

CONTRACT NO: HY/2019/14

NEW WANG TONG RIVER BRIDGE

UNDER ENVIRONMENTAL PERMIT NO. EP-555/2018/A

MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

JUNE 2024

CLIENTS:

Highways Department

PREPARED BY:

Lam Environmental Services Limited

19/F Remex Centre, 42 Wong Chuk Hang Road, Hong Kong

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: <u>info@lamenviro.com</u> Website: <u>http://www.lamenviro.com</u>

CERTIFIED BY:

l

Raymond Dai Environmental Team Leader

DATE:

16 July 2024

Highways Department Works Division 5th & 7th Floor, Trade and Industry Tower 3 Concorde Road Kowloon Hong Kong

Your reference:

Our reference:

HKHYD202/50/109907

Date: 16 July 2024

Attention: Mr Coleman Chan

BY EMAIL & POST (email: e3-3.wd@hyd.gov.hk)

Dear Sirs

Agreement No. WD 23/2020 Environmental Monitoring and Audit for New Wang Tong River Bridge Monthly Environmental Monitoring & Audit Report (June 2024)

We refer to emails of 11, 15 and 16 July 2024 attaching a Monthly Environmental Monitoring & Audit Report (June 2024) prepared by the Environmental Team (ET) of the captioned.

We have no further comment and hereby verified the Monthly Environmental Monitoring & Audit Report (June 2024) in accordance with Clause 3.4 of the Environmental Permit no. EP-555/2018/A.

Should you have any queries, please do not hesitate to contact the undersigned or our Mr Chris Ip on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

James Choi Independent Environmental Checker

CPSJ/LCCR/ICHC/csym

cc Lam Environmental Services Limited – Mr Raymond Dai (Fax no.: 2882 3331)

TABLE OF CONTENTS

1	I	NTRODUCTION	5
	1.1 1.2	Scope of the Report Structure of the Report	
2	F	PROJECT BACKGROUND	7
	2.1 2.2 2.3	Background Project Organization and Contact Personnel Construction Activities	7
3	5	STATUS OF REGULATORY COMPLIANCE	9
	3.1 3.2	Status of Environmental Licensing and Permitting under the Project Status of Submission under the EP-555/2018/A	
4	N	MONITORING REQUIREMENTS	10
	4.1 4.2 4.3	Noise Monitoring Air Monitoring Water Quality Monitoring	12
5	N	IONITORING RESULTS	20
	5.1 5.2 5.3 5.4	Noise Monitoring Results Air Monitoring Results Water Quality Monitoring Results Waste Management	20 20
6	С	OMPLIANCE AUDIT	22
	6.2 6.3 6.4 6.5 6.6	Noise Monitoring. Air Quality Monitoring. Water Quality Monitoring Review of the Reasons for and the Implications of Non-compliance. Summary of action taken in the event of and follow-up on non- compliance.	22 22 23
7	E	ENVIRONMENTAL SITE AUDIT	23
8.	С	OMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	24
9.	С	ONCLUSION	25

LIST OF TABLES

- Table 2.2
 Contact Details of Key Personnel
- Table 3.1
 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project
- Table 3.2 Summary of submission status under EP-555/2018/A
- Table 4.1
 Noise Monitoring Station
- Table 4.2
 Noise Monitoring Equipment
- Table 4.3
 Action and Limit Level for Noise Monitoring
- Table 4.4 Air Monitoring Station
- Table 4.5 Air Quality Monitoring Equipment
- Table 4.6
 Action and Limit Level for Air Quality Monitoring
- Table 4.7 Marine Water Quality Stations for Water Quality Monitoring
- Table 4.8
 Water Quality Monitoring Equipment
- Table 4.9 Action and Limit Level for Water Quality Monitoring
- Table 5.2 Summary of Quantities of Inert C&D Materials
- Table 5.3 Summary of Quantities of C&D Wastes
- Table 8.1
 Cumulative Statistics on Complaints
- Table 8.2
 Cumulative Statistics on Successful Prosecutions
- Table 9.1
 Construction Activities and Recommended Mitigation Measures in Coming Reporting 3 Months

LIST OF FIGURES

- Figure 2.1 Project Layout
- Figure 2.2 Project Organization Chart
- Figure 4.1 Locations of Noise Monitoring Station
- Figure 4.2 Locations of Air Quality Monitoring Stations
- Figure 4.3 Locations of Water Quality Monitoring Stations

LIST OF APPENDICES

Appendix 3.1	Environmental Mitigation Implementation Schedule
Appendix 4.1	Action and Limit Level
Appendix 4.2	Copies of Calibration Certificates
Appendix 4.3	Wind data extracted from HKO Automatic Weather Station
Appendix 5.1	Monitoring Schedule for Reporting Month
Appendix 5.2	Noise Monitoring Results and Graphical Presentations
Appendix 5.3	Air Quality Monitoring Results and Graphical Presentations
Appendix 5.4	Water Quality Monitoring Results and Graphical Presentations
Appendix 5.5	Monthly Summary Waste Flow Table
Appendix 6.1	Event and Action Plans
Appendix 6.2	Summary for Notification of Exceedance
Appendix 8.1	Complaint Log
Appendix 9.1	Construction Programme of Individual Contracts

EXECUTIVE SUMMARY

- i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report June 2024 of New Wang Tong River Bridge under Environmental Permit no. EP-555/2018/A (Hereafter as "the Project"). The construction works of the Project was commenced on 12 July 2021 and the tentative completion date is Q3 2024. This is the 36th EM&A report presenting the environmental monitoring findings and information recorded during the period of 1 June 2024 to 30 June 2024. The cut-off date of reporting is at the end of each reporting month.
- ii. In the reporting month, the principal work activities conducted are as follow:
 - Trial trench inspection for sea wall
 - Construction Type D retaining wall

Noise Monitoring

- iii. Noise monitoring was conducted at one noise monitoring station once per week in the reporting month.
- iv. No action or limit level exceedance was recorded in this reporting period.

Air Quality Monitoring

- v. 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring was conducted at two monitoring station. 24-hour TSP shall be sampled at least once in every 6 days, while sampling for 1-hour TSP shall be at least 3 times in every 6 day in the reporting month.
- vi. No action or limit level exceedance was recorded in this reporting period.

Water Quality Monitoring

- vii. Owing to accessibility and safety issues, water quality monitoring at Station W3 was cancelled with verification from the IEC in November 2020 and approval from the EPD in December 2020.
- viii. With the completion of all piling and substructure works for new footbridge and Cycle Bridge and the associated cofferdam removal on 8 March 2024, water quality impact monitoring is temporary suspended with no exceedance recorded in the week after 8 March 2024.
- ix. No water quality monitoring was conducted at seven monitoring stations three days per week in the reporting month due to no marine-based construction works.
- x. No action or limit level exceedance was recorded in this reporting period as water quality impact monitoring is temporary suspended.

Site Inspections and Audit

- xi. The Environmental Team (ET) conducted weekly site inspections on 5, 12, 19 and 26 June 2024. IEC attended the joint site inspection on 26 June 2024. No non-compliance was found during the site inspection while reminders on environmental measures were recommended.
- xii. The Environmental Team (ET) conducted monthly landscape site inspections on 26 June 2024. No non-compliance was found during the site inspection.

Complaints, Notifications of Summons and Successful Prosecutions

xiii. No environmental complaint, notification of summons and successful prosecution regarding the construction works was recorded in the reporting period.

Reporting Changes

xiv. There are no particular reporting changes.

Future Key Issues

xv. In coming reporting 3 months, the scheduled construction activities and the recommended mitigation measures are listed as follows:

Key Construction Works	Recommended Mitigation Measures		
 Handrail fabrication and Installation Construction Type D retaining wall 	 Dust control during dust generating works; Implementation of proper noise pollution control; Covering noisy part of piling machine with proper sound insulation material; Provision of surface runoff collection and perimeter protection to properly treat runoff without direct discharge into Wang Tong River; Proper waste handling and storage. 		

1 Introduction

1.1 Scope of the Report

- 1.1.1. Lam Environmental Services Limited (LES) has been appointed to work as the Environmental Team (ET) under Environmental Permit (EP) no. EP-555/2018/A to implement the Environmental Monitoring and Audit (EM&A) programme as stipulated in the EM&A Manual of the approved Environmental Impact Assessment (EIA) Report for New Wang Tong River Bridge (Register No.: AEIAR-199/2016).
- 1.1.2. In accordance with Clause 3.4 stated in EP-522/2018/A, 1 hard copy and 1 electronic copy of Monthly EM&A Report shall be submitted to the Director within 10 working days after the end of each reporting month.
- 1.1.3. According to Section 10.3.1 of the Project EM&A Manual, the Monthly EM&A Report should be submitted within 10 working days of the end of each reporting month, with the first report due in the month after construction commences.

1.2 Structure of the Report

- **Section 1** *Introduction* details the scope and structure of the report.
- Section 2 *Project Background* summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- Section 3 Status of Regulatory Compliance summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- Section 4 *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- Section 5 *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- Section 6 Compliance Audit summarizes the auditing of monitoring results, all exceedances environmental parameters.
- Section 7 Environmental Site Audit summarizes the findings of weekly site inspections

undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

- Section 8 Complaints, Notification of summons and Prosecution summarizes the cumulative statistics on complaints, notification of summons and prosecution
- Section 9 Conclusion

2 Project Background

2.1 Background

- 2.1.1. Silver Mine Bay is a popular bathing beach in Mui Wo, Lantau that attracted 4,550 visitors on a peak day and over 69,000 visitors utilized the beach in 2012.
- 2.1.2. In order to relieve the overcrowding problem and the road safety concern of Wang Tong Bridge (hereafter called "Old Bridge"), two bridges (pedestrian bridge and cycle bridge) are proposed to replace the Old Bridge. The new pedestrian bridge and the new cycle bridge (hereafter called "New Bridge") are also designed to align with the future amenity development on the northern side of the Old Bridge. The location of the project site is shown in *Figure 2.1*.
- 2.1.3. The Project consists of a designated project under Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) which is Item C.12 (a)...a dredging operation which is less than 500m from the nearest boundary of an existing...(iii) bathing beach...
- 2.1.4. The major components of the Project under Environmental Permit (EP) (EP No. EP-555/2018/A) comprises: (i) demolition of the existing Wang Tong River Bridge; and (ii) construction of a new twin bridge with segregation for pedestrians and cyclists.

