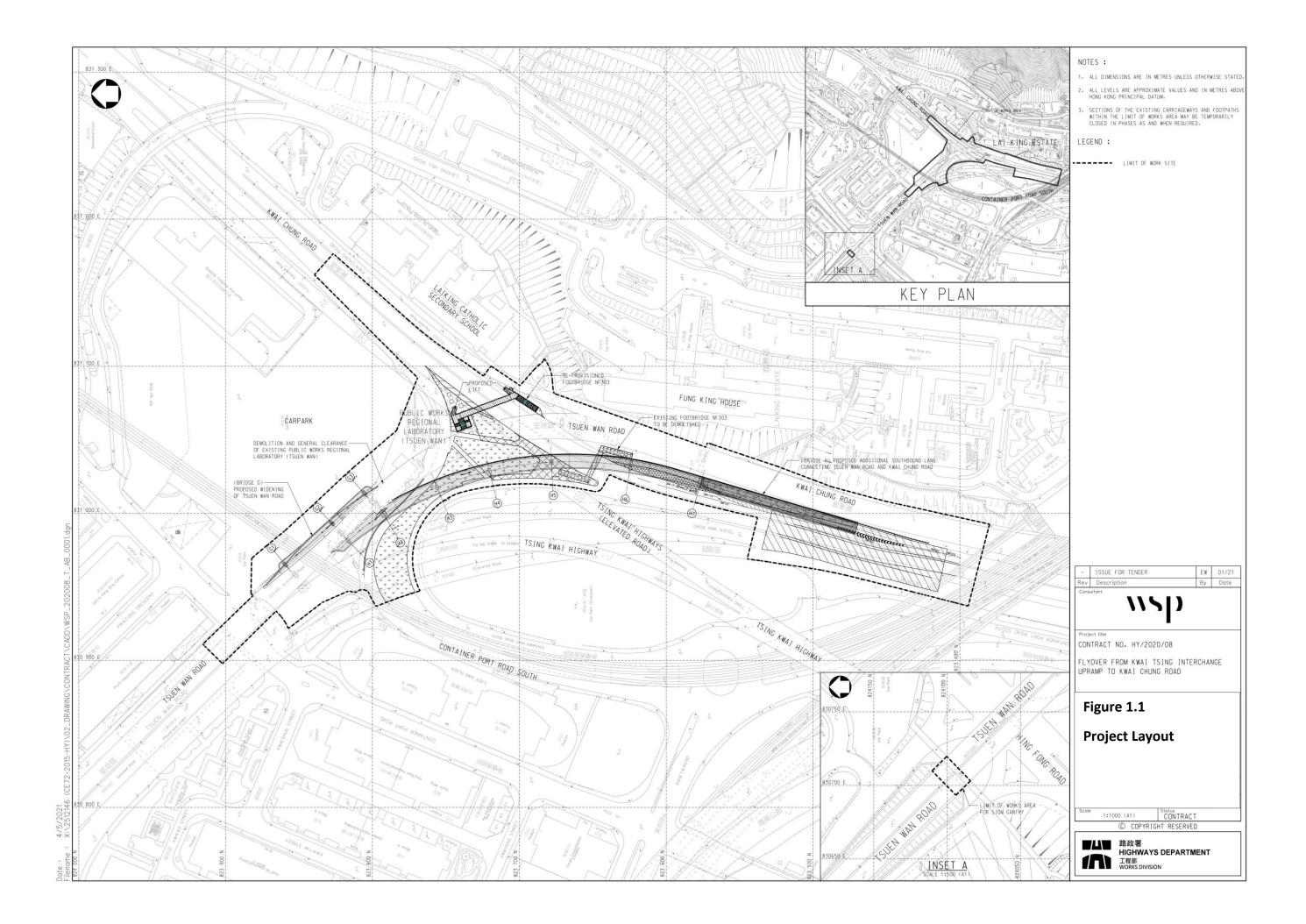
Reporting Period	No. of Complaints
October 2024	0
Project commencement to the end of last reporting month	-
Total	0

Table 8.2 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	-	0	0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	0	0

9 Conclusion

- 9.0.1. The EM&A programme was carried out in accordance with the EM&A Manual requirements, minor alterations to the programme proposed were made in response to changing circumstances.
- 9.0.2. Mitigation measures according to the environmental mitigation implementation schedule and the EIA were generally implemented by the Contractor. Hence, the EM&A programme was considered effective and shall be maintained.
- 9.0.3. The scheduled construction activities and the recommended mitigation measures for the coming 3 months are listed in *Table 9.1*. The construction programmes of the Project are provided in <u>Appendix 9.1</u>.


Table 9.1 Construction Activities and Recommended Mitigation Measures in ComingReporting 3 Months

Key Construction Works	Recommended Mitigation Measures
 Tree preservation works Piling works for Bridge H Erection of falsework for Bridge H Deck Construction of Deck for Bridge G & H Formwork erection and fixing rebar at Bridge H Drainage works near H7 Demolition of Existing NF303 Footbridge Construction of granite wall Road Diversion works near Pier H7 	 Regular maintenance and protection of all existing retained and transplanted trees Implement proper measures to prevent silt or debris being deposited or washed into existing drainage systems Implement proper noise mitigation measures to prevent potential noise nuisances to nearby sensitive receivers, with attention on restricted hour work activities Provision of protection to ensure no runoff out of site area or direct discharge into public drainage system

Figure 1.1

Project Layout

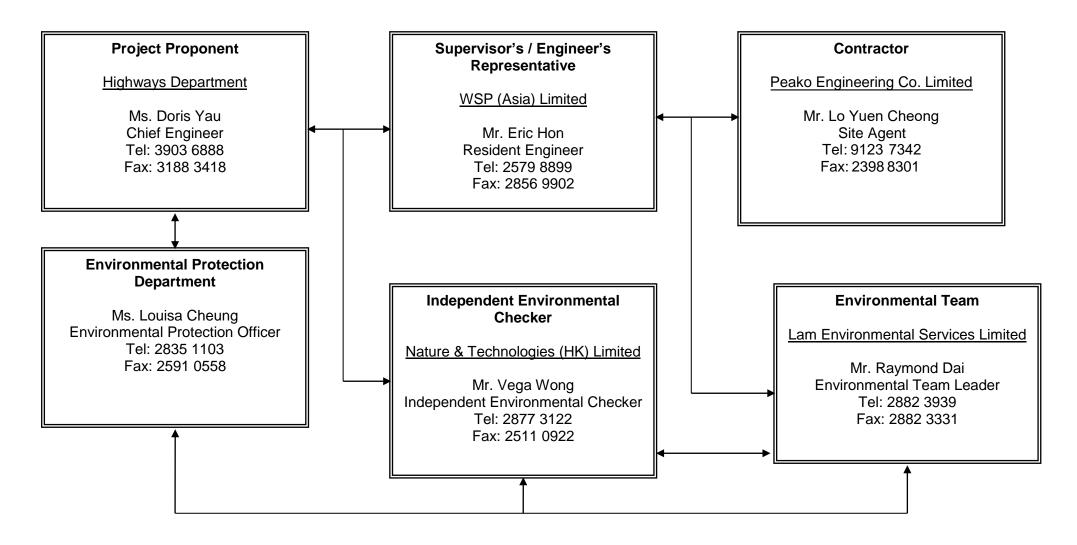


Figure 2.1

Project Organization Chart

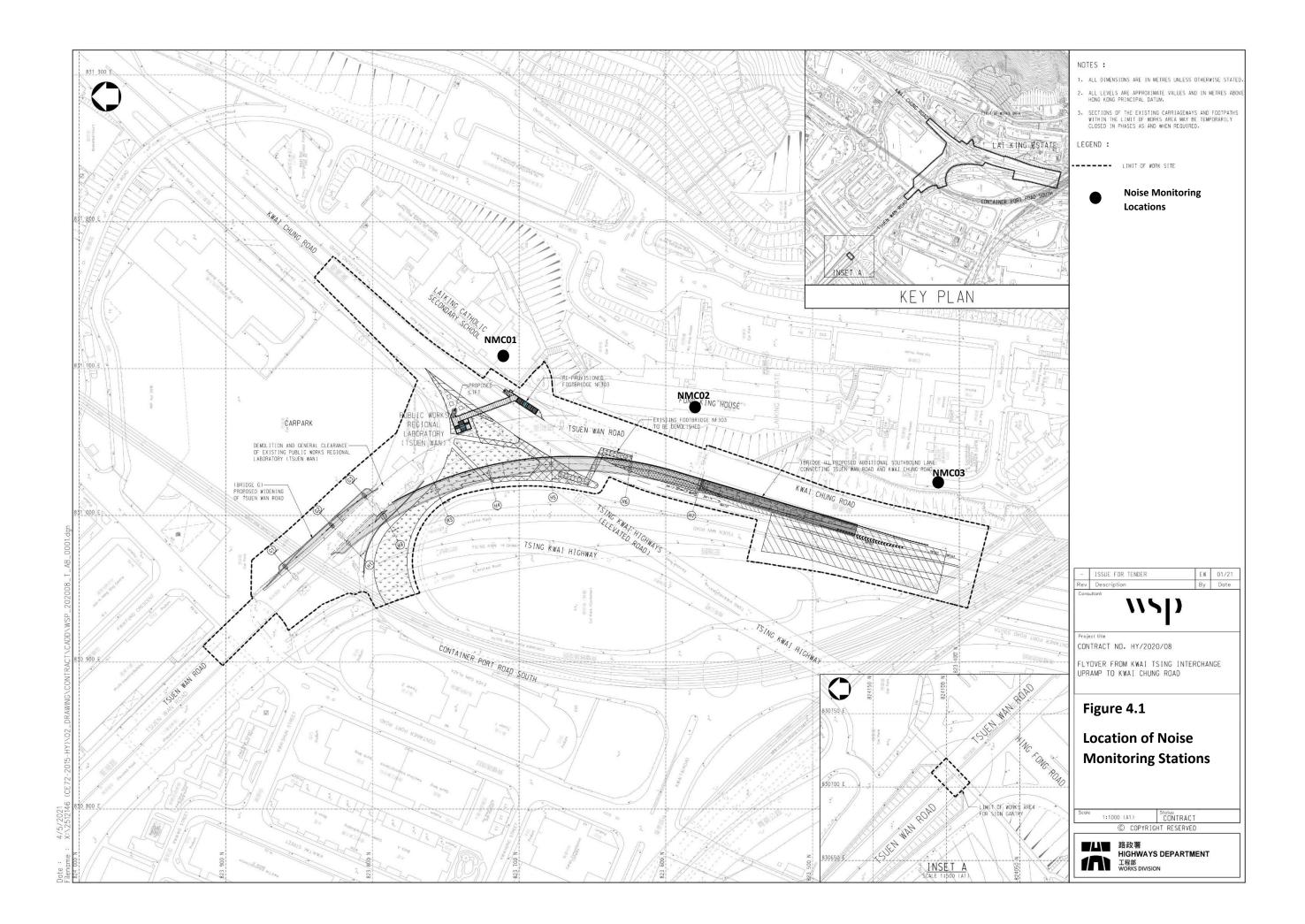

Project Organization Chart

Figure 4.1

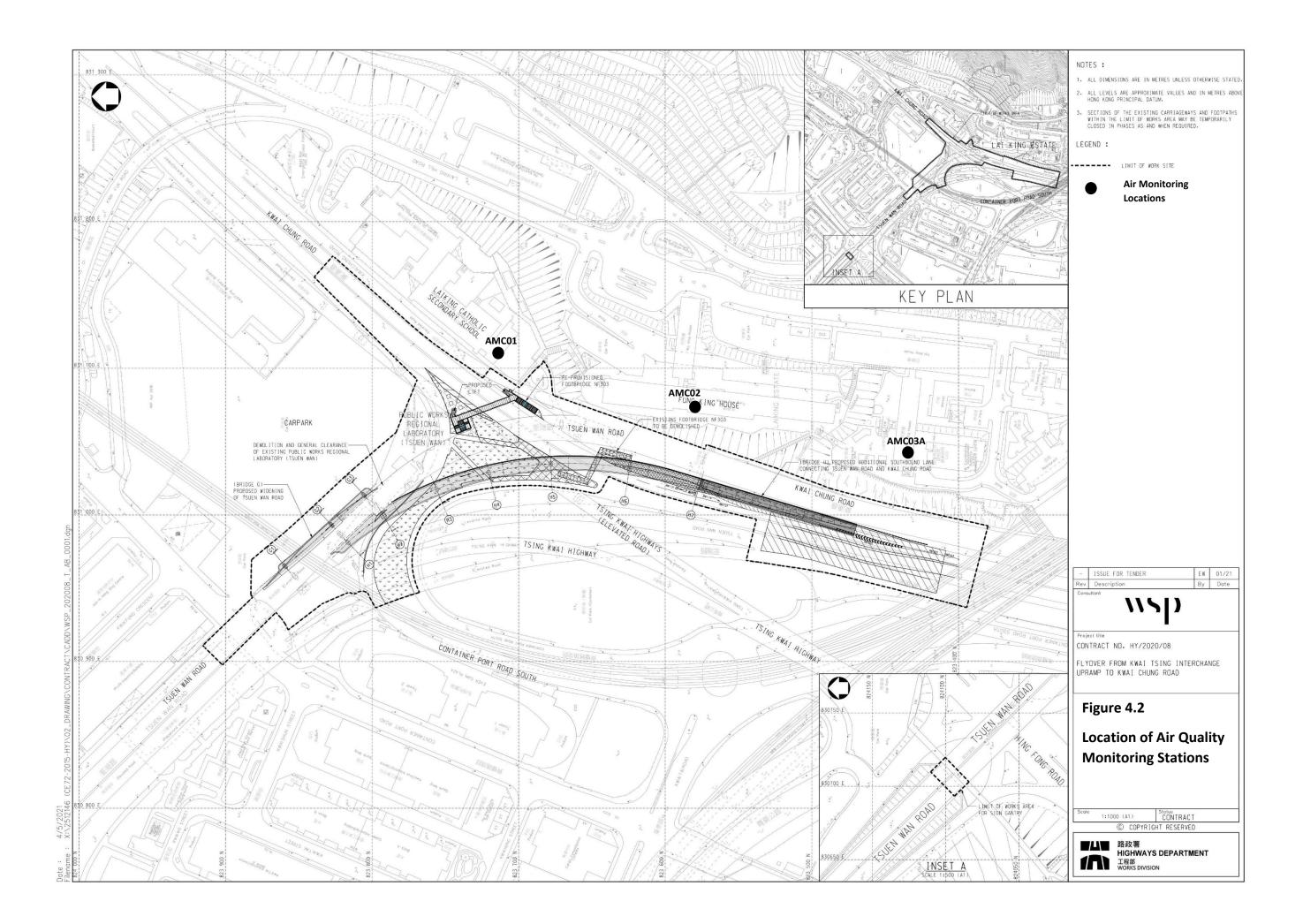

Location of Noise Monitoring Stations

Figure 4.2

Location of Air Quality Monitoring Stations

Appendix 3.1

Environmental Mitigation Implementation Schedule

Environmental Mitigation Implementation Schedule

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
Air Qual	ity Monitoring	I					
S3.5.8	Dust suppression measures stipulated in the Air Pollution Control	(Construction Dust) F	Regulation and	good site pra	ictices:		
	• Every temporary access road shall be paved with concrete, bituminous materials, hardcores or metal plates, and kept clear of dusty materials; or sprayed with water or a dust suppression chemical.	To minimize the dust impact	Contractor and Subcontract ors	All works sites	Construction Phase	Air Pollution Control (Construction Dust) Regulation	*
	• Any stockpile of dusty materials shall be covered entirely by impervious sheeting, placed in an area sheltered on the top and the 3 sides, or sprayed with water or a dust suppression chemical.						V
	• All dusty materials shall be sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation						^
	• Vehicles used for transporting dusty materials should be covered with tarpaulin.						N/A
	• Vehicle wheel washing facilities should be provided at each construction site exit.						^
	• Where a vehicle leaving a construction site is carrying a load of dusty materials, the load shall be covered entirely by clean impervious sheeting.						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	The speed of vehicles on unpaved road within the site should be controlled to about 10 km/hr.						^
	• Routing of vehicles and positioning of construction plants should be arranged at maximum possible distances from the sensitive receivers.						^
	• Every stock of more than 20 bags of cement and dry pulverized fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.						^
	• Loading, unloading, transfer, handling or storage of large amount of cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with the an effective fabric filter or equivalent air pollution control system.						^
	• Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within 6 months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirement s or standards for the measure to achieve	Status
Noise M	onitoring				- <u>+</u>		
S4.8.1	 Selection and optimisation of construction programmes, avoidance of parallel operation of noisy PME, and/or reduction in the proportion of usage of PME during noise sensitive periods such as school examination period; Use of "quiet" PME and working methods; 	To reduce potential construction noise impact	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	Λ
	 Use of temporary at-source noise mitigation measures such as noise barriers, acoustic fabric, noise enclosures, noise jacket and mufflers; and 						٨
	Use of good site practice to limit noise emission from construction site.						٨
S4.8.2	Selection and Programming of Construction Processes		1	1			
	• The timing and sequencing of the various construction activities shall be carefully arranged according to the actual site work situation, in order to limit the amount of concurrent activities and where applicable, to avoid parallel operation of noisy PME in order to minimize the total noise generated during construction periods.	To reduce potential construction noise impact	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	^
	• Limiting the quantity of PME to be operated concurrently and also their proportion of usage were recommended in the Project and incorporated in this assessment.						۸
	• In the case during school examination when more stringent construction noise criteria should be imposed, the potentially most disruptive construction activities should be avoided, and arranged to be conducted during school holidays as far as practicable.						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirement s or standards for the measure to achieve	Status
S4.8.3 – 4.8.5	Use of "Quiet" Alternative Plant and Working Methods						
	• The use of particular plant with equipment noise levels quieter than those specified in the GW-TM can result in reduction of noise levels generated by the plant. The level of noise reduction achieved is dependent on the Contractor's chosen methods of working. It is possible for the Contractor to achieve noise reductions from the adopted working methodologies by specifying maximum limits of sound power level for specific plant.	To reduce potential construction noise impact	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	^
S4.8.6 – S4.8.9	Temporary Noise Barrier						
07.0.0	 Use of Temporary Noise Barrier/ Acoustic Fabric for breaker, mini-robot mounted; excavator/loader, wheeled/tracked; lorry; lorry with crane/grab; mobile crane; poker vibratory, hand-held (electric); road roller; hand-held chain saw; concrete pump, lorry mounted; asphalt paver; air compressor. The minimum surface density of the movable noise barrier is 10kg/m². 	To reduce potential construction noise impact	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	^
	• A not less than 8m high movable barrier with skid footing and a small cantilevered upper portion to be located within a few metres of the grab and chisel piling plants.						N/A
	• When temporary noise barriers are not practicable or noise reduction achieved is insufficient, noise jacket/muffler can be applied to cover the noisy part of the engine or at the engine exhaust of particular mobile plants respectively.						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S4.8.10	Good Site Practice:				1		
	Use of well-maintained and regularly-serviced plant during the works;	To reduce potential construction noise	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	^
	Plant operating on intermittent basis should be turned off or throttled down when not in active use;	impact					٨
	• Plant that is known to emit noise strongly in one direction should be orientated to face away from the NSRs;						٨
	• Silencers, mufflers and enclosures for plant should be used where possible and maintained adequately throughout the works;						N/A
	Where possible fixed plants should be sited away from NSRs; and						^
	• Stockpiles of excavated materials and other structures such as site buildings should be used effectively to screen noise from the works.						^