2.2 Project Organization and Contact Personnel

- 2.2.1 Highways Department is the overall project controllers for the Project. For the construction phase of the Project, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.2.2 The project organization and lines of communication with respect to environmental protection works are shown in <u>Figure 2.2</u>. Key personnel and contact particulars are summarized in **Table 2.2**:

Party	Role	Post	Name	Contact No.	Contact Fax
Highways	The Engineer for the Contract	Senior Engineer	Mr. Terry Chung	3903 6799	3188 3418
Department (HyD)	Engineer's Representative	Engineer	Mr. Yeung Sui Chung	3903 6813	3188 3418
Unison Construction	Contractor	Site Agent	Mr. Peter Lui	2690 2232	2363 3199
Engineering Limited		Environmental Officer	Ms. Rita Fong		
ANewR Consulting Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Mr. James Choi	2618 2831	3007 8648
Lam Environmental Services Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Mr. Raymond Dai	2882 3939	2882 3331

2.3 Construction Activities

- 2.3.1 In the reporting month, the principal work activities conducted are as follow.
 - Trial trench inspection for sea wall
 - Construction Type D retaining wall
- 2.3.2 In coming reporting 3 months, the scheduled construction activities are listed as follows:
 - Handrail fabrication and Installation
 - Construction Type D retaining wall

3 Status of Regulatory Compliance

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project

Permits and/or Licences	Permit. No. / Account No.	Valid From	Expiry Date	Status
Environmental Permit	EP-555/2018/A	16 Dec 2020	N/A	Valid
Billing Account for Disposal of Construction Waste	7038550	29 Mar 2021	End of the Project	Valid
Registration as a Chemical Waste Producer	5213-962-U2333-01	28 Jun 2021	N/A	Valid
Notification pursuant to Air Pollution Control (Construction Dust) Regulation	Form NA submitted to E	PD on 25 Jun 202	1.	
Discharge Licence	WT00040069-2021	10/1/2022	31/1/2027	Valid
Construction Noise Permit	N/A			

3.2 Status of Submission under the EP-555/2018/A

3.2.1. A summary of the current status on submission under EP-555/2018/A is shown in Table 3.2.

Table 3.2 Summary of submission status under EP-555/2018/A

EP Condition	Submission	Date of Latest Submission^ or Approval#
Condition 1.12	Notification of Commencement Date of Works	3 June 2021 ^
Condition 2.7	Submission of Management Organization of Main Construction Companies, the ET and the IEC	20 May 2021 ^
Condition 2.8	Submission of Construction Works Schedule and Location Plan	22 June 2021 #
Condition 2.9	Submission of Breeding Bird Survey Report	29 December 2020 #
Condition 3.3	Submission of Baseline Monitoring Report	24 June 2021 #
Condition 4.2	Setting up Dedicated Internet Website	28 April 2021 ^

4 Monitoring Requirements

4.1 Noise Monitoring

NOISE MONITORING STATIONS

4.1.1. The noise monitoring stations for the Project are listed and shown in *Table 4.1* and *Figure 4.1*.

Table 4.1 Noise Monitoring Station

Monitoring Station ID	Monitoring Location	Measurement Type	Level (in terms of no. of floor)
NMS1 A	1 Tung Wan Tau Road	Free-field	G/F

Remarks A: As discussed with the lot owner, a fine adjustment of location at the boundary of 1 Tung Wan Tau Road was proposed and approved in the Baseline Monitoring Report, in order to prevent access obstruction.

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

4.1.2. For daytime construction work on normal weekdays (0700-1900 Monday to Saturday), one set of 30-min measurement shall be carried out at each NMS every week. Measurement procedures shall be referred to the Noise Control Ordinance-TM. Construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (Leq). Leq 30min shall be used as the monitoring parameter. As supplementary information for data auditing, statistical results such as L10 and L30 shall also be obtained for reference.

MONITORING EQUIPMENT

4.1.3. Noise monitoring was performed using sound level meter at the designated monitoring locations. The sound level meters shall comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator shall be deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in *Table 4.2*.

Table 4.2 Noise Monitoring Equipment

Equipment	Brand and Model	Series Number
Integrated Sound Level Meter	Larson Davis LxT	6346
Acoustic Calibrator	HLES-02	2016611465

4.1.4. The calibration certificates of the noise monitoring equipment are attached in Appendix 4.2.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.1.5 Monitoring Procedure
 - (a) The monitoring station shall normally be at a point 1m from the exterior of the sensitive receiver's building façade and be at a position 1.2m above the ground.
 - (b) Façade measurements were made at the monitoring locations. For free-field

measurement, a correction factor of +3 dB (A) would be applied.

Lam Environmental Services Limited

- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
- (e) Frequency weighting: A, Time weighting: Fast, Measurement time set: continuous 5 mins
- (f) Prior and after to the noise measurement, the meter was checked using the acoustic calibrator for 94dB (A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than ±1 dB (A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- 4.1.6 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The sound level meter and calibrator were calibrated at yearly intervals.

EVENT AND ACTION PLAN

4.1.7 Noise Standards for Daytime Construction Activities are specified under EIAO-TM. The Action and Limit levels for construction noise are defined in *Table 4.3* and <u>Appendix 4.1</u>. Should non-compliance of the criteria occurs, action in accordance with the Event and Action Plan in <u>Appendix 6.1</u> shall be carried out.

Table 4.3 Action and Limit Level for Noise Monitoring

Monitoring Station	Action Level	Limit Level
NMS1	When one documented complaint is received	75 dB(A)

4.2 Air Monitoring

AIR QUALITY MONITORING STATIONS

4.2.1 The air monitoring stations for the Project are listed and shown in *Table 4.4* and *Figure 4.3*.

Table 4.4 Air Monitoring Station

Monitoring Station	Location	Level (in terms of no. of floor)
AMS1 ^A	Silvermine Beach Resort	G/F
AMS2 ^{B, C}	1 Tung Wan Tau Road	G/F

Remarks A: AMS1 recommended under EM&A manual is at the north of boundary wall of Silvermine Beach Resort. Positioning of HVS on a narrow road at the northern boundary wall would obstruct access of passengers. After liaison with the resort owner, HVS is located near the eastern boundary wall, which is representative and suitable for air quality monitoring. Thus, fine adjustment of location at the boundary of Silvermine Beach Resort was therefore proposed and approved in the Baseline Monitoring Report.

Remarks B: As discussed with the lot owner, a fine adjustment of location at the boundary of 1 Tung Wan Tau Road was proposed and approved in the Baseline Monitoring Report, in order to prevent access obstruction and to minimize noise nuisance induced from HVS operation.

Remarks C: As the agreement of ER and IEC, a fine adjustment of location at the boundary of 1 Tung Wan Tau Road was proposed and approved in the impact monitoring since mid-September 2021, in order to prevent the interruption of GI working area conducted by contractor.

AIR MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.2.2 One-hour and 24-hour TSP levels should be measured to indicate the impacts of construction dust on air quality.
- 4.2.3 24-hour TSP shall be sampled at least once in every 6 days, while sampling for 1-hour TSP shall be at least 3 times in every 6 days when the highest dust impact takes place.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.2.4 24-hour TSP Measuring Installation (HVS)
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (b) No furnace or incinerator flues were nearby.
 - (c) Airflow around the sampler was unrestricted
 - (d) 0.6 1.7 m³ per minute adjustable flow range
 - (e) Equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
 - (f) Installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
 - (g) Equipped with a shelter to protect the filter and sampler;
 - (h) Capable of operating continuously for a 24-hour period.
- 4.2.5 24-hour Measuring Procedures
 - (a) The power supply was checked to ensure the HVS works properly.
 - (b) The filter holder and the area surrounding the filter were cleaned.
 - (c) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.

a	m	Lam Environmental Services Limited	Contract No: HY/2019/14 New Wang Tong River Bridge Monthly EM&A Report (June 2024)
	(d)	The filter was properly aligned on the screen so the outer edges of the filter.	hat the gasket formed an airtight seal
	(e)	The swing bolts were fastened to hold the fill pressure applied should be sufficient to avoid air	
	(f)	Then the shelter lid was closed and was secured	d with the aluminum strip.
	(g)	The HVS was warmed-up for about 5 minutes to e	establish run-temperature conditions.
	(h)	A new flowrate record sheet was set into the flow	
	(i)	The flow rate of the HVS was checked and adjus specified in the EM&A Manual was between 0.6	-1.7 m ³ /min.
	(j)	The programmable timer was set for a samplir starting time, weather condition and the filter nur	
	(k)	The initial elapsed time was recorded.	
	(I)	At the end of sampling, the sampled filter was r length so that only surfaces with collected partic	ulate matter were in contact.
	(m)	It was then placed in a clean plastic envelope ar	
	(n) (o)	All monitoring information was recorded on a sta Filters were sent to laboratory for further testing.	
4.2.6		Measuring Procedures	
	(a)	Check the calibration period of portable direct re	eading dust meter prior to monitoring
	(0)	(The direct reading dust meter was calibrated a High Volume Sampler (HVS) yearly, details refer	at 2-years interval and checked with r to Section 2.5.4)
	(b)	Record the site condition near / around the moni	-
	(c)	Install the portable direct reading dust meter to t	he monitoring location.
	(d)	Slide the power switch to turn the power on.	the environment encoding in
	(e)	Check of portable direct reading dust meter to normal condition.	ensure the equipment operation in
	(f)	Select the period of measurement to 60mins.	
	(g) (h)	Check and set the correct time. Select the appropriate unit display for the equipr	nent
	(i)	Slide the power switch to turn the power off w	
	(1)	times 1 hour TSP monitoring per day).	
	(j)	Uninstall the portable direct reading dust meter	
	(k)	Collected the sampled data for analysis.	
		ark: Procedures (c) to (h) may be different subject t reading dust.	o the brands and models of portable
4.2.7	Mainter	nance and Calibration	
	(a)	The direct reading dust meter was calibrated a High Volume Sampler (HVS) yearly to determi results measured.	•
	(b)	Checking of direct reading dust meter will be c conversion factor between the direct reading dus HVS. The comparison check is to be considered checked by HOKLAS laboratory	st meter and the standard equipment,
		13	EP-555/2018/A

4.2.8 High Volume Sampler (HVS – Model TE-5170) completed with the appropriate sampling inlets were installed for the 24-hour TSP sampling. 1-hour TSP air quality monitoring was performed by using portable direct reading dust meters at each designated monitoring station, which was verified by IEC and approved by the Engineer's Representative (ER) on 4 December 2020 according to Section 3.4.5 and 3.3.2 of the Project EM&A Manual. The brand and model of the equipment are given in *Table 4.5*.

Table 4.5 Air Quality Monitoring Equipment

Equipment	Brand and model	Series Number
Portable direct reading dust meter	Met One Aerocet 831	W15449, Y23153
High Volume Sampler	TE-5170	HVS019 HVS020

4.2.9 The calibration certificates of the air quality monitoring equipment are attached in <u>Appendix</u> <u>4.2</u>.

WIND DATA

4.2.10 Hong Kong Observatory (HKO) meteorological information is widely accepted to be used in various environmental monitoring practices within HKSAR due to its professional quality and precision. Therefore, the daily wind data including Prevailing Wind Direction (degrees) and Mean Wind Speed (km/h) were obtained from Peng Chau Automatic Weather Station to serve as the representative data for meteorological condition during monitoring. The method was agreed by the IEC and approved by the ER on 4 December 2020. The representative wind data from Peng Chau Station were obtained covering the 1-hour and 24-hour TSP monitoring periods. The wind data were extracted and shown in <u>Appendix 4.3</u>.

EVENT AND ACTION PLAN

4.2.11 The Action and Limit levels for construction air quality are defined in *Table 4.6* and <u>Appendix</u>
 <u>4.1</u>. Should non-compliance of the air quality criteria occur, action in accordance with the Event and Action Plan in <u>Appendix 6.1</u> shall be carried out.

Parameter	Monitoring Station	Action Level (µg/m ³)	Limit Level (µg/m ³)
24-hour TSP Level	AMS1	176.0	260.0
24-nour ISF Lever	AMS2	176.0	260.0
1-hour TSP Level	AMS1	276.5	500.0
1-nour ISP Level	AMS2	283.7	500.0

Table 4.6 Action and Limit Level for Air Quality Monitoring

4.3 Water Quality Monitoring

WATER QUALITY MONITORING STATIONS

- **4.3.1.** With the completion of all piling and substructure works for new footbridge and Cycle Bridge and the associated cofferdam removal on 8 March 2024, water quality impact monitoring is temporary suspended with no exceedance recorded in the week after 8 March 2024.
- 4.3.2. The proposed water quality monitoring stations of the Project are shown in **Table 4.7** and **Figure 4.3**.

Station	Description	Monitoring Period	Monitoring Station	Easting	Northing
W1	Wang Tong River	Mid-Flood	Impact	817747	814519
VVI	(Major tributary)	Mid-Ebb	Control	01//4/	014519
W2	Wang Tong River	Mid-Flood	Impact	817775	814471
VVZ	(Major tributary)	Mid-Ebb	Control	01///5	014471
W3 *	Wang Tong River	Mid-Flood	Impact	817803	814537
VV3	(Minor tributary to Tai Wai Yuen)	Mid-Ebb	Control	017003	
W4	Wang Tong River	Mid-Flood	Impact	817825	814481
VV4	(Minor tributary to Tai Wai Yuen)	Mid-Ebb	Control	017025	014401
W5	Silvermine Bay	Mid-Flood	Control	047000 04445	814452
005	(Near Silvermine Bay Beach)	Mid-Ebb	Impact	817909	014452
W6	Silvermine Bay	Mid-Flood	Control	818024	814447
000	(Near Silvermine Bay Beach)	Mid-Ebb	Impact	010024	014447
W7	Silvermine Bay	Mid-Flood	Control	818061	814277
VV /	(Open Water)	Mid-Ebb	Impact	010001	014277
14/0	Silvermine Bay	Mid-Flood	Control	040004	814444
W8	(Open Water)	Mid-Ebb	Impact	818224	

Table 4.7 Marine Water Quality Stations for Water Quality Monitoring

Remark *: Water quality monitoring at Station W3 was cancelled with verification from the IEC and approval from the EPD.

WATER QUALITY PARAMETERS, FREQUENCY AND DURATION

- 4.3.3. The levels of dissolved oxygen (DO), turbidity, salinity and pH shall be measured in situ while suspended solids (SS) is determined by laboratory analysis at all the designated monitoring stations.
- 4.3.4. In association with the water quality parameters, other relevant data shall also be recorded, such as monitoring location / position, time, water temperature, DO saturation, weather conditions, and any special phenomena underway near the monitoring station.
- 4.3.5. Impact Monitoring shall be carried out 3 days per week, at mid-flood and mid-ebb tides (within ± 1.75 hour of the predicted time). The interval between two sets of monitoring shall not be less than 36 hours. The monitoring period should avoid concurrent marine project in the vicinity.
- 4.3.6. The sampling frequency of at least three days per week should be undertaken when the highest dust impact occurs. Upon completion of the construction works, the monitoring exercise at the designated monitoring locations should be continued for four weeks in the same manner as the

impact monitoring. In case exceedance of Action/Limit Level is recorded, the frequency shall be increased as per the Event and Action Plan.

4.3.7. To ensure the robustness of in-situ measurement, parameters shall be measured in duplicate. In case the difference between duplicates is larger than 25%, a third set of measurement shall be carried out.

SAMPLING PROCEDURES AND MONITORING EQUIPMENT

Dissolved Oxygen, pH And Temperature Measuring Equipment

- 4.3.8. The instrument should be a portable, weatherproof dissolved oxygen and pH measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a pH level in the range of 0 to 14 units
 - a temperature of 0-45 degree Celsius
- 4.3.9. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. Salinity compensation shall be build-in in the DO equipment

Turbidity Measurement Instrument

4.3.10. Nephelometric method shall be used in measuring turbidity in-situ. The instrument shall be portable, weatherproof complete with a cable, sensor, comprehensive operation manuals and DC power source. It shall have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and complete with a cable with at least 25 m in length. The meter shall be calibrated in order to establish the relationship between NTU units and suspended solids level. Turbidity shall be measured on split water sample collected from the same depths of suspended solid samples.

Sampler

4.3.11. A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less than two litres which can be effectively sealed with cups at both ends shall be used. The water sampler shall have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

Sampler Container and Storage

4.3.12. A water sampler, Water samples for suspended solids measurement should be collected in high-density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

Water Depth Detector

4.3.13. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

<u>Salinity</u>

4.3.14. A portable salinometer capable of measuring salinity in the range of 0-40% shall be provided for measuring salinity of the water at each of monitoring location.

Monitoring Position Equipment

4.3.15. A hand-held or boat-fixed type digital Global Positioning System (GPS) with waypoint bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

MONITORING METHODOLOGY

- 4.3.15 Monitoring Procedure
 - (a) The condition near the monitoring stations shall be observed and recorded on the data log sheet.
 - (b) Check of sensors and electrodes with certified standard solutions before each use.
 - (c) Wet bulb calibration for a DO meter should be carried out before measurement.
 - (d) Water depth should be recorded by detector before sampling.
 - (e) Sample would be taken using bucket sampler at surface level.
 - (f) Transfer the sampled water carefully into cleaned water bottles (2x 1000ml) provided by the laboratory at the spot after the collection of the water sample for the subsequent laboratory Suspended Solid testing.
 - (g) Transfer the sampled water from the bucket sampler to the rinsed water container for in-situ measurement (In case of the in-situ measurement cannot be carried at spot due to safety and adverse weather condition, sampled water from the bucket sampler will be transfer to cleaned water bottles provided by laboratory. Then, In-situ measurement will be conducted at a safe location which sampled water inside cleaned water bottle will be transfer to the rinsed water container for in-situ measurement) In-situ measurement shall be measured in duplicate.
 - Parameters including Water Temperature (°C), pH (units), Salinity (ppt), DO (mg/L), DO saturation (%) will be measured by the Multifunctional Meter and Turbidity (NTU) will be measured by turbid meter. (Water Temperature and Salinity will be measured as reference parameters)
 - (i) Record the result on the data log sheet and record any special finding during / after in-situ measurement.
 - (j) The water sample bottles will be stored in a cool box (at cooled to 4°C without being frozen), which shall be delivered to HOKLAS laboratory (ALS Technichem (HK) Pty Ltd) for further testing to determine the level of SS.

4.3.16 Maintenance and Calibration

- (a) The responses of sensors and electrodes of the water quality monitoring equipment were cleaned and checked at regular intervals.
- (b) DO meter (Multifunctional Meter) and turbid meter was certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at three monthly intervals.
- 4.3.17 Brand and model of the equipment are given in *Table 4.8*.

Table 4.8 Water Quality Monitoring Equipment

Equipment	Brand and model	Series Number
Multifunctional Meter	YSI Professional Plus	N/A
Turbid meter	Xin Rui WGZ-3B	N/A

LABORATORY MEASUREMENT / ANALYSIS

4.3.18 Analysis of suspended solids will be carried out in a HOKLAS accredited laboratory, which is ALS Technichem (HK) Pty Ltd.

EVENT AND ACTION PLAN

4.3.19 The Action and Limit levels for construction water quality are defined in **Table 4.9** and <u>Appendix 4.1</u>. Should the monitoring results of the water quality parameters at any designated monitoring station exceed the water quality criteria, action in accordance with the Event and Action Plan in <u>Appendix 6.1</u> shall be carried out.

Monitoring		DO (m	ng/L) +	Turbidity	/ (NTU) ~	SS (m	ig/L)~
Station	Depth	Action	Limit	Action	Limit	Action	Limit Level
Station		Level	Level	Level	Level	Level	
W1				7.7 NTU or 120% of upstream	12.4 NTU or 130% of upstream	8.9 mg/L or 120% of upstream	11.3 mg/L or 130% of upstream
W2	Surface, Middle & Bottom	6.5	5.3	control station's turbidity at the same	control station's turbidity at the same	control station's SS at the same tide of the	control station's SS at the same tide
W4				tide of the same day, whichever is higher	tide of the same day, whichever is higher	same day, whichever is higher	of the same day, whichever is higher
W5	Surface,			9.8 NTU or	10.5 NTU	12.6	15.0 mg/L
W6	Middle &			120% of upstream	or 130% of upstream	mg/L or 120% of	or 130% of upstream
W7	Bottom			control	control	upstream	control
W8	Surface & Middle	5.9	5.5	station's turbidity at the same tide of the same day, whichever	station's turbidity at the same tide of the same day, whichever	control station's SS at the same tide of the same day, whichever	station's SS at the same tide of the same day, whichever
	Bottom	5.9	5.5	is higher	is higher	is higher	is higher

Table 4.9 Action and Limit Level for Water Quality Monitoring

Lam Environmental Services Limited

Remarks +: For DO, non-compliance occurs when monitoring results is lower than the limits. Remarks ~: For SS and Turbidity, non-compliance occurs when monitoring results is larger than the limits

5 Monitoring Results

- 5.0.1 The environmental monitoring will be implemented based on the division of works areas of each designed projects. Overall layout showing work areas and monitoring stations is shown in *Figure 2.1* and *Figure 4.1 4.3* respectively.
- 5.0.2 The environment monitoring schedules for reporting month and coming month are presented in *Appendix 5.1*.

5.1 Noise Monitoring Results

- 5.1.1 Noise monitoring results measured in this reporting period are reviewed and summarized. Details of noise monitoring results and graphical presentation can be referred in *Appendix 5.2*.
- 5.1.2 No action or limit level exceedance was recorded in this reporting month.

5.2 Air Monitoring Results

- 5.2.1 Air quality monitoring results measured in this reporting period are reviewed and summarized. Details of air monitoring results and graphical presentation can be referred in <u>Appendix 5.3</u>.
- 5.2.2 No action or limit level exceedance was recorded in this reporting month.

5.3 Water Quality Monitoring Results

- 5.3.1 With the completion of all piling and substructure works for new footbridge and Cycle Bridge and the associated cofferdam removal on 8 March 2024, water quality impact monitoring is temporary suspended with no exceedance recorded in the week after 8 March 2024.
- 5.3.2 Due to no marine-based construction works in the reporting period, no water quality monitoring was conducted.
- 5.3.3 No action or limit level exceedance was recorded in this reporting period as there are no water quality impact monitoring.

5.4 Waste Management

5.4.1 The quantities of waste for disposal in the Reporting Period are summarized in *Table 5.2* and *Table 5.3*. The Monthly Summary Waste Flow Table is shown in <u>Appendix 5.5</u>. Whenever possible, materials were reused on-site as far as practicable.