	Measures & Main Concern to Address	the measures?	measure	implement the measures?	requirements or standards for the measure to achieve	
ality Control		<u> </u>		_		
In accordance with ProPECC PN 1/94, construction phase mitig	ation measures with	good manager	nent practice	s should include	the following:	
 At the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the stormwater to silt removal facilities. The design of the temporary onsite drainage system will be undertaken by the Contractor prior to the commencement of construction; Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. Silt/sediment traps should also be incorporated in the permanent drainage channels to enhance deposition rates; 	To control water quality impact from construction site runoff	Contractor and Sub- contractors	All work sites	Construction Phase	Water Pollution Control Ordinance, ProPECC PN 1/94	^ N/A
 The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be 5 minutes under maximum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be undertaken by the Contractor prior to the commencement of construction; 						^
• The construction works should be programmed to minimise surface excavation works during rainy seasons (April to						^
	 In accordance with ProPECC PN 1/94, construction phase mitig At the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the stormwater to silt removal facilities. The design of the temporary onsite drainage system will be undertaken by the Contractor prior to the commencement of construction; Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. Silt/sediment traps should also be incorporated in the permanent drainage channels to enhance deposition rates; The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be 5 minutes under maximum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be undertaken by the Contractor prior to the commencement of construction; 	 In accordance with ProPECC PN 1/94, construction phase mitigation measures with At the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the stormwater to silt removal facilities. The design of the temporary onsite drainage system will be undertaken by the Contractor prior to the commencement of construction; Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. Silt/sediment traps should also be incorporated in the permanent drainage channels to enhance deposition rates; The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be 5 minutes under maximum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be undertaken by the Contractor prior to the commencement of construction; The construction works should be programmed to minimise surface excavation works during rainy seasons (April to 	 In accordance with ProPECC PN 1/94, construction phase mitigation measures with good manager of the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the stormwater to silt removal facilities. The design of the temporary onsite drainage system will be undertaken by the Contractor prior to the commencement of construction; Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. Silt/sediment traps should also be incorporated in the permanent drainage channels to enhance deposition rates; The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be 5 minutes under maximum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be undertaken by the Contractor prior to the commencement of construction; The construction works should be programmed to minimise surface excavation works during rainy seasons (April to 	 In accordance with ProPECC PN 1/94, construction phase mitigation measures with good management practice At the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the stormwater to silt removal facilities. The design of the temporary onsite drainage system will be undertaken by the Contractor prior to the commencement of construction; Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. Silt/sediment drainage channels to enhance deposition rates; The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be 5 minutes under maximum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be construction; The construction works should be programmed to minimise surface excavation works during rainy seasons (April to 	In accordance with ProPECC PN 1/94, construction phase mitigation measures with good management practices should include • At the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culve(ts), earth bunds or sand bag barriers should be provided to divert the stormwater to silt removal facilities. The design of the contractor prior to the commencement of construction; To control water quality impact from constructors All work sites Constructor and Sub-contractors • Dikes or embankments for flood protection should be incorporated in the permanent drainage channels to enhance deposition rates; • The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be 5 minutes under maximum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be prostruction; • The construction works should be programmed to minimise surface excavation works during rainy seasons (April to	Inaccordance with ProPECC PN 1/94, construction phase mitigation measures with good management practices should include the following: • At the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the temporary onsite drainage system will be undertaken by the Contractor prior to the commencement of construction; Contractor and Sub-contractor prior to the commencement of construction; All work sites Construction Phase Water Pollution Control Ordinance, ProPECC PN 1/94. • Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a sil/sediment traps. Should be to silt / sand traps should be ased on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be to simurum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be to the commencement of construction; Image: Should be programmed to minimise surface excavation works should be programmed to minimise surface excavation works should be programmed to minimise surface excavation works during rainy seasons (April to the commencement of construction).

Monthly EM&A Report Appendix 3.1

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	completed and vegetated as soon as possible after the earthworks have been completed. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means;						
	 The overall slope of works sites should be kept to a minimum to reduce the erosive potential of surface water flows, and all trafficked areas and access roads should be protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during the prolonged periods of inclement weather and the reduction of surface sheet flows; 						N/A
	• All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure their proper and efficient operation at all times particularly following rainstorms. Deposited silts and grits should be removed regularly and disposed of by spreading evenly over stable, vegetated areas;						^
	• Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet season is inevitable, they should be dug and backfilled in short sections wherever practicable. The water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities;						N/A
	• All open stockpiles of construction materials (for example, aggregates, sand and fill material) should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system;						^

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers;						^
	• Precautions to be taken at any time of the year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted and during or after rainstorms, are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface run-off during storm events;						^
	 All vehicles and plant should be cleaned before leaving the Site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities / bay should be provided at the exit of the Site where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel- washing bay to public roads should be paved with sufficient backfall toward the wheel washing bay to prevent vehicle tracking of soil and silty water to public roads and drains; 						^
	 Oil interceptors should be provided in the drainage system downstream of any oil / fuel pollution sources. Oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for oil interceptors to prevent flushing during heavy rain; 						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	• The construction solid waste, debris and rubbish onsite should be collected, handled and disposed of properly to avoid causing any water quality impacts; and						V
	• All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds with adequate storage capacity to prevent spilled fuel oils.						^
S5.9.5	Control of effluent discharge						
	• A discharge licence for discharge of effluent from the construction site under the WPCO shall be applied to the EPD for. The discharge quality must meet the requirements specified in the discharge licence.	To control the effluent discharge from the Site	Contractor and Sub- contractors	All work sites	Construction Phase	Water Pollution Control Ordinance	N/A
	• All the run-off and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the Technical Memorandum. Minimum distances of 100m should be maintained between the discharge points of construction site effluent and the existing seawater intakes.						N/A
	• No new effluent discharges in nearby typhoon shelters should be allowed.						N/A
	• The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., would minimize water consumption and reduce the effluent discharge volume.						^
S5.9.6	Sewage from Workforce	·				·	
	• Portable chemical toilets and sewage holding tanks are recommended for the handling of the construction sewage generated by the workforce.	To control Sewage	Contractor and Sub- workers	All work sites	Construction Phase	Water Pollution	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	• A licensed Contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	generated from onsite construction				Control Ordinance and Waste Disposal Ordinance	^
S5.9.7 – S5.9.8	Accidental Spillage of Chemicals						
	• The Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities.	To control accidental spillage of chemicals	Contractor and Sub- contractors	All work sites	Construction Phase	EIAO-TM, Water Pollution Control	^
	• Any maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided.					Ordinance and Waste	٨
	• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.					Disposal (Chemical Waste) (General) Regulation	^
S5.9.9	Provision of surface runoff collection system						1
	• All surface runoff on the road shall be direct to the system.	To control road surface runoff	Contractor and Sub-	Along Road	Design and Construction	Water Pollution	N/A
	• The capacity of the system should be properly designed to cater for all surface water.		contractors	Alignment	Phases	Control Ordinance	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
Waste N	lanagement	<u> </u>		<u> </u>			1
S6.6.3	Waste Management Plan (WMP) should be prepared and submitted for approval by the Engineer prior to any construction activities. During the construction period the WMP should be used as a working document to detail the on-going management procedures and to record waste arising from construction works and import of fill throughout the Contract. The WMP shall be subject to audit under the requirements of the Environmental Monitoring and Audit (EM&A) Procedures set out in the EM&A Manual accompanying this EIA Report.	Preparation and approval of WMP	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	^
S6.6.4 and S6.6.5	 The WMP shall be developed and implemented according to a best-practice philosophy of waste management. There are various waste management options, which can be categorised in terms of preference from an environmental viewpoint. The options considered to be more preferable have the least impacts and are more sustainable in a longterm context. The hierarchy is as follows: Avoidance and minimisation, i.e. avoiding or not generating waste through changing or improving practices and design; Reuse of materials, thus avoiding disposal (generally with only limited reprocessing); Recovery and recycling, thus avoiding disposal (although reprocessing may be required); Treatment and disposal, according to relevant laws, guidelines and good practice; and The suitability (or otherwise) of material for reuse on site shall be detailed in the WMP. If, for any reason, the recommendations cannot be implemented, full justification should be given in the WMP for approval by the Engineer. 	To minimise waste generation	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	Λ

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S6.6.6	To facilitate adoption of the best-practice philosophy, training shall be provided to all personnel working on site. The training shall promote the concept of general site cleanliness and clearly explain the appropriate waste management procedures defined in the WMP.	To encourage all workers to reduce, reuse and recycle wastes.	Contractor	All works sites	Construction Phase	EIAO-TM	٨
S6.6.7	 a. During construction, the WMP should be kept up-to-date on a monthly basis with records of the actual quantities of wastes generated, recycled and disposed of off-site. b. Quantities shall be determined by weighing each load or other methods agreed to by the Engineer's Representative. Waste shall only be disposed of at licensed sites and the WMP should include procedures to ensure that illegal disposal of wastes does not occur. c. Only waste haulers authorised to collect the specific category of waste concerned should be employed and a trip ticket system shall be implemented for offsite disposal of inert C&D material and C&D waste at public fill reception facilities and landfills. d. Appropriate measures should be employed to minimise windblown litter and dust during transportation by either covering trucks or transporting wastes in enclosed containers. 	To keep trace of waste generation, minimisation, reuse and disposal	Contractor	All works sites	Construction Phase	ETWB TC(W) No. 19/2005	Λ Λ Λ
S6.6.8	The WMP shall include plans indicating specific areas designated for the storage of particular types of waste, reusable and recyclable materials as well as areas and management proposals for any stockpiling areas. Generally, waste storage areas should be well maintained and cleaned regularly.	Work site(s):- a. Arrange and manage to facilitate the proper management of wastes and materials. b. Design to avoid cross	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	V

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
		contamination of materials and pollution of the surrounding environment.					
S6.6.9	The design of formwork should maximise the use of standard wooden panels so that high reuse levels can be achieved. Alternatives such as steel formwork or plastic facing should be considered to increase the potential for reuse.	To maximise reuse of inert C&D Materials	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	N/A
S6.6.10 and S6.6.11	 a. Inert C&D materials should be segregated on site into different waste and material types. Where materials cannot be reused on site, opportunities for recycling materials off-site shall be explored. b. Potential opportunities for recycling and reuse of inert C&D materials from the Project include: 	To maximise reuse and facilitate recycling by segregating inert C&D Materials	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	Λ
	Milling wastes arising from regrading of the existing pavement could be recycled on site and reused as either road-base in the new carriageways or fill for new embankments;						N/A
	• Existing marginal roadside barriers comprise pre-cast units, it may be possible to re-use these following widening works; and	-					N/A
	• Existing bridge parapets comprise aluminium post and railings, these have a recyclable value and could be sold on for reconditioning or reused for scrap metal.						N/A
S6.6.12	Any stockpile should be sited away from existing watercourses and suitably covered.	To prevent wind erosion and impacts on air and water quality	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S6.6.13	C&D waste which cannot be reused or recycled should be segregated and stored in different containers or skips from the inert C&D material and should be disposed of to landfill.	To facilitate disposal of C&D waste	Contractor	All works sites	Construction Phase	ETWB TC(W) No. 19/2005	^
S6.6.14	Workers should, when necessary, wear appropriate personal protective equipment (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site.	To minimise the exposure to contaminated materials	Contractor	All works sites when necessary	Construction Phase	Practice Guide, Guidance Note, Guidance Manual	N/A
S6.6.15 and	a. The marine sediment should be excavated, transported and processed properly.	To minimise any potential adverse impacts arising from the handling, treatment and	Contractor	All works sites	Design and Construction	Practice Guide, Guidance Note, Guidance Manual	N/A
S6.6.16	b. Stockpiling of contaminated sediments should be avoided as far as possible.				Phases		N/A
	c. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and uncontaminated materials.	reuse of the marine sediment					N/A
	d. Leachate, if any, should be collected and discharged according to the WPCO.						N/A
	e. The approved Sediment Assessment Plan and Sediment Assessment Report with Remediation Plan shall be incorporated to the WMP.						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S6.6.17	Chemical waste should be handled in accordance with the Code of used for the storage of chemical wastes should:	of Practice on the Pac	kaging, Labelli	ng and Stora	ge of chemical W	astes as follows.	Containers
	• Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed;	environmental impacts in	Contractor	All works sites	Construction Phase	Code of Practice on the	^
	• Have a capacity of less than 450L unless the specifications have been approved by the EPD; and	packaging, handling and				Packaging, Labelling and	^
	• Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations.	storage of chemical wastes				Storage of Chemical Wastes	^
S6.6.18	The storage area for chemical wastes should:			1			<u>I</u>
	Be clearly labelled and used solely for the storage of chemical waste;	To reduce environmental	Contractor	All works sites	Construction Phase	Code of Practice on	^
	Be enclosed on at least 3 sides;	impacts by managing storage				the Packaging,	^
	• Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest;	area for chemical wastes				Labelling and Storage of Chemical Wastes	^
	Have adequate ventilation ;						^
	• Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed as chemical waste if necessary); and						٨
	• Be arranged so that incompatible materials are adequately separated.						٨
S6.6.19	The Contractor shall register with EPD as a Chemical Waste Proc Waste) (General) Regulation will require disposal by appropriate r disposal:						
						onthly FM&A Rend	

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status		
	 Be via a licensed waste collector; and Be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Facility which also offers a chemical waste collection service and can supply the necessary storage containers 	To reduce environmental impacts in disposing chemical wastes.	Contractor	All works sites	Design and Construction Phases	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes	Λ Λ		
S6.6.20 and S6.6.21	a. General refuse generated on-site should be stored in enclosed bins or compaction units separate from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily or every second day basis to minimise odour, pest and litter impacts. The burning of refuse on construction sites is prohibited by law.	To reduce environmental impacts in handling general refuse.	Contractor	All works sites	Construction Phase	Waste Disposal Ordinance (Cap 354)	٨		
	b. General refuse is generated largely by food service activities on site, so reusable rather than disposable dishware should be used if feasible. Aluminum cans are often recovered from the waste stream by individual collectors if they are segregated or easily accessible. Therefore separate, labelled bins for their deposit should be provided if feasible.	ble rather than disposable dishware should be Aluminum cans are often recovered from the rindividual collectors if they are segregated or e. Therefore separate, labelled bins for their		ble dishware should be en recovered from the they are segregated or					٨
S6.6.22	Office waste can be reduced through recycling of paper if volumes are large enough to warrant collection. Opportunities for participation in a local collection scheme should be investigated.	To reduce office waste	Contractor	All works sites	Construction Phase	Waste Disposal Ordinance (Cap 354)	^		