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Hard Rock and Large Broken Concrete (Inert) (in '000m ³)	0	0.007	0.007
Reused in this Contract (Inert) (in '000m ³)	0	0	0
Reused in other Projects (Inert) (in '000m ³)	0	0	0
Disposal as Public Fill (Inert) (in '000m ³)	0.06943	0.91538	0.98481

Table 5.3 Summary of Quantities of C&D Wastes

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Metals (in '000kg)	0	0	0
Paper / Cardboard Packing (in '000kg)	0	0	0
Plastics (in '000kg)	0	0.003	0.003
Chemical Wastes (in '000kg)	0	0	0
General Refuses (in '000m ³)	0.0157	0.50785	0.52355

6 Compliance Audit

- 6.1.1 The Event Action Plan for construction noise, air quality and water quality are presented in *Appendix 6.1*.
- 6.1.2 The summary of exceedance is presented in <u>Appendix 6.2</u>.

6.2 Noise Monitoring.

6.2.1 No action or limit level exceedance was recorded in this reporting period.

6.3 Air Quality Monitoring

6.3.1 No action or limit level exceedance was recorded in this reporting period.

6.4 Water Quality Monitoring

6.4.1 No action or limit level exceedance was recorded in this reporting period as water quality impact monitoring is temporary suspended.

6.5 Review of the Reasons for and the Implications of Non-compliance

6.5.1 No environmental non-compliance was recorded in the reporting month.

6.6 Summary of action taken in the event of and follow-up on non-compliance

6.6.1 There was no particular action taken since no non-compliance was recorded in the reporting period.

7 Environmental Site Audit

- 7.0.1. Within this reporting month, weekly environmental site audits were conducted on 5, 12, 29 and 26 June 2024. IEC attended the joint site inspection on 26 June 2024.
- 7.0.2. No non-compliance was found during the site inspection while reminders on environmental measures were recommended. Results and findings of these inspections in this reporting month are listed below in *Table 7.1*.

Table 7.1 Summary of Environmental Inspections

ltem	Date	Reminder(s)/ Observation(s)	Action taken by Contractor	Outcome
20240605_1	05 June 2024	Nil.	Nil.	Nil.
20240612_1	12 June 2024	Nil.	Nil.	Nil.
20240619_1	19 June 2024	Nil.	Nil.	Nil.
20240626_1	26 June 2024	Nil.	Nil.	Nil.

- 7.0.3. Within this reporting month, monthly landscape site audits were conducted on 26 June 2024.
- 7.0.4. No non-compliance was found during the landscape site inspection. Results and findings of these inspections in this reporting month are listed below in *Table 7.2*.

Table 7.2 Summary of Landscape site inspections

ltem	Date	Reminder(s)/ Observation(s)	Action taken by Contractor	Outcome
20240626_1	26 June 2024	Nil.	Nil.	Nil.

8. Complaints, Notification of Summons and Prosecution

- 8.0.1. No environmental complaint, notification of summons and successful prosecution regarding construction works was recorded in the reporting period.
- 8.0.2. The details of cumulative complaint log and updated summary of complaints are presented in *Appendix 8.1*.
- 8.0.3. Cumulative statistic on complaints and successful prosecutions are summarized in *Table 8.1* and *Table 8.2* respectively.

Table 8.1 Cumulative Statistics on Complaints

Reporting Period	No. of Complaints
June 2024	0
Project commencement to the end of last reporting month	1
Total	1

Table 8.2 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	-	0	0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	0	0

9. Conclusion

- 9.0.1. The EM&A programme was carried out in accordance with the EM&A Manual requirements, minor alterations to the programme proposed were made in response to changing circumstances.
- 9.0.2. Mitigation measures according to the environmental mitigation implementation schedule and the EIA were generally implemented by the Contractor. Hence, the EM&A programme was considered effective and shall be maintained.
- 9.0.3. The scheduled construction activities and the recommended mitigation measures for the coming 3 months are listed in *Table 9.1*. The construction programmes of the Project are provided in *Appendix 9.1*.

Table 9.1 Construction Activities and Recommended Mitigation Measures in ComingReporting 3 Months

Key Construction Works	Recommended Mitigation Measures	
 Handrail fabrication and Installation Construction Type D retaining wall 	 Dust control during dust generating works; Implementation of proper noise pollution control; Covering noisy part of piling machine with proper sound insulation material; Provision of surface runoff collection and perimeter protection to properly treat runoff without direct discharge into Wang Tong River; and Proper waste handling and storage. 	

Contract No: HY/2019/14 New Wang Tong River Bridge

Figure 2.1

Project Layout

N N	 NOTES ALL LEVELS ARE IN METRES ABOVE HONG KONG PRINCIPAL DATUM. CO-ORDINATES ARE OF HONG KONG 1980 GRID SYSTEM. ALL LEVELS ALONG KERB ARE KERB BOTTOM LEVEL. CHANNELS ARE U SHAPED EXCEPT WHERE STATED, WIDTHS ARE GIVEN. DATE OF SURVEY FOR HIGH WATER MARK : NOV 2020 			
	LEGEND:			
I		LIMIT OF WORKS SITE		
	<u> </u>	HIGH WATER MARK (AS AT NOV.2020)		
		PROPOSED PILECAP AND SOCKETED H PILES		
		EXCAVATION AND PILING WC AREA WITHIN COFFERDAM	RKS	
		EXCAVATION AREAS BELOW HIGH WATER MARK		
		PROPOSED BRIDGE PIERS		
		EXTENT OF ABUTMENTS		
		WORKS LAYOUT		
	SOURCE			
		× / 1 /		
	HY/2019	7/14		
	NEW WA BRIDGE	NG TONG RIVER		
	DRAWING TITLE			
	LOC	CATION PLAN		
	SCALE	A1 59-	4X841	
	drawing no. CLF	P-EP-01	REV. -	
	Į			

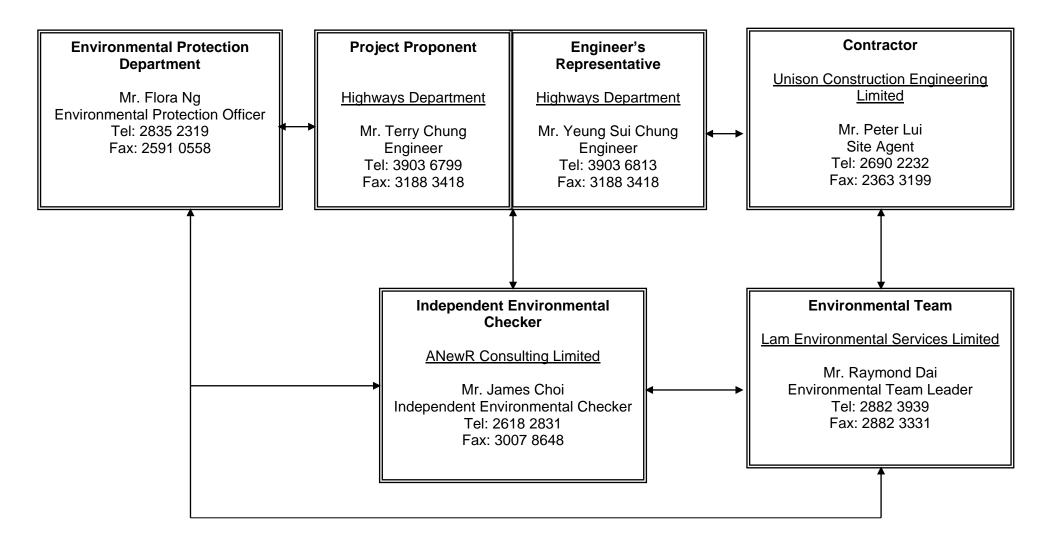
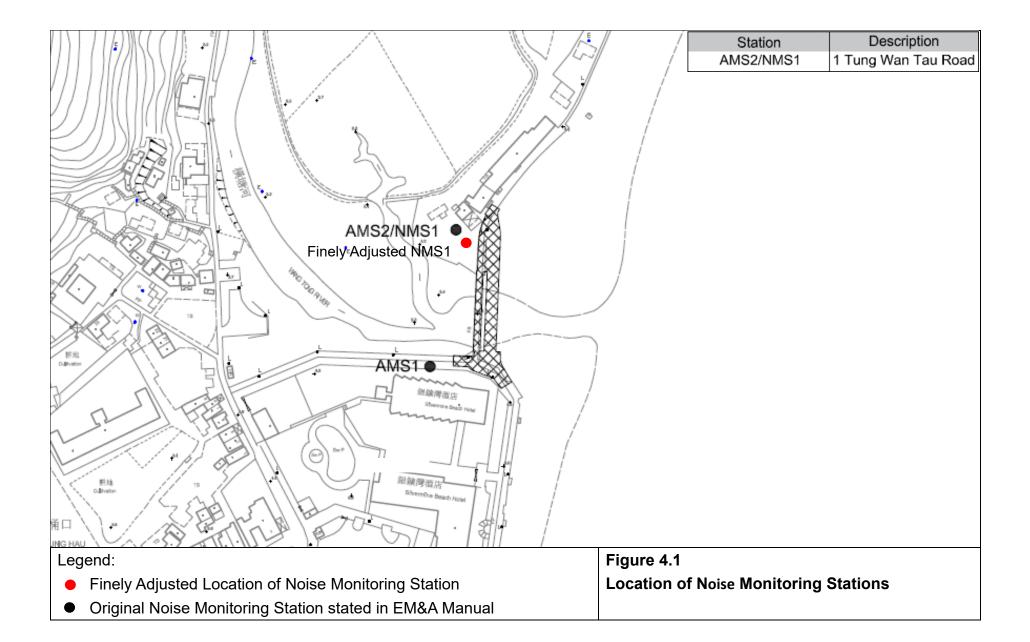
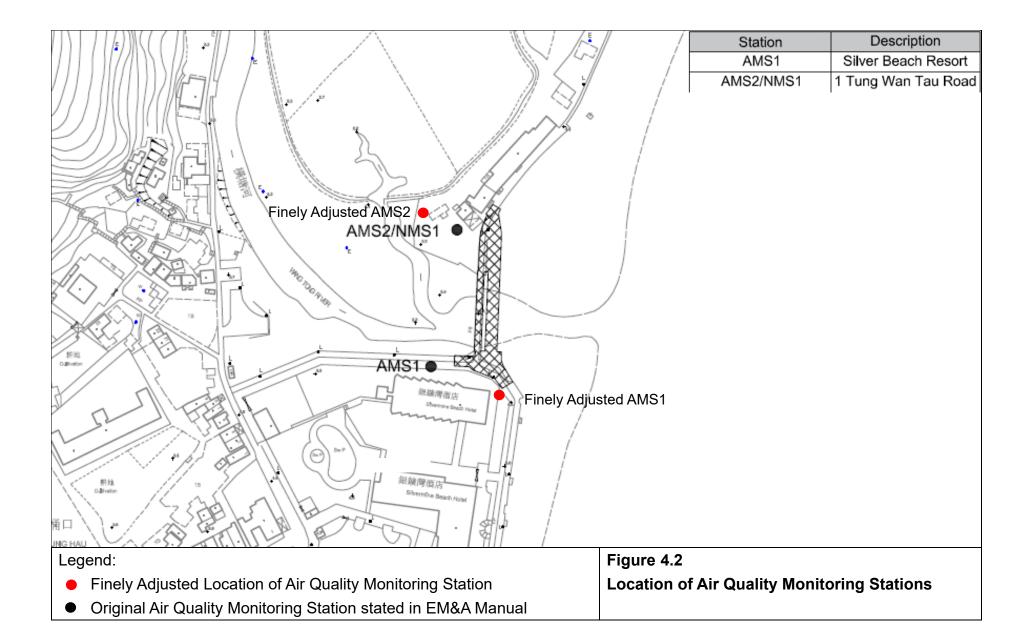

Contract No: HY/2019/14 New Wang Tong River Bridge

Figure 2.2

Project Organization Chart

Project Organization Chart





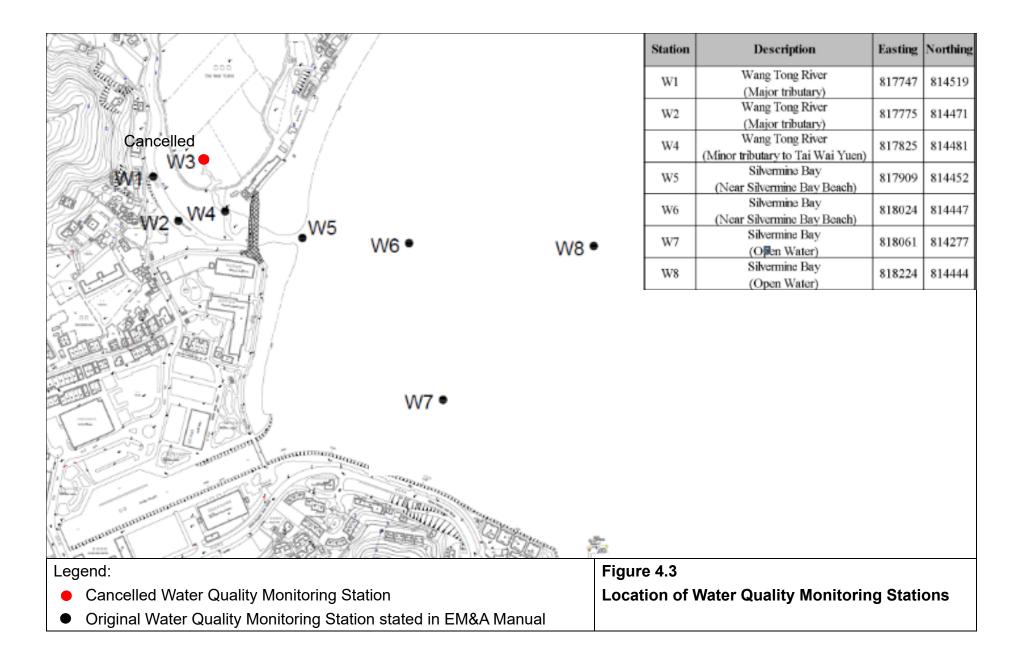

Contract No: HY/2019/14 New Wang Tong River Bridge

Figure 4.1 to Figure 4.3

Locations of Monitoring Stations

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 3.1

Environmental Mitigation Implementation Schedule

EM&A		Objectives of the Recommended	Who to	Location of the		What requirements or standard for
Ref.	Recommended Mitigation Measures	Measure &	Implement	measure	implement the	the measure to achieve
1	- T	Main Concerns to address	the measure		measure	
Air Qualit						
Constructio	Good housekeeping to minimize dust generation, e.g. by properly handling		HyD's	Whole	Throughout	
A1	and storing dusty materials	To minimize dust generation	Contractor	construction site	construction phase	EIAO-TM, APCO
A2	Adopt dust control measures, such as dust suppression using water spray on exposed soil, in areas with dusty construction activities, and during material handling	To minimize dust generation due to erosion	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A3	Dust suppression shall be applied to the working area immediately before, during and immediately after site clearance, excavation or earth moving operation to keep the surface wet.	To minimize dust generation due to erosion	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A4	Use water spray to wet the remaining dusty materials on the floor after removing stockpile. The surface of roads or streets shall be free from dust	To minimize dust generation due to erosion	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A5	Storage of dusty materials and debris shall be either entirely covered by impervious sheeting or stored in a three-side and top enclosed area. Alternatively, it should be sprayed with water or a dust suppression chemical to maintain the entire surface wet	To minimize dust generation due to erosion	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A6	All demolished items (e.g. trees, vegetation, structures, debris and rubbish) that may dislodge dust particles shall be covered entirely by impervious sheeting or placed in a three-side and top enclosed area within a day of demolition.	To minimize dust generation	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A7	Store cement bags in shelter with 3 sides and the top covered by impervious materials if the stack exceeds 20 bags	To prevent leakage of cement	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A8	Cement bag shall be debagged, batched and mixed in a three- side and top enclosed area	To minimize dust generation	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A9	Maintain a reasonable height when dropping excavated materials to limit dust generation	To minimize dust generation during movement of excavated materials	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A10	Minimize exposed earth after completion of work in a certain area by hydroseeding, vegetating, soil compacting or paving	To minimize dust generation due to erosion	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO

Appendix 3.1 - Implementation of Recommended Mitigation Measures

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure	Location of the measure	When to implement the measure	What requirements or standard for the measure to achieve
A11	Cover materials on trolleys and trucks before leaving the site to prevent debris from dropping during traffic movement or being blown away by wind	To prevent falling of debris during traffic movement and by wind	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A12	Water or a dust suppression chemical shall be continuously sprayed on the surface where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation is carried out, unless the process is accompanied by the operation of an effective dust extraction and filtering device	To minimize dust emission	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A13	Regular maintenance of plant equipment to prevent black smoke emission	To minimize black smoke emission	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A14	Throttle down or switch off unused machines or machine in intermittent use	To minimize unncessary emission	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A15	Minimize excavation area as far as possible	To minimize dust emission and potential release of odour from exposed ground	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A16	Cover open stockpiles of construction materials (e.g. aggregates, sand and fill materials) with impermeable materials such as tarpaulin during rainstorms.	To prevent soil erosion under rainstorm	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A17	Hoarding of not less than 2.4 m high shall be erected from ground level to surround the work area except for a site entrance or exit	To minimize dust emission	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO
A18	Carry out air quality monitoring throughout the construction period	To monitor construction dust level	HyD's Contractor	At representative ASRs	Prior to and throughout construction phase	EIAO-TM
A19	Carry out regular site inspection to audit the implementation of mitigation measures	To check the implemenation status and effectiveness of mitigation measures	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure	Location of the measure	When to implement the measure	What requirements or standard for the measure to achieve
Noise Imp	act	Wall Collect its to address	the measure		liteasure	
Construction						
N1	Schedule noisy activities to minimise exposure of nearby NSRs to high levels of construction noise	To minimize construction noise level	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N2	Use hand-held plant equipment or manual equipment as far as possible	To minimize construction noise level	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N3	Use Quality Powered Mechanical Equipment (QPME) which produces lower noise level	To minimize construction noise level	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N4	In the direction of noise sensitive receivers, erect mobile barriers with 3m in height from a few metres of stationary plants, and from about 5m of more mobile plant such as hydraulic breaker to prevent direct view. The barrier should have skid footing and a small cantilevered upper portion. The minimum surface density of the movable noise barrier is 7 kg/m ² and provide with noise absorbing material.	To lower noise transmission	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N5	Position mobile noisy equipment in location and direction away from NSR	To minimize noise transmission to NSR	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N6	Use silencer or muffler on plant equipment and should be properly maintained	To minimize noise transmission	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N7	Operate noisy plant equipment such as air compressor, generator and concrete pump within enclosure	To minimize noise transmission	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N8	Cover the noisy part of piling machine with acoustic mat	To minimize noise transmission	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N9	Throttle down or switch off unused machines or machine in intermittent use between work	To mimize noise production	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N10	Avoid carrying out noisy activities at the same time	To mimize noise production	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure			What requirements or standard for the measure to achieve
N11	Reduce the percentage on-time for some noisy PMEs	To mimize noise production	HyD's Contractor	Whole construction site	Throughout construction phase	NCO, EIAO-TM
N12	Carry out noise monitoring throughout the construction period	To monitor construction noise level	HyD's Contractor	At representative NSRs	Prior to and throughout construction phase	EIAO-TM

EM&A		Objectives of the Recommended	Who to	Location of the	When to	What requirements or standard for
Ref.	Recommended Mitigation Measures	Measure & Main Concerns to address	Implement the measure	measure	implement the measure	the measure to achieve
Water Qu	ality Impact	Multi Concernis to utili ess	the measure		incusure	
Constructio	V A					
W1	Works in the river (excavation within highwater mark and cutting of pier of Old Bridge) shall be carried out inside the watertight cofferdam. The cofferdam can only be removed after completion of work.	To prevent the excavated materials or cuttings from falling into the water and being carried into the sea	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM
W2	Install sheet piles by vibratory action.	To minimize dispersion of sand	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM
W3	Erect water-tight temporary working platform that can contain falling debris above Wang Tong River. The platform shall be sheltered by tarpaulin for directing rainwater away from the working platform.	To prevent falling of debris and generation of surface runoff into the river	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM
W4	Water removed from the cofferdam should be desilted before discharge.	To prevent discharge of silty water	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM
W5	Surface run-off from construction sites should be discharged into storm waterdrains via adequately designed sand/silt removal facilities such as sand traps, silt traps, sedimentation tanks and sediment basins.	To reduce the amount of suspended solid in wastewater	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 2/23, EIAO-TM
W6	Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times	To prevent silt, construction materials or debris from getting into the drainage system and prevent failure that may lead to flooding	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 2/23, EIAO-TM
W7	Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.	To prevent blockage that may lead to flooding	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 2/23, EIAO-TM
W8	Design works program carefully to minimize work areas, hence minimize soil exposure and site runoff.	To minimize surface runoff and chance of erosion	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 2/23, EIAO-TM
W9	Construction works should be programmed to minimize soil excavation works in rainy seasons (generally from April to September) as far as possible. If this cannot be achieved, the following measures should be implemented: 1. Temporarily exposed slope surfaces should be covered (e.g. by tarpaulin)"	To minimize surface runoff and chance of erosion	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 2/23, EIAO-TM
	 Temporary access roads should be protected by crushed stone or gravel Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. 					