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
Landsca	pe and Visual	1		1			1
S7.9.6	 Mitigation Planting: Replanting of disturbed vegetation should be undertaken at the earliest possible stage of the construction phase of the project and this should use the recommended transplant trees identified in the Tree Removal Recommendation. 	To avoid potential damage to these identified transplant trees	Contractor	Identified locations for tree planting	Construction Phase	Follow the relevant guidelines in the ETWB TC(W) 10/2013; ETWB TC(W)2/2004; ETWB TC(W)29/2004 ; ETWB TC(W)7/2002; Tree Planting and Maintenance in HK, HKSAR 1991 Relevant sections of the latest version of General Specifications for Civil Engineering	* (Status of an unknown tree present near Lai King Catholic School EP boundary subject to ER follow- up wit relevant govt. dept. on its way forward)

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
						Works, HKSAR	
S7.9.6	Development Site and Temporary Works Area				1		
	The construction area and Contractor's temporary works area should be minimized to avoid impacts on adjacent landscape	To minimize potential impacts on adjacent landscape and VSRs	Contractor	The project area where appropriate	Construction Phase	N/A	^
	The landscape of these works areas will be restored following the completion of the construction phase	To minimize potential impacts on the landscape	Contractor	The project area where appropriate	Construction Phase	-	N/A
	• Construction site controls shall be enforced, where possible, to ensure that the landscape and visual impacts arising from the construction phase activities are minimized including the storage of materials	To minimize potential visual impacts on identified VSRs	Contractor	The project area where appropriate	Construction Phase		^
	The location and appearance of site accommodation and the careful design of site lighting to prevent light spillage	To minimize potential impacts on identified VSRs	Contractor	The project area where appropriate	Construction Phase		٨
	Screen hoarding may be a practicable for this project due to the viewing distances is short in a lot of site situation	To minimize potential impacts on identified VSRs	Contractor	The project area where appropriate	Construction Phase		N/A

Remarks:

- ۸
- v
- Implemented Partially implemented To be followed-up by Contractor Not Implemented Not Applicable *
- # N/A

Appendix 4.1

Action and Limit Level

Action and Limit Levels

Air Quality Monitoring

Monitoring	1-hour TSP L	evel in µg/m³	24-hour TSP Level in µg/m³		
Station	Action Level	Limit Level	Action Level	Limit Level	
AMC01	256.2	500	144.8	260	
AMC02	256.7	500	144.3	260	
AMC03A	259.3	500	143.7	260	

Noise Monitoring

Monitoring	Action Level	Limit Level (dB(A))				
Station		0700-1900 hrs on	0700-2300 hrs	2300-0700 hrs		
		normal weekdays	on holidays	of all days		
			(including			
			Sundays); and			
			1900-2300 hrs			
			on all days ²			
NMC01	When one	65 / 70 ¹		45 / 50 / 55 ³		
NMC02	documented	75	60 / 65 / 70 ³	45 / 50 / 55 ³		
NMC03	complaint is	65 / 70 ¹		45 / 50 / 55 ³		
	received					

Remark 1: Limit level of NMC01 and NMC03 reduce to 65 dB (A) during examination periods if any.

Remark 2: Construction noise during restricted hours is under the control of Noise Control Ordinance Limit Level to be selected based on

Area Sensitivity Rating.

Remark 3: Limit Level for restricted hour monitoring shall act as reference level only. Investigation would be conducted on CNP compliance

if exceedance recorded during restricted hour noise monitoring period.

Appendix 4.2

Copies of Calibration Certificates

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界奏涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	24CA0517 03-02		Page	1 of 2
Item tested				
Description:	Sound Level Mete	er (Class 1)	Microphone	Preamp
Manufacturer:	Larson Davis	(PCB	PCB
Type/Model No.:	LxT1		377B02	PRMLxT1L
Serial/Equipment No.:	0005062		173734	042836
Adaptors used:	-		-	-
Item submitted by				
Customer Name:	Lam Environment	al Services Limited		
Address of Customer:	-			
Request No.:	_			
Date of receipt:	17-May-2024			
Date of test:	20-May-2024			
Reference equipment	used in the calib	ration		
Description:	Model:	Serial No.	Expiry Date:	Tressells (s.
Multi function sound calibrator	B&K 4226	2288444	28-Aug-2024	Traceable to: CIGISMEC
Signal generator	DS 360	61227	28-Jun-2024	CEPREI
Ambient conditions				
Temperature:	21 ± 1 °C			
Relative humidity:	$55 \pm 10\%$			
Air pressure:	1005 ± 5 hPa			
Test specifications				

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Ð Feng Junai

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

21-May-2024

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界葵涌永基路22-24號好爸爸創科大廈

Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

24CA0517 03-02

Page 2 of

2

1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	٨	_		
Self-generated holse	A	Pass	0.3	
	-	Pass	0.8	2.1
Line este serve for t	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass		
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz		0.3	
		Pass	0.3	
Pulse range	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	Single burst 10 ms at 4 kHz	Pass	0.4	
	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

Test Data for Sound Level M	Page 1 of 5			
Sound level meter type: Microphone type: Preamp type:	LxT1 377B02 PRMLxT1L	Serial No. Serial No. Serial No.	0005062 173734 042836	Date 20-May-2024 Report: 24CA0517 03-02

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	9.1	dB
Noise level in C weighting	11.9	dB
Noise level in Lin	18.5	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	l level	Tolerance	Devia	Deviation		
	non-integrated	integrated		non-integrated	integrated		
dB	dB	dB	+/- dB	dB	dB		
94.0	94.0	94.0	0.7	0.0	0.0		
99.0	99.0	99.0	0.7	0.0	0.0		
104.0	104.0	104.0	0.7	0.0	0.0		
109.0	109.0	109.0	0.7	0.0	0.0		
114.0	114.0	114.0	0.7	0.0	0.0		
115.0	115.0	115.0	0.7	0.0	0.0		
116.0	116.0	116.0	0.7	0.0	0.0		
117.0	117.0	117.0	0.7	0.0	0.0		
118.0	118.0	118.0	0.7	0.0	0.0		
119.0	119.0	119.0	0.7	0.0	0.0		
120.0	120.0	120.0	0.7	0.0	0.0		
89.0	89.0	89.0	0.7	0.0	0.0		
84.0	84.0	84.0	0.7	0.0	0.0		
79.0	79.0	79.0	0.7	0.0	0.0		
74.0	74.0	74.0	0.7	0.0	0.0		
69.0	69.0	69.0	0.7	0.0	0.0		
64.0	64.0	64.0	0.7	0.0	0.0		
59.0	59.0	59.0	0.7	0.0	0.0		
54.0	54.0	54.0	0.7	0.0	0.0		
49.0	49.0	49.0	0.7	0.0	0.0		
44.0	44.0	44.0	0.7	0.0	0.0		
39.0	39.0	39.0	0.7	0.0	0.0		
34.0	33.9	33.9	0.7	-0.1	-0.1		
33.0	32.9	32.9	0.7	-0.1	-0.1 -0.1		

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

Page 2 of 5

SMECLab

Test Data for Sound Level Meter

Sound level me Microphone Preamp	eter type: type: type:	LxT1 377B02 PRMLxT1L		Serial No. Serial No. Serial No.	0005062 173734 042836	Date	e 20-May-2024
32.0		31.9	31.9	0.7		-0.1	-0.1
31.0		30.9	30.9	0.7		-0.1	-0.1
30.0		29.9	29.9	0.7		-0.1	-0.1

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-120	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Poforonoo/Europeta data			
r unges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-120	30.0	29.9	0.7	-0.1
	118.0	118.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.4	1.5	1.5	-0.2
63.1	94.0	67.8	67.8	1.5	1.5	0.0
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.4	1.0	1.0	0.0
501.2	94.0	90.8	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.0	1.0	1.0	0.0
7943.0	94.0	92.9	92.9	1.5	3.0	0.0
12590.0	94.0	89.7	89.7	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	90.9	1.5	1.5	-0.1
63.1	94.0	93.2	93.1	1.5	1.5	-0.1
125.9	94.0	93.8	93.8	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

Test Data for Sound Level Meter

Sound level me Microphone Preamp	type:	LxT1 377B02 PRMLxT1L	Serial No. Serial No. Serial No.	173)5062)734 !836	Date Report:	20-May-2024 24CA0517 03-02
1995.0	94.0	93.8	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	93.2	1.0	1.0	0.0	
7943.0	94.0	91.0	91.0	1.5	3.0	0.0	
12590.0	94.0	87.8	87.7	3.0	6.0	-0.1	
Frequency weig	hting Lin:			0.0	0.0	-0.1	
Frequency	Ref. level	Expected level	Actual lovel	Telever		D 1 1	

Frequency	Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	93.9	1.5	1.5	-0.1
63.1	94.0	94.0	93.9	1.5	1.5	-0.1
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.0			0.0
12590.0	94.0	94.0		1.5	3.0	0.0
	0110	54.0	94.0	3.0	6.0	0.0

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	÷	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.8	1.0	1.0	-0.1

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

Ref. level	Designed		O · , _ p · · · · ·)	
rici. icvei	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	110.0		·/- 0D	UD
110.0	119.0	119.6	2.0	0.6

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

SMECLab

Page 3 of 5

Test Data for Sound Level Meter

Sound level m Microphone Preamp	type: type:	LxT1 377B02 PRMLxT1L	Serial No. Serial No. Serial No.	0005062 173734 042836		Page 4 of 5 20-May-2024
Negative polari	ities:			042000	Report:	24CA0517 03-02
Re	f. level	Response to 10 ms	Response to 100 us			
	dB		Response to 100 us	Tolerance	Deviation	
1		dB	dB	+/- dB	dB	
	19.0	119.0	119.6	2.0		
				2.0	0.6	

RMS ACCURACY TEST

Test frequence Amplitude: Burst repetitio Tone burst sig	n frequency:	2 dB below the up 40 Hz	ange for a crest factor	y indicator range.	
		11 cycles of a sine wave of frequency 2000 H: Expected level Tone burst signal			
	Ref. Level				to INT)
ime wighting	Ref. Level dB	Expected level	Tone burst signal	000 Hz. (Set Tolerance	to INT) Deviation
ime wighting Slow					

TIME WEIGHTING IMPULSE TEST

Time weighting I is te	ested on the reference range	(Sot the OLM () as
	2000 Hz	(Set the SLM to LAImax)
Amplitude:	The upper literation	

The upper limit of the primary indicator range. Single sinusoidal burst of duration 5 ms:

Dof Laure

Ref. Level	Single burst indication				
dP		t indication	Tolerance	Deviation	
dB	Expected (dB)	Actual (dB)	11.10	Deviation	
120.0	111.2		+/- dB	dB	
	111.2	111.1	2.0	-0.1	

Repeated at 100 Hz

Ref. Level	Popostad h				
dB	Repeated burst indication		Tolerance	Deviation	
	Expected (dB)	Actual (dB)			
120.0	117.3		+/- dB	dB -0.2	
		117.1	1.0		

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst: 4000 Hz Duration of tone burst: 1 ms

Repetition Time	Level of tone burst	Expected Leg	Actual Leg	Tolerance	Deviation	Remarks
msec	dB	dB	dB	1/ 15		
1000	90.0	90.0		+/- dB	dB	
10000	80.0		89.8	1.0	-0.2	60s integ.
	80.0	80.0	79.8	1.0	-0.2	6min. integ

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: Integration time: 10 sec

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

SMECLab

Page 5 of 5

Test Data for Sound Level Meter

							1 460 5 01 5
Sound level me	eter type:	LxT1		Serial No.	0005062	Date	20-May-2024
Microphone Preamp	type: type:	377B PRM	02 LxT1L	Serial No. Serial No.	173734 042836	-	24CA0517 03-02
The integrating	sound level r	meter s	et to Leg:			noport.	24070317 03-02
Duration	Rms leve		Expected	Actual	Tolerance	Deviation	
msec	tone burst	(dB)	dB	dB	+/- dB	dB	
10	90.0		60.0	60.0	1.7	0.0	

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	90.0	70.0	70.0	17	ив 0.0
	00.0	70.0	70.0	1./	

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequer Amplitude: Burst repetit Tone burst s	ion frequency:	2000 Hz 2 dB below the up 40 Hz 11 cycles of a sind			ange.
Level	Level reduced by		Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
113.4	112.4	109.4	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

 For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following:

 The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

 Test frequency:
 4000 Hz

 Integration time:
 10 sec

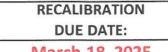
 Single burst duration:
 1 msec

 Rms level
 Level reduced by

r this level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
120.0	119.0	79.0	79.0	22	0.0
			70.0	2.2	0.0

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.


Frequency	Expected level	Actual level	Tolera	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	77.9	1.0	1.0	0.0
8000	92.9	90.8	1.5	3.0	-2.1

-----END------

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

March 18, 2025

nmental Certificate of Calibration

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	March 18,	March 18, 2024 Rootsm			438320	Ta:	295	°К
Operator:	Jim Tisch					Pa:	747.8	mm Hg
Calibration		TE-5025A	Calil	brator S/N:	3166			
								1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔP	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4220	3.2	2.00	-
	2	3	4	1	1.0170	6.4	4.00	4
	3	5	6	1	0.9100	8.0	5.00	4
	4	7	8	1	0.8690	8.9	5.50	-
	5	9	10	1	0.7170	12.8	8.00]
				Data Tabula	tion			-
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	(is)	Va	(x-axis)	(y-axis)	
	0.9897	0.6960	1.40	99	0.9957	0.7002	0.8883	1
	0.9854	0.9689	1.9939		0.9914	0.9749	1.2562]
	0.9833	1.0805	2.22	93	0.9893	1.0871	1.4045]
	0.9821	1.1301	2.33	81	0.9881	1.1371	1.4730	-
	0.9769	1.3625	2.81		0.9829	1.3708	1.7765	-
		m=	2.117			m=	1.32584	-
	QSTD	b=	-0.05		QA	b=	-0.03778	
		r=	0.999	997		r=	0.99997]
				Calculatio	ns			
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/T	a)	Va=	∆Vol((Pa-∆	P)/Pa)]
		Vstd/∆Time			Qa=	Va/∆Time		
			For subsequ	ent flow ra	te calculatio	ns:]
	Qstd= $1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right)$			-))-b)	Qa=	1/m ((√∆H	H(Ta/Pa))-b)	
	Standard	Conditions						
Tstd	298.15	°K				RECA	LIBRATION	
Pstd	760	mm Hg				ammondo a	nnual recalibrati	on nor 100
		Key	- 1120)				Regulations Part	
∆H: calibrat	or manome	ter reading (i	n H2O) (mm Ha)				, Reference Metl	
		eter reading perature (°K)					ended Particulat	
		ressure (mm						
b: intercept					tn	e Atmosphe	ere, 9.2.17, page	30
m: slope	the second sector of a second sector of							

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

CERTIFICATE OF CALIBRATION

Certificate No.:	24CA0419 01-02	Page:	1	of	2	
Item tested						
Description:	Acoustical Calibra	ator (Class 1)				
Manufacturer:	Honglim Co., Ltd.					
Type/Model No.:	HLES-02					
Serial/Equipment No.:	2019612870					
Adaptors used:	- 5					
Item submitted by						
Curstomer:	Lam Environment	al Services Limited.				
Address of Customer:	.					
Request No.:	-					
Date of receipt:	19-Apr-2024					
Date of test:	22-Apr-2024					
Reference equipment	used in the calib	oration				
Description:	Model:	Serial No.	Expiry Date:		Traceab	le to:
Lab standard microphone	B&K 4180	3257888	15-Aug-2024		SCL	
Preamplifier	B&K 2673	3353200	13-Jun-2024		CEPREI	
Measuring amplifier	B&K 2610	2346941	13-Jun-2024		CEPREI	
Signal generator	DS 360	61227	28-Jun-2024		CEPREI	
Digital multi-meter	34401A	US36087050	01-Jun-2024		CEPREI	
Audio analyzer	8903B	GB41300350	13-Jun-2024		CEPREI	
Universal counter	53132A	MY40003662	07-Jun-2024		CEPREI	
Ambient conditions						
Temperature:	22 ± 1 °C					
Relative humidity:	55 ± 10 %					
Air pressure:	1010 ± 5 hPa					
Test specifications						
1, The Sound Calibrato	r has been calibrated	in accordance with the	requirements as specif	ied ir	IEC 6094	12 1997 An
	n procedure SMTP00		1			
	2 C C C C C C C C C C C C C C C C C C C	ical facing downwards a	at the specific frequency	/ usin	a insert v	oltage tech

 The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

23-Apr-2024 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

24CA0419 01-02

Page: 2 of

Measured Sound Pressure Level 1,

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.12	0.10

Sound Pressure Level Stability - Short Term Fluctuations 2,

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.012 dB
Estimated expanded uncertainty	0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz	Actual Frequency = 998.7 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 1.0 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	\sim /	
Calibrated by:	12~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Checked by:	' Jal-	
	Fung Chi Yip		Chan Yuk Yiu	
Date:	22-Apr-2024	Date:	23-Apr-2024	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	AMC01	Calbration Date	:	3-Oct-24
Equipment no.	:	0200-0740	Calbration Due Date	:	3-Dec-24