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure	Location of the measure	When to implement the measure	What requirements or standard for the measure to achieve
W10	Minimize exposed earth after completion of work in a certain area by hydroseeding, vegetating, soil compacting or paving	To prevent soil erosion under rainstorm	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM
W11	Open stockpiles of construction materials (e.g. aggregates, sand and fill material)	To prevent soil erosion under rainstorm	HyD's Contractor	Whole construction	Throughout construction	ProPECC PN 2/23, EIAO-TM
W12	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent surface run-off from getting into foul sewers.	To prevent overloading of foul sewers	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 2/23, EIAO-TM
W13	Placing equipment, materials and wastes away from Wang Tong River and Silver Mine Bay	To prevent water contamination	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM
W14	Remove waste from the site regularly.	To prevent waste accumulation	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM
W15	Apply discharge license for effluent discharge. Treat the discharge to comply with the requirement in TM-DSS.	To ensure compliance with effluent discharge requirement	HyD's Contractor	Whole construction site	Throughout construction phase	WPCO, TM-DSS, EIAO-TM
W16	Reuse treated effluent onsite, e.g. dust suppression and general cleaning.	To minimize wastewater generation	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
W17	Monitor effluent water quality.	To ensure compliance with effluent discharge requirement	HyD's Contractor	Whole construction site	Throughout construction phase	WPCO, EIAO-TM
W18	Register as chemical waste producer if chemical waste will be generated.	To control chemical waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal (Chemical Waste) (General) Regulation, EIAO-TM
W19	Perform maintenance of vehicles and equipment that have oil leakage and spillage potential on hard standings within a bunded area with sumps and oil interceptors.	To prevent oil leakage or spillage	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal (Chemical Waste) (General) Regulation, EIAO-TM
W20	Dispose chemical waste in accordance to Waste Disposal Ordinance. Follow the <i>Code of Practice on the Packaging, Labelling and</i> <i>Storage of Chemical Wastes</i> , examples as follows:	To avoid accident in waste storage and handling	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
	- Store chemical wastes at designated safe location with adequate space					
W21	Placing chemical toilet away from waterbodies as far as possible and on stable, impermeable surface	To minimize accidental leakage of sewage into waterbodies	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure			What requirements or standard for the measure to achieve
W22	Carry out water quality monitoring at water sensitive receivers	To identify any water quality impact due to the project	HyD's Contractor	Whole construction site	Before, throughout and after construction phase	EIAO-TM
W23	Carry out regular site inspection to audit the implementation of mitigation measures	To check the implemenation status and effectiveness of mitigation measures	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM, APCO

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure			What requirements or standard for the measure to achieve			
Ecological	Ecological Impact								
Constructio	n Phase								
	Before site clearance, the work area should be inspected by ecologist to confirm no active bird nest is present. If any active bird nest is identified, suitable size of buffer area should be established until the nest is abandoned.	To minimize direct impact on the breeding activity of Black- collared Starling	HyD's Contractor	Whole construction site	Before site clearance	EIAO-TM			
E2	Erection of hoarding, fencing or provision of clear demarcation of work zones	To minimize direct impact outside work boundary	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM			

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure			What requirements or standard for the measure to achieve
Waste Ma	nagement					
Constructio	on Phase					
	Allocate an area for waste sorting and storage of C&D materials into the following categories for reuse, recycle or disposal if possible. Remove waste from the Site for sorting once generated if no suitable space can be identified.	To minimize waste generation	HyD's Contractor	Whole construction site	Throughout construction phase	
WM1	- excavated material suitable for reuse					Waste Disposal Ordinance, EIAO- TM
	- inert C&D materials for reuse/disposal offsite					
	- non-inert C&D materials for disposal at landfills					
	- chemical waste					
	- general refuse					
	Adopt good site practice as follows:	To proper handling of waste		Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
	 Provide training to workers on site cleanliness, waste management (waste reduction, reuse and recycle) and chemical handling procedures 		HyD's Contractor			
WM2	- Provide sufficient waste collection points and regular removal					
	- Cover waste materials with tarpaulin or in enclosure during transportation					
	- Maintain drainage systems, sumps and oil interceptors					
	- Sort out chemical waste for proper handling and treatment onsite or offsite					
	Adopt waste reduction measures as follows:					
WM3	 Allocate area/containers for sorting, recovering and storing waste for reuse, recycle or disposal (e.g. demolition debris and excavated materials, general refuse like aluminium cans). Remove waste from the Site for sorting once generated if no suitable space can be identified. 	To minimize waste generation	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
	- Allocate area for proper storage of construction materials to prevent contamination					

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure		When to implement the measure	What requirements or standard for the measure to achieve
WM4	Prepare and implement a site specific Waste Management Plan (WMP) as part of Environmental Management Plan (EMP) in accordance with ETWB TCW No. 19/25. Detail waste management method in the form of avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal according to the recommendations on the EIA and EM&A Manual. It should be approved by the ER and regularly reviewed.	To provide guidance to waste management	HyD's Contractor	Whole construction site	Throughout construction phase	ETWB TCW No. 19/2005, EIAO- TM
	Store waste materials properly as follows: - Avoid contamination by proper handling and storing waste		HyD's Contractor	Whole construction site	Throughout construction phase	
WM5	 Prevent erosion by covering waste Maintain and clean storage area regularly Sort and stockpile different materials at designated location to enhance reuse 	To properly store waste				ProPECC PN 2/23, EIAO-TM
WM6	Apply for relevant waste disposal permits in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28).	To properly dispose waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28), Dumping at Sea Ordinance (Cap. 466), EIAO- TM
WM7	Implement trip-ticket system for recording the amount of waste generated, recycled and disposed, including chemical wastes	To monitor movement of waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal (Chemical Waste) (General) Regulation, Waste Disposal Ordinance, EIAO-TM
WM8	Reduce water content in wet spoil generated from piling work by mixing with dry materials. Only dispose treated spoil with less than 25% dry density to Public Fill Reception Facilities	To minimize load to reception facilities	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
WM9	Dispose dry waste or waste with less than 70% water content by weight to landfill	To minimize load to reception facilities	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure		When to implement the measure	What requirements or standard for the measure to achieve
WM10	 Follow the Code of Practice on the Packaging, Labelling and Storage of Chemical Waste as follows: Store chemical wastes with suitable containers. Seal and maintain the container to avoid leakage or spillage during storage, handling and transport Label chemical waste containers in both English and Chinese with instructions in accordance to Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation The container capacity should be smaller than 450 litres unless agreed by the EPD 	To avoid accident in waste storage and handling	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
WM11	Comply with the requirement of the chemical storage area: - Store only chemical waste and label clearly the chemical characters of the waste - Have at least 3 sides enclosed and protected from rainfall with cover - Provide sufficient ventilation - Have impermeable floor and has bunds to contain 110% of the capacity of the largest container or 20% of the total volume of the stored waste in the area, whichever is larger - Adequately spaced incompatible materials	To ensure proper storage of chemical waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
WM12	Transfer used lubricants, waste oils and other chemicals to oil recycling companies, if possible, and empty oil drums for reuse or refill. No direct or indirect discharge is permitted	To ensure proper disposal of chemical waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal (Chemical Waste) (General) Regulation, EIAO-TM
WM13	Hire licensed chemical waste disposal contractors for waste collection and removal. Dispose chemical waste at the approved CWTC at Tsing Yi or other licensed facility	To ensure proper disposal of chemical waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal (Chemical Waste) (General) Regulation, EIAO-TM
WM14	Provide recycling bins for sorting out recyclables for collection by recycling companies. Non-recyclables should be removed to designated landfills every day by licensed collectors to prevent environmental and health nuisance.	To ensure proper recycling and disposal of general refuse	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM
WM15	Terminate excavation work if contaminated soil is found. Prepare Land Contamination Plan (CAP) in accordance with EPD's Guidance Note for Contaminated Land Assessment and Remediation for identifying soil and groundwater sampling locations, followed by testing and remediation where necessary.	To identify presence of contaminated soil and provide proper remediation	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM

EM&A		Objectives of the Recommended	Who to	Location of the		What requirements or standard for
Ref.	Recommended Mitigation Measures	Measure &	Implement	measure	implement the	the measure to achieve
		Main Concerns to address	the measure		measure	
WM16	Marine sediment shall be cement solidified and and sent to laboratory for Toxicity Characteristics Leaching Procedure (TCLP) test according to USEPA Method 1311 and 6020. The results are considered satisfactory if Universal Treatment Standards (UTS) are being met as per Table 4.6 of Practice Guide of Investigation and Remediation of Contaminated Land. The Unconfined Compressive Strength (UCS) of the solidified sediment shall also reach 1000kPa according to the above Practice Guide.If the TCLP and UCS testing results cannot meet the criteria, the sediment shall be retreated by cement solidification. After passing the tests, the solidified sediment shall be backfilled on land after the piling work (e.g. for construction of new piers and abutments). Alternatively, the solidified sediment shall be delivered to public fill reception facilities for beneficial reuse as the last resort.	To prevent leakage of contaminants to water.	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO- TM, Practice Guide of Investigation and Remediation of Contaminated Land

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure		When to implement the measure	What requirements or standard for the measure to achieve
Landscape	and Visual					
Constructio	on Phase					
CM1	The construction area and contractor's temporary works areas should be minimised to avoid impacts on adjacent landscape. (Measure for mitigating Landscape and Visual impacts)	To minimise landscape footprint and reduce potential for visual impact	HyD's Contractor	Adjacent to existing bridge	Construction Phase	To approved Detailed Design and RLA's Approval
CM2	Reduction of construction period to practical minimum. (Measure for mitigating Visual impact)	To reduce duration of impacts	HyD's Contractor	N/A	Construction Phase	To approved Detailed Design and RLA's Approval
CM3	Construction traffic (land and sea) including construction plant, construction vessels and barges should be kept to a practical minimum. (Measure for mitigating Visual impact)	To minimise temporary visual impacts	HyD's Contractor	Connecting roads to site and Silver Mine Bay	Construction Phase	To approved Detailed Design and RLA's Approval
CM4	Erection of decorative mesh screens or construction hoardings around works areas in visually unobtrusive colours. (Measure for mitigating Visual impact)	To screen works sites and plant	HyD's Contractor	Around works areas	Construction Phase	To approved Detailed Design and RLA's Approval
CM5	Avoidance of excessive height and bulk of site buildings and structures. (Measure for mitigating Visual impact)	To reduce temporary visual impacts	HyD's Contractor	Within works sites	Construction Phase	To approved Detailed Design and RLA's Approval
CM6	Control of night-time lighting by hooding all lights and through minimisation of night working periods. (Measure for mitigating Visual impact)	To reduce temporary visual impacts	HyD's Contractor	Within works sites	Construction Phase	To approved Detailed Design and RLA's Approval

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to Implement the measure		When to implement the measure	What requirements or standard for the measure to achieve
CM7	All existing trees shall be carefully protected before, during construction and after construction. A Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees or trees to be transplanted, including trees in contractor's works areas for approval by the Registered Landscape Architect (RLA). This method statement for tree protection and transplanting shall make reference to "Guidelines on Tree Preservation during Construction" and "Guidelines on Tree Transplanting" published by GLTM of the DEVB. Early preparation of trees to be transplanted shall be undertaken to increase their likely survival rate following transplanting. (Measure for mitigating Landscape impact)	To minimise tree impacts and maximise tree preservation	HyD's Contractor	Within and adjacent to works sites	Construction Phase	To approved Detailed Design and RLA's Approval
CM8	Minimisation of Impacts to Wang Tong River through minimised and carefully controlled dredging for pile/abutment removal/construction works. (Measure for mitigating Landscape impact)	To minimise contamination of Wang Tong River	HyD's Contractor	Wang Tong River	Construction Phase	To approved Detailed Design and RLA's Approval

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 4.1

Action and Limit Level

Action and Limit Level

Action and Limit Level for Noise Monitoring

Monitoring Station ID	Time Period	Parameter	Action Level	Limit Level dB(A)
NMS1	0700-1900 hrs on normal weekdays	Leq, 30min	When one documented complaint is received	75

Baseline Level for Noise Monitoring (For reference and calculation of Construction Noise Levels (CNLs))

Monitoring		0700-1900 hrs on normal weekdays			
Monitoring Station ID	Monitoring Station	L _{eq} (30min), dB(A)			
		Average	Range		
NMS1	1 Tung Wan Tau Road	60.1	52.7 – 64.4		

Remark:

Each of daily 30-minute sampling period includes six consecutive L_{eq (5min)} readings.

Due to free-field measurement, a correction factor of +3 dB(A) is adopted.

All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured Leq – Baseline Leq = CNL), in order to facilitate the interpretation of the noise exceedance.

Action and Limit Level for Air Quality Monitoring

Monitoring Station	1-hour T	SP Level	24-hour TSP Level		
ID	Action Level (µg/m³)	Limit Level (µg/m ³)	Action Level (µg/m³)	Limit Level (µg/m³)	
AMS1	276.5	500.0	176.0	260.0	
AMS2	283.7	500.0	176.0	260.0	

Action and Limit Level for Water Monitoring

Monitoring		DO (m	ig/L) +	Turbidity	/ (NTU) ~	SS (m	ig/L)~
Station	Depth	Action	Limit	Action	Limit	Action	Limit
Station		Level	Level	Level	Level	Level	Level
W1				7.7 NTU or 120% of upstream control	12.4 NTU or 130% of upstream control	8.9 mg/L or 120% of upstream control	11.3 mg/L or 130% of upstream control
W2	Middle	dle 6.5 5.3	5.3	station's turbidity at the same tide of the same day, whichever is	station's turbidity at the same tide of the same day, whichever is	station's SS at the same tide of the same day, whichever is	station's SS at the same tide of the same day, whichever is
W4				higher	her higher	higher	higher
W5					10.5 NTU or		
W6	Middle			9.8 NTU or	130% of	12.6 mg/L or 120% of	15.0 mg/L or 130% of
W7				120% of upstream	upstream	upstream	upstream
W8	Surface & Middle	5.9	5.5	control station's turbidity at the same tide of the same day, whichever is higher	control station's turbidity at the same tide of the same day, whichever is higher	control station's SS at the same tide of the same day, whichever is higher	control station's SS at the same tide of the same day, whichever is higher
	Bottom	5.9	5.5		5 -		

Remarks +: For DO, non-compliance occurs when monitoring results is lower than the limits. Remarks ~: For SS and Turbidity, non-compliance occurs when monitoring results is larger than the limits.

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 4.2

Copies of Calibration Certificates

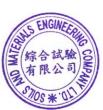
CERTIFICATE OF CALIBRATION

Certificate No.:	24CA0510 02-03		Page:	1 of	2
Item tested					
Description:	Acoustical Calibra	tor (Class 1)			
Manufacturer:	Honglim Co., Ltd.				
Type/Model No.:	HLES-02				
Serial/Equipment No.:	2016611465				
Adaptors used:	-				
Item submitted by					
Curstomer:	Lam Environment	al Services Limited.			
Address of Customer:	-				
Request No .:	<u></u>				
Date of receipt:	10-May-2024				
Date of test:	13-May-2024				
Reference equipment	used in the calib	oration			
Description:	Model:	Serial No.	Expiry Date:	Tracea	ble to:
Lab standard microphone	B&K 4180	3257888	15-Aug-2024	SCL	
Preamplifier	B&K 2673	3353200	13-Jun-2024	CEPRE	
Measuring amplifier	B&K 2610	2346941	13-Jun-2024	CEPRE	703
Signal generator	DS 360	61227	28-Jun-2024	CEPRE	5,62
Digital multi-meter	34401A	US36087050	01-Jun-2024	CEPRE	
Audio analyzer	8903B	GB41300350	13-Jun-2024	CEPRE	
Universal counter	53132A	MY40003662	07-Jun-2024	CEPRE	El
Ambient conditions					
Temperature:	21 ± 1 °C				
Relative humidity:	55 ± 10 %				
Air pressure:	1005 ± 5 hPa				

1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results


This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Date: 14-M

14-May-2024 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

C Soils & Materials Engineering Co., Ltd.

Approved Signatory: *

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

24CA0510 02-03

Page: 2 of

Measured Sound Pressure Level 1.

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	94.18	0.10

Sound Pressure Level Stability - Short Term Fluctuations 2,

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.016 dB
Estimated expanded uncertainty	0.005 dB

Actual Output Frequency 3,

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz Actual Frequency = 1003.2 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 1.2 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	Λ	- End -	\cap /
Calibrated by:	$1 \sim 6$	Checked by:	par-
	Fung Chi Yip		Chan Yuk Yiu
Date:	13-May-2024	Date:	14-May-2024

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

CERTIFICATE OF CALIBRATION

Certificate No.:	24CA0510 02-01		Page	1	of	2
Item tested						
Description:	Sound Level Mete	er (Class 1)	Microphone		Preamp	
Manufacturer:	Larson Davis	•	PCB		PCB	
Type/Model No.:	LxT1		377B02		PRMLxT	1L
Serial/Equipment No.:	0006346		326425		069995	
Adaptors used:			-		-	
Item submitted by						
Customer Name:	Lam Environmenta	al Services Limited				
Address of Customer:						
Request No.:	-					
Date of receipt:	10-May-2024					
Date of test:	13-May-2024					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:		Traceab	le to:
Multi function sound calibrator	B&K 4226	2288444	28-Aug-2024		CIGISME	С
Signal generator	DS 360	61227	28-Jun-2024		CEPREI	
Ambient conditions						
Temperature:	21 ± 1 °C					
Temperature: Relative humidity:	21 ± 1 °C 55 ± 10 %					

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

eng Jung

14-May-2024 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

24CA0510 02-01

Page

2 of 2

1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
- 1304807988782 - 1885078450757499008829-00	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leg	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
oo baa gunaan soo koo ku 🖌 isaan 12 may	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	A C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
5 5	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
5 5	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
n en en el el el en el en el en el en el el en el el en el	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

Test Data for Sound Level Meter								
Sound level me	eter type:	LxT1	Serial No.	0006346	Date	13-May-2024		
Microphone Preamp	type: type:	377B02 PRMLxT1L	Serial No. Serial No.	326425 069995	Report	: 24CA0510 02-01		

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	10.2	dB
Noise level in C weighting	12.5	dB
Noise level in Lin	21.6	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actual level		Tolerance	Deviation		
verenence/Expected never	non-integrated	integrated		non-integrated	integrated	
dB	dB	dB	+/- dB	dB	dB	
94.0	94.0	94.0	0.7	0.0	0.0	
99.0	99.0	99.0	0.7	0.0	0.0	
104.0	104.0	104.0	0.7	0.0	0.0	
109.0	109.0	109.0	0.7	0.0	0.0	
114.0	114.0	114.0	0.7	0.0	0.0	
115.0	115.0	115.0	0.7	0.0	0.0	
116.0	116.0	116.0	0.7	0.0	0.0	
117.0	117.0	117.0	0.7	0.0	0.0	
118.0	118.0	118.0	0.7	0.0	0.0	
119.0	119.0	119.0	0.7	0.0	0.0	
120.0	120.0	120.0	0.7	0.0	0.0	
89.0	89.0	89.0	0.7	0.0	0.0	
84.0	84.0	84.0	0.7	0.0	0.0	
79.0	79.0	79.0	0.7	0.0	0.0	
74.0	74.0	74.0	0.7	0.0	0.0	
69.0	69.0	69.0	0.7	0.0	0.0	
64.0	64.0	64.0	0.7	0.0	0.0	
59.0	59.0	59.0	0.7	0.0	0.0	
54.0	54.0	54.0	0.7	0.0	0.0	
49.0	49.0	49.0	0.7	0.0	0.0	
44.0	44.0	44.0	0.7	0.0	0.0	
39.0	39.0	39.0	0.7	0.0	0.0	
34.0	34.0	34.0	0.7	0.0	0.0	
33.0	33.0	33.0	0.7	0.0	0.0	

(c)Soils Materials Eng. Co., Ltd.

Page 2 of 5

Test Data for Sound Level Meter

Sound level me	eter type:	LxT1		Serial No.	0006346	Dat	te 13-Ma	y-2024
Microphone Preamp	type: type:	377B02 PRMLxT1L		Serial No. Serial No.	326425 069995	Rej	port: 24CA0	510 02-01
32.0		32.0	32.0	0.7		0.0	0.0	
31.0		30.9	30.9	0.7		-0.1	-0.1	
30.0		29.9	29.9	0.7		-0.1	-0.1	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-120	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
00.100	30.0	29.9	0.7	-0.1
20-120	118.0	118.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.6	1.5	1.5	0.0
63.1	94.0	67.8	67.8	1.5	1.5	0.0
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.4	1.0	1.0	0.0
501.2	94.0	90.8	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.0	1.0	1.0	0.0
7943.0	94.0	92.9	92.9	1.5	3.0	0.0
12590.0	94.0	89.7	89.6	3.0	6.0	-0.1

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation	
Hz	dB	dB	dB	+	-	dB	
1000.0	94.0	94.0	94.0	0.0	0.0	0.0	
31.6	94.0	91.0	91.0	1.5	1.5	0.0	
63.1	94.0	93.2	93.2	1.5	1.5	0.0	
125.9	94.0	93.8	93.8	1.0	1.0	0.0	
251.2	94.0	94.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	94.0	1.0	1.0	0.0	

(c)Soils Materials Eng. Co., Ltd.

S	Μ	E	C	La	b
0		1			

Page 3 of 5

0006346 Date 13-May-2024 Serial No. Sound level meter type: LxT1 377B02 Serial No. 326425 Microphone type: 069995 Report: 24CA0510 02-01 PRMLxT1L Serial No. Preamp type: 0.0 93.8 1.0 1.0 1995.0 94.0 93.8 0.1 93.3 1.0 1.0 3981.0 94.0 93.2 0.0 94.0 91.0 91.0 1.5 3.0 7943.0 87.6 3.0 6.0 -0.2 94.0 87.8 12590.0 Frequency weighting Lin: Tolerance(dB) Deviation Ref. level Expected level Actual level Frequency dB dB dB dB Hz 94.0 94.0 0.0 0.0 0.0 1000.0 94.0 0.0 94.0 94.0 94.0 1.5 1.5 31.6 94.0 94.0 1.5 1.5 0.0 94.0 63.1 94.0 0.0 94.0 1.0 1.0 125.9 94.0 94.0 1.0 0.0 94.0 1.0 251.2 94.0 94.0 94.0 94.0 1.0 1.0 0.0 501.2 1995.0 94.0 94.0 94.0 1.0 1.0 0.0 1.0 0.0 94.0 94.0 94.0 1.0 3981.0 94.1 1.5 3.0 0.1 94.0 7943.0 94.0 0.0 94.0 3.0 6.0 94.0 12590.0 94.0

TIME WEIGHTING FAST TEST

Test Data for Sound Level Meter

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

the orginal to obtain a out	(
Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation	
dB	dB	dB	+	-	dB	
116.0	111.9	111.9	1.0	1.0	0.0	

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z set the generator signal to single, Lzpeak)

Positive polarities.	(Weighting 2, set the generator signal to single, Expeation					
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation		
dB	dB	dB	+/- dB	dB		
119.0	119.0	119.5	2.0	0.5		

(c)Soils Materials Eng. Co., Ltd.