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		299.	4	Kelvin	Pressure, P	1	1	013 mmHg
			Orifice Tr	ansfer Sta	Indard Inform	nation		
Equipment No.		3166		Slope, m _c	1.3258	34	Intercept, bc	-0.03778
Last Calibration Date		18-Mar-2	4		(Hx	P _a / 101	3.3 x 298 /	(T _a) ^{1/2}
Next Calibration Date		18-Mar-2	5		=	m _c x	$Q_{std} + b_c$	
Calibration of TSP								
Calibration	Manometer Reading			c	t std	Continu	uous Flow	IC
Point	Н (і	inches of	water)	vater) (m ³ / m		Recorder, W		$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$
	(up)	(down)	(difference)	X-	axis	(0	CFM)	Y-axis
1	1.9	1.9	3.8	1.4	4953	32		31.9235
2	2.8	2.8	5.6	1.8	8091 40		40	39.9044
3	3.8	3.8	7.6	2.1	2.1028 4		48	47.8853
4	4.6	4.6	9.2	2.3	3107		53	52.8733
5	5.7	5.7	11.4	2.5690 6		61	60.8542	
By Linear Regression of	Y on X							
	Slope, m	=	26.7	173	Inte	ercept, b =	-8.	2796
Correlation Co	pefficient*	=	0.99	93				
Calibration	Accepted	=	Yes/	₩0**				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : Serial No.:0200-0740

Calibrated by	:	Yoshi Tung	Checked by	:	Harry Po
Date	:	3-Oct-24	Date	:	3-Oct-24

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	AMC02	Calbration Date	:	3-Oct-24
Equipment no.	:	2650	Calbration Due Date	:	3-Dec-24

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, Ta		299		Kelvin	Pressure, Pa	1	1	013 mmHg
			Orifice Tr	ansfer Sta	andard Inform	nation		
Equipment No.		3166		Slope, m _c	1.3258	4	Intercept, bc	-0.03778
Last Calibration Date		18-Mar-2	4		(Hx	P _a / 10	13.3 x 298 /	$(T_a)^{1/2}$
Next Calibration Date		18-Mar-2	:5		=	m _c x	$Q_{std} + b_c$	
Calibration of TSP								
Calibration	Manometer Reading			c	Q _{std}	Continuous Flow		IC
Point	H (inches of water)		(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis	(CFM)		Y-axis
1	1.6	1.6	3.2	1.:	3745	28		27.9331
2	2.6	2.8	5.4	1.	7770	36		35.9140
3	3.5	3.5	7.0	2.0	0193	193 42		41.8996
4	4.4	4.4	8.8	2.2	2.2606 48		48	47.8853
5	5.2	5.2	10.4	2.4	4550 53		53	52.8733
By Linear Regression of	Y on X							
	Slope, m	=	23.1	965	Inte	ercept, b =	-4.	.5648
Correlation Co	pefficient*	=	0.99	83				
Calibration	Accepted	=	Yes/ł	₩0**				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : Serial No.:2650

Calibrated by	:	Yoshi Tung	Checked by	Harry Po
Date	:	3-Oct-24	Date :	3-Oct-24

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	AMC03A	Calbration Date	:	3-Oct-24
Equipment no.	:	2649	Calbration Due Date	:	3-Dec-24

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		299		Kelvin	Pressure, P	a	1	013 mmHg
			Orifice Tr	ansfer Sta	Indard Inform	nation		
Equipment No.		3166		Slope, m _c	1.325	84	Intercept, bc	-0.03778
Last Calibration Date		18-Mar-2	24		(Hx	P _a / 10)13.3 x 298 /	$(T_a)^{1/2}$
Next Calibration Date		18-Mar-2	25		=	m _c 2	$x Q_{std} + b_c$	
Calibration of TSP								
Calibration	Manometer Reading			C	l _{std}	Conti	nuous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis	(CFM)		Y-axis
1	1.3	1.3	2.6	1.:	2418	39		38.9068
2	2.2	2.2	4.4	1.0	6068	3 46		45.8901
3	3.2	3.2	6.4	1.9	1.9320 53		53	52.8733
4	4.0	4.0	8.0	2.1	2.1567 5		59	58.8590
5	5.3	5.3	10.6	2.4	2.4782 6		64	63.8470
By Linear Regression of	Y on X							
	Slope, m	=	20.7	326	Int	ercept, b	= 13	.0335
Correlation Co	efficient*	=	0.99)77				
Calibration	Accepted	=	Yes/	₩0**				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Calibrated by	:	Yoshi Tung	Checked by	:	Harry Po
Date	:	3-Oct-24	Date	:	3-Oct-24

1600 Washington Blvd Grants Pass, OR 97526 (541) 471-7111 (541) 471-7116 (Fax) Service@metone.com

Calibration Certificate

The calibration results on this report certify that this instrument complies with the product specifications at the time of calibration. Calibration was performed according to accepted industry methods using equipment, procedures, and standards that are traceable to NIST and ISO.

Recommended calibration interval is 12 months from the first day of use.

Instrument Model#	Aerocet 831	Instrument Serial# B19129
Date of Calibration 7/25/2024		AUG 0 6 2024
J. Chester		Quality Check
Temper	00	Relative Humidity <u>45</u> %

Test Procedure: Aerocet 831-6100

0.3	Pass	± 10%	257546	00/04/0005
the second s		- 1070	257540	08/31/2025
0.5	Pass	± 10%	252466	03/31/2025
1.0	Pass	± 10%	247589	12/31/2024
2.5	Pass	± 10%	REF	NA
4.0	Pass	± 10%	REF	NA
7.0	Pass	± 10%	REF	NA
10.0	Pass	± 10%	REF	NA

Standards	Model	SN	Cal Due
FLOW	SWIFT 6.0	B20458	12/8/2024
DMM	189 Multimeter	92130180	10/19/2024
TEMP/HUM/BAR	597	Y13061	5/20/2025
Particle Counter	GT-526S	X17420	12/22/2024

This calibration certificate shall not be reproduced except in full, without the written approval of Met One Instruments Inc.

1600 Washington Blvd Grants Pass, OR 97526 (541) 471-7111 (541) 471-7116 (Fax) Service@metone.com

Calibration Certificate

The calibration results on this report certify that this instrument complies with the product specifications at the time of calibration. Calibration was performed according to accepted industry methods using equipment, procedures, and standards that are traceable to NIST and ISO.

Recommended calibration interval is 12 months from the first day of use.

Instrument Model#	Aerocet 831	I	nstrument Serial#	Y23154
Date of Calibration	7/25/2024	normality		Sensor # 19499
J. Chester A		A 14	AUG 06 2024	
Calibration Technicia	n	Quality	Check	
Tempera	iture 22	C Rela	ative Humidity 45	5%

Test Procedure: Aerocet 831-6100

PSL Size (µm)	Test Results	Test Spec.	Lot# NIST	Expiration
0.3	Pass	± 10%	257546	08/31/2025
0.5	Pass	± 10%	252466	03/31/2025
1.0	Pass	± 10%	247589	12/31/2024
2.5	Pass	± 10%	REF	NA
4.0	Pass	± 10%	REF	NA
7.0	Pass	± 10%	REF	NA
10.0	Pass	± 10%	REF	NA

Standards	Model	SN	Cal Due
FLOW	SWIFT 6.0	B20458	12/8/2024
DMM	189 Multimeter	92130180	10/19/2024
TEMP/HUM/BAR	597	Y13061	5/20/2025
Particle Counter	GT-526S	X17420	12/22/2024

This calibration certificate shall not be reproduced except in full, without the written approval of Met One Instruments Inc.

Document Aerocet 831-9600 Rev A

1600 Washington Blvd Grants Pass, OR 97526 (541) 471-7111 (541) 471-7116 (Fax) Service@metone.com

Calibration Certificate

The calibration results on this report certify that this instrument complies with the product specifications at the time of calibration. Calibration was performed according to accepted industry methods using equipment, procedures, and standards that are traceable to NIST and ISO.

Recommended calibration interval is 12 months from the first day of use.

Instrument Model# Aerocet 831	Instrument Serial# R14332
Date of Calibration 7/25/2024	Sensor # <u>12228</u>
Calibration Technician	Quality Check
Temperature 22 ^O C	Relative Humidity 45 %

Test Procedure: Aerocet 831-6100

0.3 Pass 0.5 Pass 1.0 Pass 2.5 Pass 4.0 Pass	± 10% ± 10% ± 10% ± 10%	257546 252466 247589 REF	08/31/2025 03/31/2025 12/31/2024
1.0Pass2.5Pass	± 10%	247589	12/31/2024
2.5 Pass			
	± 10%	REF	A/A
10 Pass			NA
4,0 1033	± 10%	REF	NA
7.0 Pass	± 10%	REF	NA
10.0 Pass	± 10%	REF	NA

Standards	Model	SN	Cal Due
FLOW	SWIFT 6.0	B20458	12/8/2024
DMM	189 Multimeter	92130180	10/19/2024
TEMP/HUM/BAR	597	Y13061	5/20/2025
Particle Counter	GT-526S	X17420	12/22/2024

This calibration certificate shall not be reproduced except in full, without the written approval of Met One Instruments Inc.

Document Aerocet 831-9600 Rev A

-

100

Calibration Certificate

Certificate No. 406811 Page 1 of 2 Pages						
Customer: Lam Environmental Services Limited						
Address : 19/F, Remex Centre, 42 Wong Chuk Hang Road, Hong Kong						
Order No. :	Q42568		Date of receipt	:	15-Jul-24	
Item Tested						
Description :	Aerosol Mass Monitor					
Manufacturer :	Met One		I.D.	:		
Model :	Aerocet 831		Serial No.	: B19128		
Test Conditi	ons					
Date of Test :	31-Jul-24		Supply Voltage	e :		
Ambient Temp	erature: (23 ± 3)°C		Relative Humic	dity: (50 ± 25	5) %	
Test Specifications						
Calibration check. Calibration procedure : Manufacturer recommended method (gravimetric), Z28.						
Test Results						
All results were within the tolerance(s).						
The results are	shown in the attached page(s).					
Main Test equir	mont used:					
Main Test equip Equipment No.		Cert. No.		Traceable to		
S136B	Stop Watch	402293		SCL-HKSAR		
S238	Micro Balance	108228		NIM-PRC	-	
S201	Std. Test Dust	61291		NIST		
		LL-2104002489		NIM-PRC		
S207B	Std. Flowmeter	LL-2104002409				
The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.						
The test equipment The test results app	used for calibration are traceable to Interply to the above Unit-Under-Test only	rnational System of Unit	s (SI), or by reference	e to a natural cor	istant.	
Calibrated by	:A	App	proved by :	Stove Kurs		
This Cortificate is issued I	Kin Wong	Date	: 31-Jul-24	Steve Kwan		

Hong Kong Calibration Ltd.

Unit 6B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Calibration Certificate

Certificate No. 406811

Page 2 of 2 Pages

Results :

1. General

Internal Filters : checked and found clean.

2. Flow Meter

UUT Nominal	Measured Value	Tolerance
Value (LPM)	(LPM)	(LPM)
2.83	2.85	± 0.15

Uncertainty : ± 0.05 LPM

3. Timer

Reference Value	UUT Reading	Tolerance	Uncertainty
9' 59" 79	16 min	± 2 sec/hr	± 0.5 sec/hr

4. Dust Particle (TSP)

Applied Value (µg/m ³)	UUT Reading (µg/m ³) K Factor : 0.72	Tolerance	Uncertainty
310	319	± 20 %	±10 %

Remark : 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. ISO 12103-1 A1 respirable standard test dust was used for the calibration.

4. The K Factor had been adjusted from 1.00 to 0.72.

----- END -----

Wind Station Performance Check Record

am

Туре	: Weather Station
Manufacturer	: 武汉辰云科技有限公司
Model Number	: YGY-FSXY12
Serial Number	: <u>21091630T0944</u>
Performance Check Date	9-May-2024

Performance Check Results

Wind Speed Range (m/s)	Reading Value (V1, m/s)	Anemometer Value (V2, m/s)	Difference (V1 - V2, m/s)
Zero Check	0.0	0.0	0.0
1 - 2	1.9	1.9	0.0
3 - 5	3.6	3.5	0.1
6 - 7	6.5	6.7	-0.2
8 - 9	8.2	8.2	0.0

Wind Direction (°)	Reading Value (W1, °)	Compass Value (W2, °)	Difference (W1 - W2, °)
0	0	0	0
90	93	90	3
180	179	180	-1
270	269	270	-1

Test Reference:

1. Wind Speed Check - Speed reading checked on-site against anemometer logged value.

2. Wind Direction Check - Direction reading checked on on-site against logged value.

Appendix 4.3

Wind Data

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	263(W)
	1:00	0.0(0)	108(ESE)
	2:00	0.0(0)	82(E)
	3:00	1.9(2)	181(S)
	4:00	0.0(0)	175(S)
	5:00	0.0(0)	107(ESE)
	6:00	0.0(0)	228(SW)
	7:00	0.7(1)	315(NW)
	8:00	1.3(1)	76(ENE)
	9:00	0.0(0)	195(SSW)
	10:00	0.7(1)	231(SW)
	11:00	1.7(2)	141(SE)
1-Oct-24	12:00	0.0(0)	250(WSW)
	13:00	0.0(0)	243(WSW)
	14:00	1.3(1)	292(WNW)
	15:00	0.0(0)	69(ENE)
	16:00	0.7(1)	336(NNW)
	17:00	0.7(1)	282(WNW)
	18:00	0.5(1)	29(NNE)
	19:00	1.5(1)	325(NW)
	20:00	0.0(0)	12(NNE)
	21:00	2.7(2)	193(SSW)
	22:00	0.0(0)	163(SSE)
	23:00	0.0(0)	258(WSW)
	0:00	1.1(1)	172(S)
	1:00	0.9(1)	299(WNW)
	2:00	0.7(1)	53(NE)
	3:00	1.3(1)	48(NE)
	4:00	3.1(2)	283(WNW)
	5:00	1.5(1)	184(S)
	6:00	0.7(1)	156(SSE)
	7:00	1.1(1)	178(S)
	8:00	2.5(2)	76(ENE)
	9:00	2.1(2)	49(NE)
	10:00	1.5(1)	301(WNW)
	11:00	1.1(1)	33(NNE)
2-Oct-24	12:00	0.5(1)	189(S)
	13:00	1.1(1)	137(SE)
	14:00	1.3(1)	109(ESE)
	15:00	0.9(1)	323(NW)
	16:00	3.1(2)	215(SW)
	17:00	0.5(1)	337(NNW)
	17:00	0.9(1)	209(SSW)
	19:00	0.7(1)	95(E)
	20:00	0.0(0)	212(SSW)
	20:00	0.0(0)	224(SW)
	21.00	0.0(0)	
	22:00	0.0(0)	307(NW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.5(1)	269(W)
	1:00	1.9(2)	255(WSW)
	2:00	0.0(0)	188(S)
	3:00	1.7(2)	49(NE)
	4:00	0.9(1)	110(ESE)
	5:00	1.7(2)	114(ESE)
	6:00	0.0(0)	139(SE)
	7:00	1.5(1)	333(NNW)
	8:00	0.7(1)	56(NE)
	9:00	0.5(1)	272(W)
	10:00	0.9(1)	110(ESE)
2 Out 24	11:00	0.5(1)	178(S)
3-Oct-24	12:00	1.7(2)	96(E)
	13:00	1.3(1)	261(W)
	14:00	0.5(1)	273(W)
	15:00	1.7(2)	84(E)
	16:00	0.9(1)	328(NNW)
	17:00	0.7(1)	104(ESE)
	18:00	1.1(1)	29(NNE)
	19:00	0.0(0)	147(SSE)
	20:00	0.5(1)	37(NE)
	21:00	0.0(0)	13(NNE)
	22:00	0.0(0)	244(WSW)
	23:00	0.9(1)	265(W)
	0:00	2.3(2)	95(E)
	1:00	1.1(1)	251(WŚW)
	2:00	0.0(0)	264(W)
	3:00	0.0(0)	188(S)
	4:00	0.0(0)	247(WSW)
	5:00	0.5(1)	337(NNW)
	6:00	0.0(0)	281(W)
	7:00	0.0(0)	237(WSW)
	8:00	0.7(1)	160(SSE)
	9:00	0.0(0)	261(W)
	10:00	0.0(0)	266(W)
	11:00	0.0(0)	184(S)
4-Oct-24	12:00	1.1(1)	197(SSW)
	13:00	0.0(0)	232(SW)
	14:00	0.0(0)	118(ESE)
	15:00	0.0(0)	170(S)
	16:00	0.0(0)	233(SW)
	17:00	0.0(0)	207(SSW)
	18:00	0.0(0)	177(S)
	19:00	0.0(0)	326(NW)
	20:00	0.0(0)	286(WNW)
	21:00	0.0(0)	141(SE)
	22:00	0.0(0)	262(W)
	23:00	0.0(0)	208(SSW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	55(NE)
	1:00	0.0(0)	292(WNW)
	2:00	0.0(0)	148(SSE)
	3:00	0.0(0)	316(NW)
	4:00	0.0(0)	228(SW)
	5:00	0.0(0)	106(ESE)
	6:00	0.0(0)	294(WNW)
	7:00	0.0(0)	246(WSW)
	8:00	0.9(1)	180(S)
	9:00	0.0(0)	210(SSW)
	10:00	0.0(0)	75(ENE)
5 Oct 24	11:00	0.9(1)	328(NNW)
5-Oct-24	12:00	0.0(0)	220(SW)
	13:00	0.9(1)	96(E)
	14:00	1.3(1)	34(NE)
	15:00	0.0(0)	211(SSW)
	16:00	0.7(1)	38(NE)
	17:00	0.0(0)	121(ESE)
	18:00	0.0(0)	172(S)
	19:00	0.0(0)	313(NW)
	20:00	0.0(0)	73(ENE)
	21:00	0.0(0)	167(SSE)
	22:00	1.3(1)	204(SSW)
	23:00	0.0(0)	281(W)
	0:00	1.1(1)	213(SSW)
	1:00	0.0(0)	240(WSW)
	2:00	0.0(0)	284(WNW)
	3:00	0.0(0)	232(SW)
	4:00	0.0(0)	310(NW)
	5:00	0.0(0)	332(NNW)
	6:00	0.0(0)	201(SSW)
	7:00	0.0(0)	315(NW)
	8:00	0.0(0)	243(WSW)
	9:00	0.0(0)	105(ESE)
	10:00	0.0(0)	289(WNW)
	11:00	0.0(0)	169(S)
6-Oct-24	12:00	0.0(0)	190(S)
	13:00	0.7(1)	290(WNW)
	14:00	1.3(1)	229(SW)
	15:00	0.0(0)	194(SSW)
	16:00	0.9(1)	164(SSE)
	17:00	0.7(1)	152(SSE)
	18:00	0.0(0)	134(SE)
	19:00	0.5(1)	162(SSE)
	20:00	0.0(0)	84(E)
	20:00	0.0(0)	220(SW)
	21:00	0.0(0)	130(SE)
		0.0(0)	

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	4(N)
	1:00	0.0(0)	185(S)
	2:00	0.0(0)	228(SW)
	3:00	0.0(0)	34(NE)
	4:00	0.0(0)	273(W)
	5:00	0.0(0)	184(S)
	6:00	0.0(0)	262(W)
	7:00	0.0(0)	146(SE)
	8:00	0.0(0)	164(SSE)
	9:00	0.0(0)	251(WSW)
	10:00	0.7(1)	339(NNW)
7 Oct 24	11:00	1.3(1)	265(W)
7-Oct-24	12:00	0.0(0)	175(S)
	13:00	0.0(0)	247(WSW)
	14:00	0.7(1)	147(SSE)
	15:00	1.1(1)	170(S)
	16:00	0.9(1)	208(SSW)
	17:00	1.1(1)	45(NE)
	18:00	0.7(1)	244(WSW)
	19:00	0.0(0)	78(ENE)
	20:00	0.0(0)	189(S)
	21:00	0.0(0)	200(SSW)
	22:00	0.0(0)	259(W)
	23:00	0.0(0)	307(NW)
	0:00	0.0(0)	240(WSW)
	1:00	0.0(0)	214(SW)
	2:00	0.0(0)	348(NNW)
	3:00	0.0(0)	307(NW)
	4:00	0.0(0)	256(WSW)
	5:00	0.0(0)	322(NW)
	6:00	0.0(0)	227(SW)
	7:00	0.0(0)	315(NW)
	8:00	2.3(2)	145(SE)
	9:00	1.3(1)	252(WSW)
	10:00	0.5(1)	139(SE)
	11:00	0.0(0)	137(SE)
8-Oct-24	12:00	0.0(0)	201(SSW)
	13:00	0.9(1)	37(NE)
	14:00	0.9(1)	166(SSE)
	15:00	0.0(0)	272(W)
	16:00	0.0(0)	320(NW)
	17:00	1.1(1)	201(SSW)
	18:00	0.0(0)	335(NNW)
	19:00	0.9(1)	123(ESE)
	20:00	0.0(0)	250(WSW)
	21:00	0.0(0)	2(N)
	22:00	0.0(0)	98(E)
		0.0(0)	<u> </u>

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	306(NW)
	1:00	0.0(0)	316(NW)
	2:00	0.0(0)	338(NNW)
	3:00	0.7(1)	326(NW)
	4:00	0.5(1)	316(NW)
	5:00	0.0(0)	335(NNW)
	6:00	0.0(0)	306(NW)
	7:00	0.0(0)	288(WNW)
	8:00	0.7(1)	153(SSE)
	9:00	0.0(0)	253(WSW)
	10:00	0.7(1)	322(NW)
0 Oct 24	11:00	0.0(0)	86(E)
9-Oct-24	12:00	0.0(0)	43(NE)
	13:00	0.0(0)	222(SW)
	14:00	0.0(0)	205(SSW)
	15:00	0.0(0)	8(N)
	16:00	0.7(1)	29(NNE)
	17:00	0.0(0)	67(ENE)
	18:00	0.0(0)	323(NW)
	19:00	0.0(0)	129(SE)
	20:00	0.0(0)	212(SSW)
	21:00	0.0(0)	334(NNW)
	22:00	0.0(0)	217(SW)
	23:00	0.0(0)	352(N)
	0:00	0.0(0)	233(SW)
	1:00	0.0(0)	240(WSW)
	2:00	0.0(0)	78(ENE)
	3:00	0.0(0)	287(WNW)
	4:00	0.0(0)	324(NW)
	5:00	0.0(0)	0(N)
	6:00	0.0(0)	255(WSW)
	7:00	0.0(0)	230(SW)
	8:00	0.0(0)	293(WNW)
	9:00	0.0(0)	349(N)
	10:00	0.0(0)	8(N)
10.0.1.01	11:00	0.0(0)	7(N)
10-Oct-24	12:00	0.9(1)	34(NE)
	13:00	0.0(0)	233(SW)
	14:00	1.1(1)	31(NNE)
	15:00	0.5(1)	208(SSW)
	16:00	0.0(0)	253(WSW)
	17:00	0.0(0)	200(SSW)
	18:00	0.0(0)	217(SW)
	19:00	1.5(1)	123(ESE)
	20:00	1.3(1)	138(SE)
	21:00	0.0(0)	320(NW)
	22:00	0.0(0)	229(SW)
	23:00	0.0(0)	210(SSW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree
	0:00	0.0(0)	241(WSW)
	1:00	0.0(0)	255(WSW)
	2:00	0.5(1)	161(SSE)
	3:00	0.0(0)	218(SW)
	4:00	0.0(0)	273(W)
	5:00	0.0(0)	300(WNW)
	6:00	0.0(0)	309(NW)
	7:00	1.1(1)	185(S)
	8:00	0.0(0)	269(W)
	9:00	0.0(0)	240(WSW)
	10:00	0.0(0)	144(SE)
11-Oct-24	11:00	0.0(0)	121(ESE)
11-00(-24	12:00	0.0(0)	248(WSW)
	13:00	0.0(0)	81(E)
	14:00	0.0(0)	233(SW)
	15:00	0.0(0)	172(S)
	16:00	0.0(0)	101(E)
	17:00	0.0(0)	38(NE)
	18:00	0.0(0)	211(SSW)
_	19:00	0.0(0)	162(SSE)
	20:00	0.0(0)	275(W)
_	21:00	0.0(0)	66(ENE)
_	22:00	0.0(0)	204(SSW)
	23:00	0.0(0)	208(SSW)
_	0:00	0.0(0)	238(WSW)
_	1:00	0.0(0)	297(WNW)
_	2:00	0.0(0)	232(SW)
_	3:00	0.0(0)	242(WSW)
_	4:00	0.0(0)	197(SSW)
_	5:00	0.0(0)	218(SW)
_	6:00	0.0(0)	238(WSW)
_	7:00	0.0(0)	231(SW)
_	8:00	0.0(0)	285(WNW)
	9:00	0.0(0)	234(SW)
	10:00	0.9(1)	53(NE)
12-Oct-24	11:00	2.3(2)	53(NE)
	12:00	1.3(1)	113(ESE)
	13:00	1.5(1)	336(NNW)
Ļ	14:00	0.0(0)	157(SSE)
ŀ	15:00	1.5(1)	222(SW)
ŀ	16:00	0.0(0)	206(SSW)
Ļ	17:00	0.0(0)	242(WSW)
ŀ	18:00	0.5(1)	216(SW)
Ļ	19:00	0.0(0)	286(WNW)
ŀ	20:00	0.0(0)	348(NNW)
Ļ	21:00	0.0(0)	52(NE)
Ļ	22:00	0.0(0)	190(S)
	23:00	0.0(0)	17(NNE)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	187(S)
	1:00	0.0(0)	214(SW)
	2:00	0.0(0)	314(NW)
	3:00	0.0(0)	305(NW)
	4:00	0.0(0)	71(ENE)
	5:00	0.0(0)	123(ESE)
	6:00	0.0(0)	213(SSW)
	7:00	0.0(0)	113(ESE)
	8:00	0.0(0)	99(E)
	9:00	0.0(0)	245(WSW)
	10:00	0.0(0)	35(NE)
12 Oct 24	11:00	0.0(0)	185(S)
13-Oct-24	12:00	0.0(0)	314(NW)
	13:00	0.0(0)	31(NNE)
	14:00	0.0(0)	250(WSW)
	15:00	0.0(0)	39(NE)
	16:00	0.0(0)	174(S)
	17:00	0.0(0)	100(E)
	18:00	1.1(1)	179(S)
	19:00	0.5(1)	250(WSW)
	20:00	0.0(0)	326(NW)
	21:00	0.0(0)	310(NW)
	22:00	0.0(0)	244(WSW)
	23:00	0.0(0)	205(SSW)
	0:00	0.0(0)	170(S)
	1:00	0.0(0)	3(N)
	2:00	0.5(1)	273(W)
	3:00	0.0(0)	30(NNE)
	4:00	0.0(0)	141(SE)
	5:00	0.0(0)	185(S)
	6:00	0.0(0)	238(WSW)
	7:00	0.0(0)	306(NW)
	8:00	0.0(0)	331(NNW)
	9:00	1.7(2)	159(SSE)
	10:00	0.5(1)	48(NE)
	11:00	0.0(0)	111(ESE)
14-Oct-24	12:00	0.0(0)	243(WSW)
	13:00	0.0(0)	208(SSW)
	14:00	0.7(1)	227(SW)
	15:00	3.5(3)	140(SE)
	16:00	1.5(1)	210(SSW)
	17:00	0.0(0)	185(S)
	18:00	0.0(0)	238(WSW)
	19:00	0.0(0)	259(W)
	20:00	0.0(0)	145(SE)
	20:00	0.0(0)	248(WSW)
	21:00	1.5(1)	155(SSE)
	22:00	0.0(0)	207(SSW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	223(SW)
	1:00	0.0(0)	132(SE)
	2:00	0.0(0)	269(W)
	3:00	0.9(1)	176(S)
	4:00	0.0(0)	59(ENE)
	5:00	0.0(0)	150(SSE)
	6:00	0.0(0)	236(SW)
	7:00	0.0(0)	39(NE)
	8:00	0.0(0)	197(SSW)
	9:00	0.0(0)	156(SSE)
	10:00	0.5(1)	122(ESE)
15-Oct-24	11:00	0.0(0)	201(SSW)
15-001-24	12:00	2.3(2)	314(NW)
	13:00	0.0(0)	203(SSW)
	14:00	0.0(0)	180(S)
	15:00	0.0(0)	192(SSW)
	16:00	0.9(1)	166(SSE)
	17:00	0.0(0)	247(WSW)
	18:00	1.3(1)	183(S)
	19:00	0.0(0)	213(SSW)
	20:00	1.7(2)	152(SSE)
	21:00	1.3(1)	126(SE)
	22:00	0.5(1)	268(W)
	23:00	0.0(0)	254(WSW)
	0:00	0.0(0)	2(N)
	1:00	0.0(0)	97(E)
	2:00	0.0(0)	312(NW)
	3:00	0.0(0)	302(WNW)
	4:00	0.0(0)	206(SSW)
	5:00	0.0(0)	196(SSW)
	6:00	0.0(0)	355(N)
	7:00	0.0(0)	288(WNW)
	8:00	0.0(0)	165(SSE)
	9:00	0.0(0)	235(SW)
	10:00	0.9(1)	269(W)
40.0-1.04	11:00	0.0(0)	249(WSW)
16-Oct-24	12:00	0.9(1)	186(S)
	13:00	0.7(1)	208(SSW)
	14:00	1.9(2)	221(SW)
	15:00	1.1(1)	297(WNW)
	16:00	0.0(0)	210(SSW)
	17:00	0.0(0)	154(SSE)
	18:00	0.5(1)	290(WNW)
	19:00	4.5(3)	140(SE)
	20:00	0.0(0)	311(NW)
	21:00	0.0(0)	156(SSE)
	22:00	0.0(0)	271(W)
	23:00	0.0(0)	48(NE)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	237(WSW)
	1:00	0.5(1)	114(ESE)
	2:00	1.1(1)	118(ESE)
	3:00	0.0(0)	46(NE)
	4:00	3.1(2)	299(WNW)
	5:00	0.0(0)	238(WSW)
	6:00	0.9(1)	118(ESE)
	7:00	0.5(1)	295(WNW)
	8:00	0.0(0)	128(SE)
	9:00	0.0(0)	221(SW)
	10:00	0.7(1)	86(E)
47.0.1.04	11:00	0.0(0)	172(S)
17-Oct-24	12:00	0.9(1)	80(E)
	13:00	0.7(1)	247(WSW)
	14:00	0.0(0)	131(SE)
	15:00	1.1(1)	165(SSE)
	16:00	0.0(0)	154(SSE)
	17:00	0.0(0)	192(SSW)
	18:00	0.0(0)	245(WSW)
	19:00	0.0(0)	292(WNW)
	20:00	0.0(0)	205(SSW)
	21:00	0.0(0)	255(WSW)
	22:00	0.0(0)	39(NE)
	23:00	0.0(0)	260(W)
	0:00	0.0(0)	175(S)
	1:00	1.9(2)	175(S)
	2:00	0.0(0)	64(ENE)
	3:00	0.0(0)	124(SE)
	4:00	0.0(0)	253(WSW)
	5:00	0.0(0)	243(WSW)
	6:00	0.0(0)	340(NNW)
	7:00	0.0(0)	42(NE)
	8:00	0.0(0)	192(SSW)
	9:00	0.0(0)	63(ENE)
	10:00	0.0(0)	68(ENE)
_	11:00	0.0(0)	176(S)
18-Oct-24	12:00	0.0(0)	202(SSW)
	13:00	1.7(2)	158(SSE)
	14:00	1.1(1)	248(WSW)
	15:00	0.0(0)	161(SSE)
	16:00	0.0(0)	161(SSE)
	17:00	0.0(0)	265(W)
	18:00	0.0(0)	175(S)
	19:00	0.0(0)	139(SE)
	20:00	0.0(0)	254(WSW)
	21100		
	21:00 22:00	0.0(0) 0.0(0)	255(WSW) 303(WNW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree
	0:00	0.0(0)	102(ESE)
	1:00	0.0(0)	221(SW)
	2:00	0.0(0)	248(WSW)
	3:00	0.0(0)	59(ENE)
	4:00	0.0(0)	251(WSW)
	5:00	0.0(0)	257(WSW)
	6:00	0.0(0)	32(NNE)
	7:00	0.0(0)	223(SW)
	8:00	0.0(0)	76(ENE)
	9:00	0.0(0)	214(SW)
	10:00	0.0(0)	211(SSW)
19-Oct-24	11:00	0.0(0)	231(SW)
10 00021	12:00	0.0(0)	295(WNW)
	13:00	0.0(0)	257(WSW)
_	14:00	0.0(0)	232(SW)
_	15:00	0.5(1)	139(SE)
_	16:00	1.1(1)	257(WSW)
	17:00	1.1(1)	74(ENE)
_	18:00	0.0(0)	212(SSW)
_	19:00	0.0(0)	278(W)
	20:00	0.0(0)	252(WSW)
	21:00	1.7(2)	149(SSE)
	22:00	0.0(0)	240(WSW)
	23:00	1.3(1)	176(S)
_	0:00	0.0(0)	181(S)
_	1:00	0.0(0)	159(SSE)
_	2:00	0.0(0)	228(SW)
_	3:00	0.0(0)	267(W)
_	4:00	1.5(1)	252(WSW)
_	5:00	1.1(1)	106(ESE)
_	6:00	0.0(0)	314(NW)
_	7:00	2.9(2)	160(SSE)
_	8:00	0.7(1)	184(S)
-	9:00	0.0(0)	296(WNW)
-	10:00	1.1(1)	101(E)
20-Oct-24	11:00	0.0(0)	259(W)
_	12:00	1.9(2)	57(ENE)
-	13:00	0.9(1)	90(E)
Ļ	14:00	0.7(1)	278(W)
F	15:00	1.9(2)	249(WSW)
Ļ	16:00	1.1(1)	334(NNW)
Ļ	17:00	0.0(0)	34(NE)
F	18:00	0.0(0)	276(W)
Ļ	19:00	0.0(0)	218(SW)
Ļ	20:00	0.0(0)	271(W)
Ļ	21:00	0.0(0)	215(SW)
Ļ	22:00	0.0(0)	276(W)
	23:00	0.0(0)	345(NNW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	254(WSW)
	1:00	0.9(1)	158(SSE)
	2:00	0.0(0)	3(N)
	3:00	0.0(0)	148(SSE)
	4:00	0.0(0)	30(NNE)
	5:00	0.0(0)	90(E)
	6:00	0.0(0)	183(S)
	7:00	0.0(0)	100(E)
	8:00	0.0(0)	279(W)
	9:00	0.0(0)	253(WSW)
	10:00	1.3(1)	155(SSE)
21-Oct-24	11:00	1.3(1)	152(SSE)
21-001-24	12:00	0.7(1)	249(WSW)
	13:00	0.9(1)	238(WSW)
	14:00	0.0(0)	168(SSE)
	15:00	1.1(1)	229(SW)
	16:00	0.9(1)	206(SSW)
	17:00	0.0(0)	73(ENE)
	18:00	0.0(0)	257(WSW)
	19:00	0.0(0)	75(ENE)
	20:00	0.0(0)	46(NE)
	21:00	0.0(0)	181(S)
	22:00	0.0(0)	97(E)
	23:00	0.0(0)	24(NNE)
	0:00	0.0(0)	291(WNW)
	1:00	0.0(0)	222(SW)
	2:00	0.0(0)	205(SSW)
	3:00	0.0(0)	216(SW)
	4:00	0.0(0)	300(WNW)
	5:00	0.0(0)	327(NNW)
	6:00	0.0(0)	205(SSW)
	7:00	2.3(2)	146(SE)
	8:00	0.0(0)	84(E)
	9:00	0.0(0)	102(ESE)
	10:00	0.0(0)	147(SSE)
22 Oct 24	11:00	0.0(0)	38(NE)
22-Oct-24	12:00	1.1(1)	185(S)
	13:00	1.1(1)	216(SW)
	14:00	1.7(2)	183(S)
	15:00	2.7(2)	290(WNW)
	16:00	1.1(1)	189(S)
	17:00	0.0(0)	280(W)
	18:00	0.7(1)	122(ESE)
	19:00	0.0(0)	27(NNE)
	20:00	0.0(0)	210(SSW)
	21:00	0.0(0)	153(SSE)
	22:00	2.1(2)	180(S)
	23:00	0.0(0)	0(N)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	24(NNE)
	1:00	0.0(0)	145(SE)
	2:00	0.7(1)	293(WNW)
	3:00	1.3(1)	273(W)
	4:00	0.0(0)	273(W)
	5:00	0.0(0)	210(SSW)
	6:00	1.5(1)	241(WSW)
	7:00	1.7(2)	205(SSW)
	8:00	0.9(1)	57(ENE)
	9:00	0.5(1)	278(W)
	10:00	1.1(1)	152(SSE)
00.0.1.04	11:00	2.1(2)	75(ENE)
23-Oct-24	12:00	0.5(1)	57(ENE)
	13:00	0.7(1)	244(WSW)
	14:00	1.5(1)	149(SSE)
	15:00	0.0(0)	186(S)
	16:00	1.3(1)	125(SE)
	17:00	0.0(0)	97(E)
	18:00	0.0(0)	267(W)
	19:00	0.0(0)	55(NE)
	20:00	0.0(0)	244(WSW)
	21:00	0.0(0)	184(S)
	22:00	1.7(2)	287(WNW)
	23:00	0.0(0)	102(ESE)
	0:00	0.0(0)	218(SW)
	1:00	0.0(0)	19(NNE)
	2:00	0.0(0)	172(S)
	3:00	0.0(0)	226(SW)
	4:00	0.0(0)	119(ESE)
	5:00	0.7(1)	129(SE)
	6:00	0.0(0)	348(NNW)
	7:00	0.7(1)	174(S)
	8:00	1.1(1)	168(SSE)
	9:00	1.1(1)	60(ENE)
	10:00	1.3(1)	216(SW)
	11:00	1.5(1)	138(SE)
24-Oct-24	12:00	1.5(1)	221(SW)
	13:00	0.7(1)	269(W)
	14:00	1.5(1)	160(SSE)
	15:00	0.0(0)	182(S)
	16:00	1.3(1)	75(ENE)
	17:00	0.7(1)	155(SSE)
	18:00	0.9(1)	40(NE)
	19:00	0.0(0)	255(WSW)
	20:00	0.0(0)	281(W)
	20:00	0.0(0)	329(NNW)
	21:00	0.0(0)	288(WNW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	158(SSE)
	1:00	0.0(0)	232(SW)
	2:00	0.0(0)	328(NNW)
	3:00	0.0(0)	318(NW)
	4:00	0.0(0)	64(ENE)
	5:00	0.0(0)	90(E)
	6:00	1.1(1)	240(WSW)
	7:00	0.0(0)	128(SE)
	8:00	0.5(1)	178(S)
	9:00	0.0(0)	190(S)
	10:00	0.0(0)	204(SSW)
25-Oct-24	11:00	0.0(0)	137(SE)
25-001-24	12:00	0.0(0)	254(WSW)
	13:00	0.9(1)	150(SSE)
	14:00	1.5(1)	59(ENE)
	15:00	1.3(1)	255(WSW)
	16:00	1.5(1)	227(SW)
	17:00	2.3(2)	325(NW)
	18:00	0.0(0)	249(WSW)
	19:00	0.0(0)	254(WSW)
	20:00	0.0(0)	304(NW)
	21:00	0.0(0)	124(SE)
	22:00	0.0(0)	39(NE)
	23:00	1.3(1)	128(SE)
	0:00	0.9(1)	188(S)
	1:00	3.1(2)	189(S)
	2:00	0.0(0)	165(SSE)
	3:00	0.7(1)	291(WNW)
	4:00	2.9(2)	148(SSE)
	5:00	1.9(2)	134(SE)
	6:00	0.7(1)	254(WSW)
	7:00	2.1(2)	230(SW)
	8:00	3.3(2)	43(NE)
	9:00	3.5(3)	186(S)
	10:00	1.5(1)	168(SSE)
00.0.1.04	11:00	1.5(1)	297(WNW)
26-Oct-24	12:00	1.9(2)	58(ENE)
	13:00	2.5(2)	347(NNW)
	14:00	0.7(1)	102(ESE)
	15:00	0.0(0)	165(SSE)
	16:00	2.5(2)	243(WSW)
	17:00	2.3(2)	117(ESE)
	18:00	1.1(1)	351(N)
	19:00	0.0(0)	257(WSW)
	20:00	0.0(0)	250(WSW)
	21:00	0.0(0)	110(ESE)
	22:00	0.0(0)	343(NNW)
	23:00	0.0(0)	101(E)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	275(W)
	1:00	0.9(1)	123(ESE)
	2:00	1.7(2)	246(WSW)
	3:00	0.0(0)	246(WSW)
	4:00	0.0(0)	124(SE)
	5:00	0.0(0)	319(NW)
	6:00	0.0(0)	113(ESE)
	7:00	0.0(0)	124(SE)
	8:00	0.0(0)	108(ESE)
	9:00	0.0(0)	338(NNW)
	10:00	0.0(0)	97(E)
27 Oct 24	11:00	0.0(0)	335(NNW)
27-Oct-24	12:00	0.0(0)	284(WNW)
	13:00	0.7(1)	154(SSE)
	14:00	0.0(0)	254(WSW)
	15:00	0.0(0)	191(S)
	16:00	0.0(0)	306(NW)
	17:00	0.0(0)	235(SW)
	18:00	0.0(0)	217(SW)
	19:00	0.0(0)	198(SSW)
	20:00	0.0(0)	160(SSE)
	21:00	0.0(0)	225(SW)
	22:00	0.0(0)	330(NNW)
	23:00	0.0(0)	183(S)
	0:00	0.0(0)	271(W)
	1:00	0.5(1)	165(SSE)
	2:00	0.0(0)	207(SSW)
	3:00	0.0(0)	27(NNE)
	4:00	0.0(0)	243(WSW)
	5:00	0.0(0)	58(ENE)
	6:00	0.0(0)	310(NW)
	7:00	0.0(0)	282(WNW)
	8:00	0.9(1)	303(WNW)
	9:00	0.5(1)	134(SE)
	10:00	0.7(1)	80(E)
00.0.1.04	11:00	1.5(1)	212(SSW)
28-Oct-24	12:00	0.0(0)	312(NW)
	13:00	1.1(1)	196(SSW)
	14:00	0.0(0)	236(SW)
	15:00	0.0(0)	224(SW)
	16:00	0.0(0)	77(ENE)
	17:00	0.0(0)	228(SW)
	18:00	0.0(0)	342(NNW)
	19:00	0.0(0)	242(WSW)
	20:00	0.0(0)	101(E)
	21:00	0.0(0)	243(WSW)
	22:00	0.0(0)	292(WNW)
	23:00	0.7(1)	216(SW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	235(SW)
	1:00	0.0(0)	81(E)
	2:00	0.0(0)	178(S)
	3:00	0.0(0)	120(ESE)
	4:00	1.1(1)	167(SSE)
	5:00	0.0(0)	222(SW)
	6:00	0.5(1)	304(NW)
	7:00	0.0(0)	122(ESE)
	8:00	0.0(0)	292(WNW)
	9:00	0.0(0)	139(SE)
	10:00	0.0(0)	246(WSW)
00.0.1.04	11:00	0.0(0)	204(SSW)
29-Oct-24	12:00	0.0(0)	266(W)
	13:00	0.0(0)	133(SE)
	14:00	0.0(0)	188(S)
	15:00	1.7(2)	162(SSE)
	16:00	0.0(0)	159(SSE)
	17:00	0.0(0)	254(WSW)
	18:00	0.0(0)	349(N)
	19:00	0.0(0)	312(NW)
	20:00	0.0(0)	224(SW)
	21:00	0.0(0)	308(NW)
	22:00	0.0(0)	26(NNE)
	23:00	0.0(0)	230(SW)
	0:00	0.0(0)	191(S)
	1:00	0.0(0)	296(WNW)
	2:00	0.0(0)	60(ENE)
	3:00	0.0(0)	168(SSE)
	4:00	0.0(0)	296(WNW)
	5:00	0.0(0)	220(SW)
	6:00	0.0(0)	285(WNW)
	7:00	0.0(0)	132(SE)
	8:00	0.0(0)	71(ENE)
	9:00	0.0(0)	48(NE)
	10:00	0.0(0)	301(WNW)
	11:00	0.0(0)	236(SW)
30-Oct-24	12:00	0.0(0)	230(SW)
	12:00	0.0(0)	198(SSW)
	14:00	0.0(0)	240(WSW)
	15:00	0.0(0)	332(NNW)
	16:00	1.7(2)	183(S)
	17:00	0.0(0)	244(WSW)
	17:00	0.5(1)	283(WNW)
	19:00		292(WNW)
	20:00	0.0(0)	
	20.00	0.0(0)	135(SE)
	21:00	0.0(0) 0.0(0)	189(S) 232(SW)
	/////	U U(U)	Z.37(5VV)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0(0)	169(S)
	1:00	0.0(0)	322(NW)
	2:00	0.9(1)	263(W)
	3:00	0.5(1)	177(S)
	4:00	0.0(0)	161(SSE)
	5:00	0.0(0)	271(W)
	6:00	0.0(0)	350(N)
	7:00	0.0(0)	244(WSW)
	8:00	0.0(0)	151(SSE)
	9:00	0.5(1)	197(SSW)
	10:00	0.0(0)	330(NNW)
31-Oct-24	11:00	1.1(1)	213(SSW)
31-001-24	12:00	0.9(1)	70(ENE)
	13:00	0.0(0)	139(SE)
	14:00	1.5(1)	103(ESE)
	15:00	1.9(2)	316(NW)
	16:00	1.1(1)	163(SSE)
	17:00	0.0(0)	201(SSW)
	18:00	0.9(1)	315(NW)
	19:00	0.5(1)	139(SE)
	20:00	0.7(1)	201(SSW)
	21:00	0.0(0)	107(ESE)
	22:00	0.0(0)	314(NW)
	23:00	0.0(0)	157(SSE)

Appendix 5.1

Monitoring Schedule for Reporting Month and Next Reporting Month

Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Tentative Environmental Impact Monitoring Schedule

Oct-24

Sund	ay	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		30-Sep Kwai Chung 24hr	1-Oct	2-Oct Kwai Chung 1hr Noise	3-Oct	4-Oct	5-Oc Kwai Chung 24hr
	6-Oc	t 7-Oct Kwai Chung 1hr	8-Oct		10-Oct Kwai Chung 24hr	11-Oct	12-Oc Kwai Chung 1hr
		Noise					
	13-Oc	t 14-Oct	15-Oct		17-Oct Kwai Chung 1hr	18-Oct	19-Oc
					Noise		
<u></u>	20-Oc	t 21-Oct	22-Oct	23-Oct	24-Oct	25-Oct	26-00
			Kwai Chung 24hr (For AMC03A, AMC02)	Kwai Chung 24hr (For AMC01) + Kwai Chung 1hr			
				Noise			
	27-Oc		29-Oct	30-Oct	31-Oct	1-Nov	2-No
			Kwai Chung 1hr Noise				Kwai Chung 24hr

Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Tentative Environmental Impact Monitoring Schedule

Nov-24

S	unda	y		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				28-Oct	29-Oct	30-Oct	31-Oct	1-Nov	2-No
				Kwai Chung 24hr Kw	ai Chung 1hr				Kwai Chung 24hr
				No	ise				
			3-Nov	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov	9-N
				Kwai Chung 1hr				Kwai Chung 24hr	Kwai Chung 1hr
				Noise					Noise
· · · · · · · · · · · ·			0-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov	16-N
						ł		Kwai Chung 1hr	
								Noise	
	<u></u>		17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov	23-N
			17-INOV	10-1100	19-1100	20-1100	2 I-INOV	22-1100	23-10
					ĸ	wai Chung 24hr H	Kwai Chung 1hr		
							Noise		
						-			
		-	24-Nov	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov	30-N
				Kw		wai Chung 1hr			
					N	loise			

Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

Location: NMC-01 - R/F, Lai King Catholic Secondary School

			Measur	ement Noi:	se Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level	
Date	Weather	Time	Leq	L10	L90	Leq	Leq	Leq	Leq	
			Unit:	dB(A), (5	-min)		Unit	: dB(A), (30-min)		
		15:26	67.8	69.0	66.5					
		15:31	67.6	68.8	66.1					
2 Oct 2024	Sunny	15:36	68.0	68.9	66.9	67.8	74.5	<baseline level<="" td=""><td>70</td></baseline>	70	
2 001 2024	Suriny	15:41	67.5	68.5	66.2	07.0	74.5		70	
		15:46	67.7	68.8	66.2					
		15:51	68.0	69.3	66.1					
		13:30	67.3	68.6	65.9					
		13:35	67.5	68.6	65.9					
7 Oct 2024	Sunny	13:40	67.4	68.6	66.1	67.4	74.5	<baseline level<="" td=""><td>70</td></baseline>	70	
7 Oct 2024	7 Oct 2024 Sunny	13:45	67.4	68.6	66.0	07.4	74.5	 baseline Level	70	
	13:50	67.5	68.6	66.2						
		13:55	67.4	68.5	66.2					
	10:48	67.5	68.4	66.1						
		10:53	67.4	68.4	66.3	67.5				
17 Oct 2024	Sunny	10:58	67.5	68.5	66.4		74.5	<baseline level<="" td=""><td>65</td></baseline>	65	
17 OCI 2024	Suriny	11:03	67.5	68.5	66.2		11.0		05	
		11:08	67.5	68.4	66.4					
		11:13	67.5	68.5	66.5					
		9:39	73.7	74.9	72.2					
		9:44	73.5	74.5	72.3					
23 Oct 2024	Sunny	9:49	73.6	74.7	72.2	73.6	74.5	<baseline level<="" td=""><td>65</td></baseline>	65	
23 001 2024	Suriny	9:54	73.4	74.5	72.2	75.0	74.5		05	
		9:59	73.9	74.9	72.6					
		10:04	73.7	74.6	72.2					
		11:13	68.2	69.3	66.9					
		11:18	68.3	69.3	67.1					
29 Oct 2024	Cloudy	11:23	68.3	69.4	67.1	68.3	74.5	<baseline level<="" td=""><td>70</td></baseline>	70	
20 001 2024	Cioudy	11:28	68.4	69.3	67.4	00.5	14.5	<baseline level<="" td=""><td>10</td></baseline>	10	
		11:33	68.2	69.4	66.8					
		11:38	68.1	69.2	66.9					

Remark(s):

i. The Construction Noise Level refers to the corrected noise level based on the difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level, no correction would be applied.

ii. As the baseline level of NMC-01 is higher than the measured average noise levels on 17 and 23 October 2024, the noise monitoring results are not considered as noise exceedances.

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

Location: NMC-02 - R/F, Fung King House

			Measur	ement Noi:	se Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level
Date	Weather	Time	Leq	L10	L90	Leq	Leq	Leq	Leq
			Unit	dB(A), (5	-min)		Unit	dB(A), (30-min)	
		16:40	69.1	70.0	68.0				
		16:45	68.6	69.5	67.6				
2 Oct 2024	Sunny	16:50	68.4	69.3	67.4	- 68.7	67.6	62	75
2 001 2024	Sunny	16:55	68.5	69.2	67.6		07.0	62	75
		17:00	69.0	69.9	68.1				
		17:05	68.8	69.7	67.8				
		12:08	68.4	69.4	67.5				
		12:13	68.8	69.7	67.8				
7 Oct 2024	7 Oct 2024 Sunny	12:18	68.8	69.7	67.7	68.7	67.6	62	75
7 OCI 2024		12:23	68.5	69.4	67.5	00.7	67.0	62	75
	12:28	68.7	69.7	67.7					
	12:33	68.7	69.7	67.7					
		15:08	68.2	69.2	67.3				
		15:13	68.3	69.4	67.2	- 68.4			
17 Oct 2024	Sunny	15:18	69.4	70.4	67.7		67.6	61	75
17 OCI 2024	Sunny	15:23	68.5	69.3	67.6	00.4	07.0	01	75
		15:28	68.0	69.0	67.0				
		15:33	67.9	68.7	67.0				
		11:35	72.8	73.9	71.6				
		11:40	73.0	73.9	71.9				
23 Oct 2024	Sunny	11:45	72.7	73.6	71.6	72.8	67.6	71	75
20 001 2024	Curiny	11:50	73.0	74.0	71.6	12.0	01.0	<i>,</i> .	10
		11:55	72.8	74.1	71.5	_			
		12:00	72.4	73.3	71.1				
		13:08	69.1	70.0	68.2				
		13:13	69.4	70.3	68.3				
29 Oct 2024	Cloudy	13:18	69.2	70.2	68.0	69.3	67.6	64	75
20 000 2024	Cioudy	13:23	69.0	70.0	68.1	00.0	01.0	64	10
		13:28	69.5	70.6	68.4				
		13:33	69.4	70.6	67.9				

Remark(s):

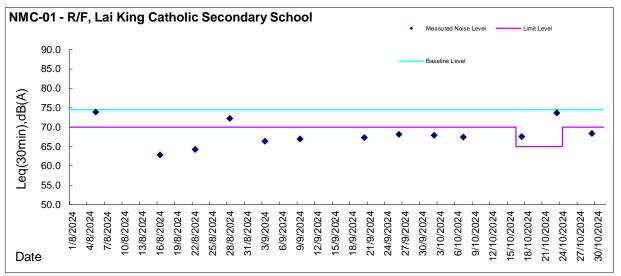
i. The Construction Noise Level refers to the corrected noise level based on the difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level, no correction would be applied.
 ii. As the limit level of NMC-02 is higher than the measured average noise levels on 2, 7, 17, 23 and 29 October 2024, the noise monitoring results are not considered as noise exceedances.

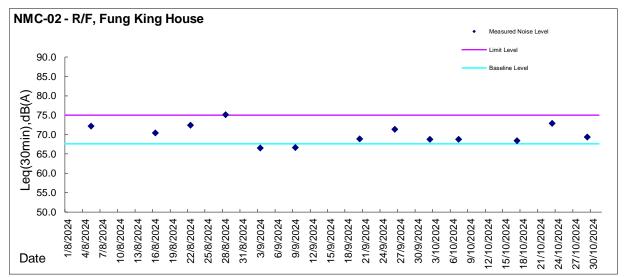
Noise Monitoring Result

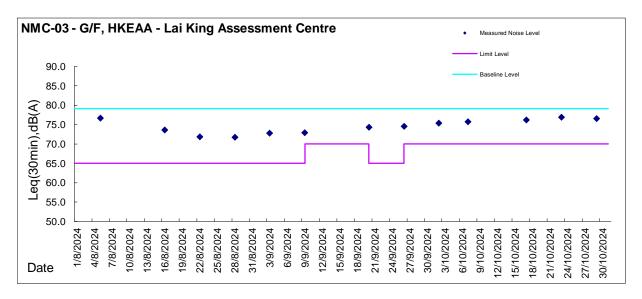
Day Time (0700 - 1900hrs on normal weekdays)

Location: NMC-03 - G/F, HKEAA - Lai King Assessment Centre

			Measur	rement Nois	se Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level	
Date	Weather	Time	Leq	L10	L90	Leq	Leq	Leq	Leq	
			Unit	: dB(A), (5-	-min)		Unit	dB(A), (30-min)		
		10:48	75.2	76.3	74.0					
		10:53	75.4	76.6	73.9					
2 Oct 2024	Sunny	10:58	75.3	76.5	73.7	75.3	79.1	<baseline level<="" td=""><td>70</td></baseline>	70	
2 OCI 2024	Suriny	11:03	75.4	76.9	73.6	75.5	79.1		70	
		11:08	74.9	76.0	73.1					
		11:13	75.6	77.0	74.1					
		8:49	75.9	76.9	74.7					
		8:54	75.4	76.7	73.7					
7 Oct 2024	Sunny	8:59	75.7	77.1	74.0	75.7	79.1	<baseline level<="" td=""><td>70</td></baseline>	70	
7 OCI 2024	Suriny	9:04	75.5	76.6	74.2	13.1	79.1		70	
		9:09	75.6	77.0	74.2					
		9:14	75.8	77.0	74.6					
		8:58	76.5	77.5	75.3	76.1				
		9:03	76.1	77.2	74.7					
17 Oct 2024	Sunny	9:08	76.1	77.5	74.8		79.1	<baseline level<="" td=""><td>70</td></baseline>	70	
17 0012024	Ouriny	9:13	76.0	77.0	74.8	70.1			10	
		9:18	76.1	77.1	74.5	-				
		9:23	75.7	77.0	74.6					
		10:40	77.0	78.2	75.5					
		10:45	77.2	78.5	75.3	-				
23 Oct 2024	Sunny	10:50	76.4	77.6	74.9	76.8	79.1	<baseline level<="" td=""><td>70</td></baseline>	70	
20 00(202)	Curry	10:55	76.6	77.8	75.4	1010				
		11:00	76.8	78.3	74.8					
		11:05	76.8	77.9	75.5					
		10:12	76.5	77.6	75.3					
		10:17	76.3	77.4	74.8					
29 Oct 2024	Cloudy	10:22	76.7	77.8	75.4	76.5	79.1	<baseline level<="" td=""><td>70</td></baseline>	70	
,	,	10:27	76.2	77.2	74.9			< Daseline Level		
		10:32	76.4	77.4	75.2					
		10:37	76.6	77.7	75.0					


Remark(s):


i. The Construction Noise Level refers to the corrected noise level based on the difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level exceeds the Measured Noise Level, no correction would be applied.
 ii. As the baseline level of NMC-03 is higher than the measured average noise levels on 2, 7, 17, 23 and 29 October 2024, the noise monitoring results are not considered as noise exceedances.



Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

Appendix 5.3

Air Quality Monitoring Results and Graphical Presentations

Report on 1-hour TSP monitoring at AMC01 - Lai King Catholic Secondary School256.2Action Level (μg/m³) -500.0

Weather Condition TSP Level (µg/m³) Date Time 2-Oct-24 9:00 Sunny 25.1 22.7 2-Oct-24 Sunny 10:00 2-Oct-24 Sunny 11:00 20.7 7-Oct-24 Sunny 9:00 26.6 7-Oct-24 10:00 Sunny 26.2 7-Oct-24 Sunny 11:00 26.9 12-Oct-24 Sunny 9:00 32.4 10:00 12-Oct-24 Sunny 29.6 Sunny 11:00 12-Oct-24 27.1 17-Oct-24 Sunny 9:00 27.1 17-Oct-24 Sunny 10:00 25.6 Sunny 17-Oct-24 11:00 22.9 9:00 23-Oct-24 Sunny 16.4 Sunny 10:00 17.1 23-Oct-24 Sunny 11:00 15.7 23-Oct-24 29-Oct-24 Cloudy 9:00 9.2 29-Oct-24 Cloudy 10:00 10.4 29-Oct-24 8.4 Cloudy 11:00

Report on 1-hour TSP monitoring at AMC02 - Fung King House	
Action Level (μg/m³) -	256.7
Limit Level (μg/m³) -	500.0

Date	Weather Condition	Time	TSP Level (µg/m³)
2-Oct-24	Sunny	9:00	22.0
2-Oct-24	Sunny	10:00	24.8
2-Oct-24	Sunny	11:00	19.6
7-Oct-24	Sunny	9:00	21.7
7-Oct-24	Sunny	10:00	24.5
7-Oct-24	Sunny	11:00	23.9
12-Oct-24	Sunny	9:00	36.0
12-Oct-24	Sunny	10:00	35.7
12-Oct-24	Sunny	11:00	36.1
17-Oct-24	Sunny	9:00	30.9
17-Oct-24	Sunny	10:00	28.3
17-Oct-24	Sunny	11:00	27.3
23-Oct-24	Sunny	9:00	17.3
23-Oct-24	Sunny	10:00	20.3
23-Oct-24	Sunny	11:00	21.1
29-Oct-24	Cloudy	9:00	18.8
29-Oct-24	Cloudy	10:00	14.7
29-Oct-24	Cloudy	11:00	11.2

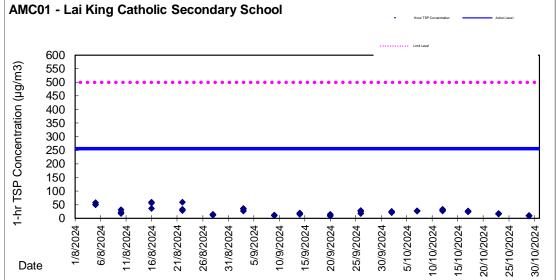
Report on 1-hour TSP monitoring at AMC03A - Ming King House	
Action Level (µg/m³) -	259.3
Limit Level (µg/m³) -	500.0

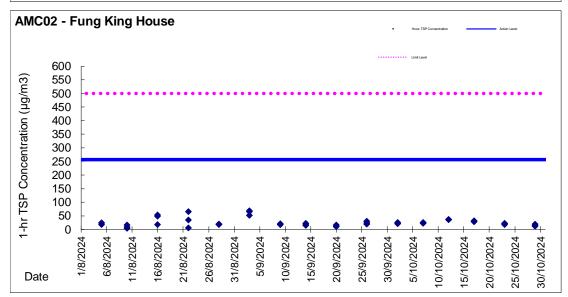
Date	Weather Condition	Time	TSP Level (µg/m³)
2-Oct-24	Sunny	9:00	27.9
2-Oct-24	Sunny	10:00	26.9
2-Oct-24	Sunny	11:00	24.8
7-Oct-24	Sunny	9:00	22.2
7-Oct-24	Sunny	10:00	24.8
7-Oct-24	Sunny	11:00	21.7
12-Oct-24	Sunny	9:00	29.8
12-Oct-24	Sunny	10:00	28.1
12-Oct-24	Sunny	11:00	29.6
17-Oct-24	Sunny	9:00	33.6
17-Oct-24	Sunny	10:00	30.2
17-Oct-24	Sunny	11:00	33.2
23-Oct-24	Sunny	9:00	18.0
23-Oct-24	Sunny	10:00	24.4
23-Oct-24	Sunny	11:00	22.7
29-Oct-24	Cloudy	9:00	16.7
29-Oct-24	Cloudy	10:00	14.1
29-Oct-24	Cloudy	11:00	12.8

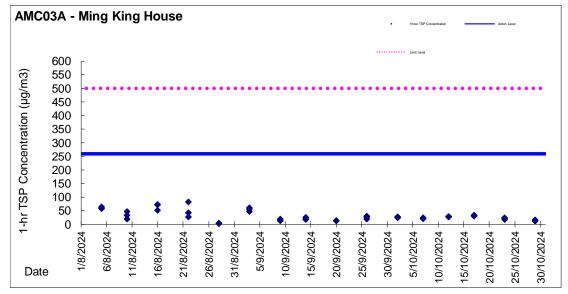
am

Contract No. HY/2020/08

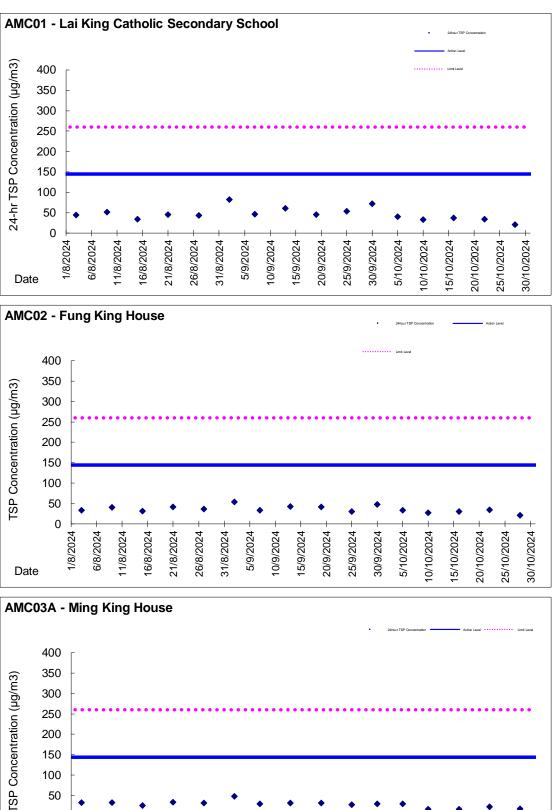
h	/over	from	Kwai Tsino	Interchange	Unramn	to Kwai Chung Road


									F	lyover from K	wai Tsing Int	erchange Up	oramp to Kwai	Chung Road
	Date	Sampling	Weather	Eilter paper po	Filter W	Filter Weight, g		Time, hr	Sampling	Sampling Flow Rate, m ³ /min		Total	TSP Level,	
	Date	Time	Condition	Filter paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Qsi	Final, Qsf	Average	Volume, m ³	µg/m ³
AMC01	5-Oct-24	8:00	Cloudy	11735	2.8044	2.8946	35490.78	35514.78	24.00	1.35	1.74	1.55	2228	40.5
AMC01	10-Oct-24	8:00	Sunny	11712	2.8019	2.8738	35514.78	35538.78	24.00	1.22	1.75	1.48	2134	33.7
AMC01	16-Oct-24	8:00	Cloudy	11726	2.8116	2.8944	35538.78	35562.78	24.00	1.31	1.78	1.54	2220	37.3
AMC01	23-Oct-24	8:00	Sunny	11744	2.8037	2.8762	35562.13	35586.13	24.00	1.20	1.71	1.45	2095	34.6
AMC01	28-Oct-24	8:00	Cloudy	11762	2.7955	2.8394	35586.13	35610.13	24.00	1.22	1.64	1.43	2056	21.4
AMC02	5-Oct-24	8:00	Cloudy	11766	2.7976	2.8959	14334.33	14358.33	24.00	2.01	2.01	2.01	2893	34.0
AMC02	10-Oct-24	8:00	Sunny	11771	2.7920	2.8720	14358.33	14382.33	24.00	2.01	2.02	2.02	2902	27.6
AMC02	16-Oct-24	8:00	Cloudy	11721	2.7987	2.8861	14382.34	14406.34	24.00	2.01	2.01	2.01	2896	30.2
AMC02	22-Oct-24	8:00	Sunny	11730	2.7974	2.8973	14406.34	14430.34	24.00	2.01	2.02	2.01	2899	34.5
AMC02	28-Oct-24	8:00	Cloudy	11739	2.8024	2.8605	14430.34	14454.34	24.00	1.89	1.89	1.89	2723	21.3
AMC03A	5-Oct-24	8:00	Cloudy	11722	2.8010	2.8846	14528.43	14552.43	24.00	1.97	1.97	1.97	2834	29.5
AMC03A	10-Oct-24	8:00	Sunny	11713	2.7919	2.8290	14552.43	14576.43	24.00	1.64	1.65	1.64	2367	15.7
AMC03A	16-Oct-24	8:00	Cloudy	11758	2.7869	2.8244	14576.43	14600.43	24.00	1.60	1.60	1.60	2302	16.3
AMC03A	22-Oct-24	8:00	Sunny	11731	2.8027	2.8545	14600.43	14624.43	24.00	1.64	1.64	1.64	2364	21.9
AMC03A	28-Oct-24	8:00	Cloudy	11740	2.7999	2.8385	14624.43	14648.43	24.00	1.60	1.60	1.60	2306	16.7


Remarks: (i) Due to power interruption and malfunctioning of High Volume Sampler (HVS), the TSP monitoring result obtained at AMC01 on 22 Oct 2024 was considered invalid. The TSP monitoring was resumed on 23 Oct 2024 after repairing of HVS.



Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road



Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Graphic Presentation of 1-hour and 24-hour TSP Results

150 100 50 0 5/9/2024 15/9/2024 25/9/2024 10/10/2024 11/8/2024 16/8/2024 21/8/2024 26/8/2024 31/8/2024 20/9/2024 30/9/2024 5/10/2024 15/10/2024 20/10/2024 25/10/2024 30/10/2024 1/8/2024 6/8/2024 10/9/2024 Date

Appendix 5.4

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for Year 2024

		Quantities of Inert C&D Materials Generated Monthly													Quanti	ties of C	&D Was	tes Gen	erated N	Aonthly	,	
Month		luantity rated	Con	ken crete lote 2)	Reused Cont			ed in Projects		sed as ic Fill	Impor	ted Fill	Me	tals	Card	oer / board aging		stics lote 3)	Cher Wa			rs, e.g. I refuse
	(in '0	00m³)	(in '0	00m³)	(in '0	00m³)	(in '0	00m³)	(in '0	00m³)	(in '0	00m³)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00m³)
	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.
Jan	0.035	0.0913	0				0		0.035	0.0913	0		0	0.0014	0.005	0.0106	0		0		0.025	0.0174
Feb	0.035	0.2044	0				0		0.035	0.2044	0		0	0.0017	0.005	0.0532	0		0		0.025	0.0102
Mar	0.035	0.4517	0				0		0.035	0.4517	0		0.002	0.0016	0.004	0.0085	0		0		0.025	0.0162
Apr	0.035	0.831	0				0		0.035	0.831	0		0.002	0.0015	0.004	0.0333	0		0		0.025	0.008
May	0.035	0.5348	0				0		0.035	0.5348	0		0.002	0.0002	0.004	0.0134	0		0		0.025	0.0095
Jun	0.035	0.044	0				0		0.035	0.044	0		0.002	0.0022	0.004	0.0414	0		0		0.025	0.003
Sub-total	0.21	2.1571	0	0	0	0	0	0	0.21	2.1571	0	0	0.008	0.0086	0.026	0.1604	0	0	0	0	0.15	0.0643
Jul	0.035	0.0351	0				0		0.035	0.0351	0		0.002	0.0038	0.004	0.0514	0		0		0.025	0.0088
Aug	0.035	0	0				0		0.035	0	0		0.002	0.0034	0.004	0.0166	0		0		0.025	0
Sep	0.035	0.0111	0				0		0.035	0.0111	0		0.002	0.002	0.004	0.0396	0		0		0.025	0
Oct	0.035	0.2185	0				0		0.035	0.2185	0		0.002	0.0046	0.004	0.1376	0		0		0.025	0.0029
Nov	0.035	0	0				0		0.035		0		0.002		0.004		0		0		0.025	
Dec	0.035	0	0				0		0.035		0		0.002		0.004		0.01		0.01		0.025	
Total	0.420	2.4218	0	0	0	0	0	0	0.42	2.4218	0	0	0.02	0.0224	0.05	0.4056	0.01	0	0.01	0	0.300	0.076

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract												
Total Quantity Generated	Broken Concrete (see Note 2)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse			
(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)			
2.1	0	0.53	0	1.55	0	0.1	0.3	0.06	0.06	1.03			

Notes: (1) The waste flow table shall also include C&D materials that are specified in the contract to be imported for use at the Site.

(2) Broken concrete for recycling into aggregates.

(3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.

Appendix 6.1

Event and Action Plans

Event and Action Plan

Event and Action Plan for Construction Noise

Event		Act	ion	
Event	ET	IEC	ER	Contractor
Action Level exceeded	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitor frequency to check mitigation effectiveness; 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. 	 Submit noise mitigation proposals to ET Leader / ER; Implement noise mitigation proposals.
Limit Level exceeded	 Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Action Event ET IEC ER Contractor Action Level 1. Exceedance 1. Identify sources, 1. Check 1. Notify the 1. Rectify any for one investigate the causes monitoring data Contractor. unacceptable sample of complaint and submitted by the practices. propose remedial 2. Amend working ET. measures. 2. Check the methods agreed 2. Inform IEC and ER. Contractor's with the ER as 3. Repeat measurement working methods. appropriate. to confirm finding. 4. Increase monitoring 2. Exceedance 1. Identify sources. 1. Notify the 1. Submit proposals 1. Check monitoring for two or 2. Inform the IEC and data submitted by Contractor. for remedial action more ER. the ET. 2. Ensure remedial to the ER within 3 3. Advise the ER on the consecutive 2. Check the measures properly working days of effectiveness of the Contractor's notification. samples implemented. 2. Implement the proposed remedial working methods. measures: 3. Discuss with the agreed proposals. ET, ER and 3. Amend proposal as 4. Repeat measurements to confirm findings. Contractor on appropriate. 5. Increase monitoring possible remedial frequency to daily. measures if 6. Discuss with the IEC, required. ER and Contractor on 4. Advise the ER on remedial action the effectiveness of required. proposed remedial 7. If exceedance measures if continues, arrange required. meeting with the IEC, Contractor and ER. 8. If exceedance stops, cease additional monitoring. Limit Level 1. Exceedance 1. Identify sources, 1. Check monitoring 1. Confirm receipt of 1. Take immediate the notification of for one investigate causes of data submitted by action to avoid sample exceedance and the ET. exceedance in further proposed remedial 2. Check the writing. exceedance. measures. Contractor's 2. Notify the 2. Submit proposals 2. Inform the IEC, ER, Contractor. working methods. for remedial action and Contractor. 3. Discuss with the 3. Ensure remedial to the ER and copy 3. Repeat measurement ET, ER and measures are to the ET and IEC to confirm finding. Contractor on properly within 3 working 4. Increase monitoring possible remedial implemented. days of notification. frequency to daily. measures. 3. Implement the 5. Assess effectiveness 4. Advise the ER and agreed proposals. of the Contractor's ET on the 4. Amend proposal as remedial action and effectiveness of the appropriate. keep the IEC and ER proposed remedial informed of the results. measures.

Event and Action Plan for Construction Dust Monitoring

Event		A	ction	
Event	ET	IEC	ER	Contractor
2. Exceedance for two or more consecutive samples	 Notify the IEC, ER and Contractor. Identify sources. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of the Contractor's 	 5. Supervise the implementation of remedial measure 1. Discuss amongst the ER, ET and Contractor on the potential remedial action. 2. Review the Contractor's remedial action whenever 	 1. Confirm receins of the notifical exceedance in writing. 2. Notify the Contractor. 3. In consultation the IEC and E agree with the gree with the second sec	pt 1. Take immediate action to avoid further exceedance. 2. Submit proposals for remedial action to the ER and copy cT, to the IEC and ET within 3 working
	 working procedures with the ER to determine the possible mitigation to be implemented. 6. Arrange meeting with the IEC and ER to discuss the remedial action to be taken. 7. Assess the effectiveness of the Contractor's remedial action and keep the IEC, EPD and ER informed of the results. 8. If exceedance stops, cease additional monitoring. 	necessary to assure their effectiveness and advise the ER and ET accordingly. 3. Supervise the implementation of remedial measure	measures are properly implemented.	sures 3. Implement the agreed proposals. 4. Resubmit proposals if problems still not under control. 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated. stop

Appendix 6.2

Summary of Notification of Exceedance

Summary for Notification of Exceedance

Ref No.	Date	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up Action
-	-	-	-	-	-	-	-

Ref. No.	Date	Time	Location	Construction Noise Level	Parameter	Action Level	Limit Level	Follow-up action
-	-	-	-	-	-	-	-	-

Appendix 8.1

Complaint Log

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
240621	21 June 2024	Received from EPD and Received by HyD	The new carriageway to be constructed	Air quality	A complaint from a resident at Yin Lai Court (賢麗苑) regarding the new carriageway to be constructed was referred by EPD to HyD for response.	Not counted due to not related to construction activities after investigation

Appendix 9.1

Construction Programme

		HyD Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road																												
	Act ID	Description	Orig Early Dur Start	Early Finish	JUN JUL A	2021 JUG SEP OCT	NOV DEC	JAN FEI	B MAR APF	20: R MAY JUN	22 JUL AUG SE	EP OCT N	IOV DEC J	AN FEB M	AR APR I	20 May Jun	23 JUL AUG S	SEP OCT NOV	DEC JAN	FEB MAR AP	21 R May Jun	JUL AUG S	ЕР ОСТ	NOV DEC	JAN FEB	MAR APR	20 MAY JUN	JUL AUG	SEP OCT N	2026 IOV DEC JAN E
																									(
			10 30.ILIN23 A	27DEC23	-																									
																														
	B1-1690	NCE-PMI-018-Revised Foundation Layout for FB	10 31JAN24	10FEB24																										
			93 12FEB24	29MAY24	11111111	101000																				1111111		11111111		
Image: Name of the Advise state Advis			44 0101023.0	2005022																										
			14 29DEC23	195AN24																						1111 1111				
			14 02AUG23 A	29DEC23															e de la compañía											
			14 29DEC23	19JAN24																										
			00 1005000		_																									
																			-											
				1	11111111	100100															1					111				
2000 0x1202 denuts for Regulation f																					1				<u>,</u>					
																								<u> </u>						
																			-											
																			1 -1											
BUDD VICE 044 PRE4 000 SURVER Image: Surver		CNCE048-Structural Steel Delivery (COVID-19)		03FEB24																										
BUDD VICE 044 PRE4 000 SURVER Image: Surver					1111111											10000				-		h n n n n				100			<u>, in la la la</u>	/11 11 11 11 11 11 11 11 11 11 11 11 11
					11111111	1011010				1111111111											1					1111111		1111		
			10 08MAR24	19MAR24											111111	111										111				
			30 01MAR23 A	07EEB24	-																									
B B																														
B1:00 Control or B1:00:00																														
B-100 Conversion of Ball Large Variation of Ball Solid Ball Soli	B2-1300	Demolition and Disposal of Concrete Staircases		14FEB24																										
B0:200 Tunes 4 Basis 6 Solf 4 Sole B1:200 Tunes 4 Basis 6 Solf 4 Sole B1:200 <t< th=""><th></th><th>Conversion of Bus Lay-by into Amenity Area</th><th>60 25DEC23</th><th>22FEB24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		Conversion of Bus Lay-by into Amenity Area	60 25DEC23	22FEB24																										
B1/2000 Formore A. Books B1 2/MAGA AMARE B3/700 Formore A. Books B1 2/MAGA AMARE B4/700 Section of Eating Baoks B1 100002 100002 B4/700 Section of Eating Baoks B1 100002 100002 100002 B4/700 Section of Readow B1 100002 1000020 1000020 1000020 1000020 B4/700 Section of Readow B1 100002 1000020 1000020 1000020 1000020 1000020 1000020		ge G																												
B3:00 Concerting to B diffe 5 disis 1 27.4482 2.4484 Image: Concerting to B diffe 5 disis Image: Concering to B disis Image: Concerting to B d			90 21AUG23 A	26 IAN/24																										
Second Second Second Second Second S					11111111														- -						<u>,</u>					
Presented																			- -							1111 1111				
B4:20 Contraction of Pies-F3 (16 Nes.) 8) 1900023 1940024 CMS Stage (17 Mes) 6 2000123 1940024 1940023 1940024 B4:700 Exector of Falsenok 6) 2000123 1940024 1940023 194004 B4:700 Exector of Falsenok 8) 1900223 2000224 194004 1940023 194004 1940023 194004<	Section IV - Brid	ge H	· ·								an nnn								in cini	inini n					ininii:			ini ni i	, in in ie	
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		· · · · · · · · · · · · · · · · · · ·			_															<u></u>										
B4-700 Encland r Risebook 60 280-CT23.0 19EE84 B4-701 Denotitin of Exals (fing log book) 61 10ECC2 30ECC23 B4-7013 Exatalision of Description 10 10ECC3 19EE84 B4-7013 Exatalision of Description 10 10ECC3 19EE84 B4-7013 Exatalision of Description 10 10ECC3 19EE84 B4-7020 Encontrol Exating Struption 12 10ECC3 19EE84 B4-7030 Exating Struption 12 10ECC3 19EE84 B4-7000 Exating Struption 12 10ECC3 19EE84 B4-7000 Exating Struption 12 10ECC3 19EE84			80 18DEC23 A	16MAR24															-											
B4-701 Deretison of Lawing Bridge Dook 60 10EEC23 10EEC24			60 20OCT23 A	15FEB24																										
B4702 Formord A Sales 0 19E20 0APR3 0 0APR3 0					111					1 1 1 1 1 1 1 1 1						111			>							111		1111		
Descension Descension <thdescensin< th=""> Descensin Descension</thdescensin<>	B4-7013	Installation of Bearings	14 18DEC23	31DEC23	11111111	1.1.1.1.1.1.1									0.000											1111		1111		
Name Number of Property of			50 16FEB24	05APR24		10110		iiiiiii		1 1 1 1 1 1 1 1 1 1 1											11111							1111		
Bitchmiss Approved Proposal 0 190EC23* 190AP24 Bitchmiss Approved Proposal 0 190EP272A 180AP24 Bitchmiss Approved Proposal 0 190EP274 190EP274 Bitchmiss Approved Proposal 190EP274 190EP274 190EP274 Compares 1 190EP274 190EP274 <th></th> <th><u>e 199</u></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>																								<u>e 199</u>						
Resolution Record Edition of Read Lyphing System 00 07SEP2A 10 NAVA B54-200 Modification of Read Lyphing System 45 180 EC23 31 NAVA B54-300 Reconstruction of Read Lyphing System 45 101 FE24 101 NAVA B54-300 Reconstruction of Read Presenter 45 101 FE24 101 NAVA B54-300 Reconstruction of Read Presenter 45 101 FE24 101 NAVA Presenter and Protection of Presenter 101 111 NV/25 * 101 NAVA 101 NAVA B6-200 Updated Proto Records of Preserved Trees 1041 111 NV/25 * 101 NAVA 101 NAVAS * B6-200 Updated Proto Records of Preserved Trees 1041 111 NV/25 * 101 NAVAS * 101 NAVAS * B6-200 Updated Proto Records of Preserved Trees 1041 111 NV/25 * 101 NV/25 * 101 NV/25 * B6-200 Updated Proto Records of Preserved Trees 1041 111 NV/25 * 101 NV/25 * 101 NV/25 * B6-200 Updated Proto Records of Section I of the Works 0 121 NV/25 * 101 NV/25 * 101 NV/25 *			90 18DEC23*	16MAR24	-																			(1111)	/					
B-200 Modification of Road Lydring System 46 10DEC23 31,448/24 B-54300 Reconstruction of Road Parement 45 01FEB24 16MAR24 B-54300 Presenvation and Protection of Fosting Trees 10 <th></th> <th>f Kwai Chung Road</th> <th>1 11 122020</th> <th></th> <th>en la d</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		f Kwai Chung Road	1 11 122020																					en la d						
B5-4300 Modification of Road Lighting System 45 19DEC23 31.NAV24 Interface and System Int											E																			
Section VI = Landscape (Vorking Times) 1341 17JUN21 A 11MAY25* B6-200 Updated Photo Roords of Presend Trees 1341 17JUN21 A 11MAY25* B6-2100 Updated Photo Roords of Presend Trees 1341 17JUN21 A 11MAY25* Paranet Completion Image: Completion of Section 1 of the Works 0 12JAN24 1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																														
Presentation and Preserved Trees 1341 17JUN21A 11MV26 B6-200 Protection of Preserved Trees 1341 17JUN24 11MV26 Interview Interview </th <th>B5-4300</th> <th></th> <th>45 01FEB24</th> <th>16MAR24</th> <th></th>	B5-4300		45 01FEB24	16MAR24																										
Bit 2000 Protoction of Preserved Trees 1341 17JUN21A 11MAY26 Bit 2000 Updated Photo Records of Preserved Trees 1341 17JUN21A 11MAY26 Bit 2000 Updated Photo Records of Preserved Trees 1341 17JUN21A 11MAY26 Preserved Trees 1341 17JUN21A 11MAY26 Image: Completion of Section I of the Works <	Preservation a																													
B6-2100 Updated Photo Records of Preserved Trees 1341 17JUN21A 11MAY26* Image: Completion and Handower Planned Completion Completion of Section 1 of the Works 0 12JAN24 Image: Completion and Handower Image: Completion and Handower <thimage: and="" completion="" handower<="" th=""> Image: Completion and Handower Image: Completion and Handower<th></th><th></th><th>1341 17JUN21 A</th><th>11MAY26 *</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thimage:>			1341 17JUN21 A	11MAY26 *																	1									
Start date 07/JUN21 Must finish date 20SEP26																					1									
C1:1000 Completion of Section 1 of the Works 0 12JAN24 Final Completion C1:220 1 18DEC23 18DEC23 C1:220 1 18DEC23 18DEC23 18DEC23 18DEC23 Start date 07JUN21 Progress bar Date Revision Checked Approx Must finish date 20SEP26 Critical bar Critical bar Cluc23 2 An Ar Start date 07JUN21 Must finish date 20SEP26 Critical bar ZéAPR23 0 GN Ar Start date 07JUN22 Start milestone point 30NOV23 3 GN YC	Completion and	Handover		·																										
Enal Completion C1-2210 1 18DEC23																														
C1-220 1 18DEC23 <	C1-1000	Completion of Section I of the Works	0	12JAN24																										
C1-220 1 18DEC23 <	C1-2210		1 1805022	18DEC22	-																									
Start date 07JUN21 Date Revision Checked Approximation Must finish date 20SEP26 Progress bar 0 GN AV Critical bar 1 0 AV AV Critical bar 12AUG23 2 GN AV Start milistone point 30NOV23 3 GN YC																					1									
c Primavera Systems, Inc.	Must finish date	20SEP26																	PROGRAM	ME(Rev.3)	Proę Criti	gress bar cal bar t milestone p	oint	26APR23 05JUL23 12AUG23	3 3 3	0 1 2 3	Revisio	on	GN GN GN	AY AY AY