Sound level m	eter type:	LxT1	Serial No.	0006346	Date	13-May-2024
Microphone Preamp	type: type:	377B02 PRMLxT1L	Serial No. Serial No.	326425 069995	Report:	24CA0510 02-01
Negative polar	ities:					
Re	ef. level	Response to 10 n	ns Response to 100 us	Tolerance	Deviation	1
	dB	dB	dB	+/- dB	dB	
-	19.0	119.0	119.5	2.0	0.5	

RMS ACCURACY TEST

The RMS detector accuracy is tested Test frequency: Amplitude: Burst repetition frequency: Tone burst signal:		d on the reference range for a crest factor of 3. 2000 Hz 2 dB below the upper limit of the primary indicator range. 40 Hz 11 cycles of a sine wave of frequency 2000 Hz. (Set to INT)				
	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation	
Time wighting	dB	dB	indication(dB)	+/- dB	dB	
Slow	114.0+6.6	114.0	113.9	0.5	-0.1	

TIME WEIGHTING IMPULSE TEST

Time weighting I is teste	d on the reference range	(Set the SLM to LAImax)
Test frequency:	2000 Hz	
Amplitude:	The upper limit of the	e primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burst	t indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.1	1.0	-0.2

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst: Duration of tone burst:	4000 Hz 1 ms	:	2003			
Repetition Time	Level of tone burst	Expected Leq	Actual Leq	Tolerance	Deviation	Remarks
msec	dB	dB	dB	+/- dB	dB	
1000	90.0	90.0	89.9	1.0	-0.1	60s integ.
10000	80.0	80.0	80.0	1.0	0.0	6min. integ.

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

 The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

 Test frequency:
 4000 Hz

 Integration time:
 10 sec

(c)Soils Materials Eng. Co., Ltd.

Page 5 of 5 Test Data for Sound Level Meter Serial No. 0006346 Date 13-May-2024 LxT1 Sound level meter type: Serial No. 326425 377B02 Microphone type: Report: 24CA0510 02-01 Serial No. 069995 Preamp PRMLxT1L type: The integrating sound level meter set to Leq: Actual Tolerance Deviation Duration Rms level of Expected +/- dB dB dB dB msec tone burst (dB) 60.0 1.7 0.0 10 90.0 60.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	90.0	70.0	70.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:2000 HzAmplitude:2 dB below the upper limit of the printBurst repetition frequency:40 HzTone burst signal:11 cycles of a sine wave of frequency			Statements and a second sec	ange.	
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
114.3	113.3	110.3	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

 For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following:

 The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

 Test frequency:
 4000 Hz

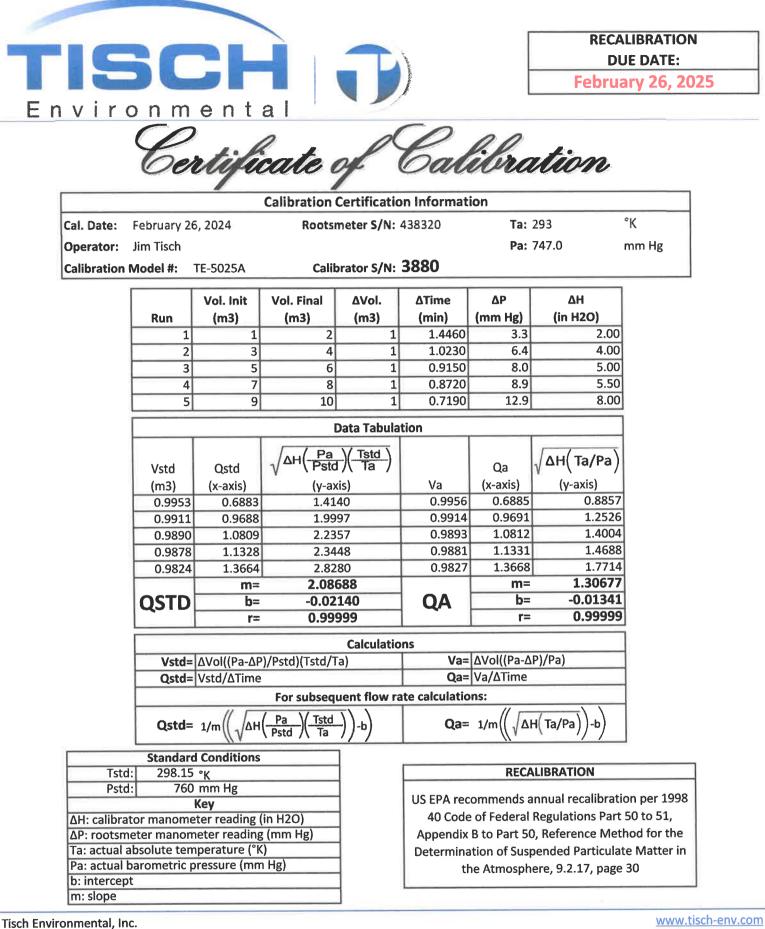
 Integration time:
 10 sec

 Single burst duration:
 1 msec

 Pres level
 Level reduced by

 Expected level
 Actual level
 Tolerance

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
121.0	120.0	80.0	80.0	2.2	0.0


ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation	
Hz	dB	Measured (dB)	+	-	dB	
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	77.9	1.0	1.0	0.0	
8000	92.9	90.9	1.5	3.0	-2.0	

-----END------

(c)Soils Materials Eng. Co., Ltd

145 South Miami Avenue

Village of Cleves, OH 45002

TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	AMS1	Calbration Date	:	2-May-24
Equipment no.	:	HVS020	Calbration Due Date	:	2-Jul-24

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		297.6	6	Kelvin	Pressure, P	a	1	1012	mmHg	
	Orifice Transfer Standard Information									
Equipment No.		3880		Slope, m _c	1.30677		Intercept, bc	-0.01341		
Last Calibration Date		16-Feb-2	:4		(Н х	(P _a / 10	13.3 x 298 /	'Τ _a) ^{1/2}		
Next Calibration Date		16-Feb-2	5		=	m _c x	$(Q_{std} + b_c)$			
				Calibratio	on of TSP					
Calibration	Mar	nometer Re	eading	c	۵ _{std}	Contin	uous Flow	IC	;	
Point	H (i	inches of v	water)	(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x29	98/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X -	-axis	(0	CFM)	Y-ax	kis	
1	1.2	1.2	2.4	1.	1956		34	33.99	960	
2	2.2	2.2	4.4	1.(6153		44	43.99	948	
3	3.2	3.2	6.4	1.!	9460		52	51.99	938	
4	4.6	4.6	9.2	2.:	3311		60	59.99	929	
5	5.3	5.3	10.6	2.!	5014		65	64.99	923	
By Linear Regression of	Y on X									
	Slope, m	=	23.3	810	Inte	ercept, b =	: 6.	.1521		
Correlation Co	pefficient*	=	0.99) 94						
Calibration	Accepted	=	Yes/	No**						

 * if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :						
Calibrated by	:	Harry Po		Checked by	:	Alan Ng
Date	:	2-May-24	_	Date	:	2-May-24

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	AMS2	Calbration Date	:	2-May-24
Equipment no.	:	HVS019	Calbration Due Date	:	2-Jul-24

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		297.	6	Kelvin	Kelvin Pressure, P a 1			012 mmHg	
	Orifice Transfer Standard Information								
Equipment No.		3880		Slope, m _c	1.3067	77	Intercept, bc	-0.01341	
Last Calibration Date		26-Feb-2	4		(Hx	P _a / 10)13.3 x 298 /	(T _a) ^{1/2}	
Next Calibration Date		26-Feb-2	5		=	m _c	$x Q_{std} + b_c$		
				Calibratio	on of TSP				
Calibration	Mar	nometer R	eading	c	Q _{std}	Conti	nuous Flow	IC	
Point	Н (і	H (inches of water)		(m ³	m ³ / min.) Recor		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis	
1	1.2	1.2	2.4	1.1	1956		23	22.9973	
2	1.6	1.6	3.2	1.:	3790		28	27.9967	
3	2.5	2.5	5.0	1.3	7212		38	37.9955	
4	3.4	3.4	6.8	2.0	0055		45	44.9947	
5	4.5	4.5	9.0	2.3	3057		52	51.9938	
By Linear Regression of	Y on X								
	Slope, m	=	26.3	258	Inte	ercept, b	= -8	.1223	
Correlation Coefficient* = 0.99			0.99	989					
Calibration	Accepted	=	Yes/	\o **					

 * if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :						
Calibrated by	:	Harry Po		Checked by	:	Alan ng
Date	:	2-May-24	_	Date	:	2-May-24

-

Calibration Certificate

Certificate No	. 401106		Page	1 of 2 Pages
Customer :	Lam Environmental Services Lir	mited		
Address :	19/F, Remex Centre, 42 Wong	Chuk Hang Road, H	long Kong	
Order No. :	Q40468		Date of receip	t : 5-Feb-24
Item Tested				
Description	: Aerosol Mass Monitor			
Manufacturer	: Met One		I.D.	: -
Model	: Aerocet 831		Serial No.	: W15449
Test Condit	ions			
Date of Test :	1-Mar-24		Supply Voltag	je :
Ambient Tem	perature : (23 ± 3)°C		Relative Humi	idity: (50 ± 25) %
Test Specif	ications			
Calibration che	ck.			
Calibration pro	cedure : Manufacturer recom	nmended method (g	ravimetric), Z28.	
Test Result	S		1	
All results were	e within the tolerance(s).			
	shown in the attached page(s).			
Main Test equi				-
Equipment No.		Cert. No.		Traceable to
S136B	Stop Watch	303117		SCL-HKSAR
S238	Micro Balance	108228		NIM-PRC
S201	Std. Test Dust	61291		NIST
S207B	Std. Flowmeter	LL-2104002489		NIM-PRC
will not include allo overloading, mis-h for any loss or dar The test equipmer	n this Calibration Certificate only relate to owance for the equipment long term drift, landling, or the capability of any other labor nage resulting from the use of the equipment used for calibration are traceable to Inte	variations with environm oratory to repeat the me nent.	iental changes, vibra asurement. Hong Ko	tion and shock during transportation, ong Calibration Ltd. shall not be liable
The test results ap	oply to the above Unit-Under-Test only			
Calibrated by	:Kin Wong		proved by :	Steve Kwan
This Certificate is issued Hong Kong Calibration L		Date	e: 1-Mar-24	
	o Industrial Centre, No. 58-76, Ta Chuen Ping Street,K	wai Chung, NT, Hong Kong.		

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 401106

Page 2 of 2 Pages

Results :

1. General

Internal Filters : checked and found clean.

2. Flow Meter

UUT Nominal	Measured Value	Tolerance	
Value (LPM)	(LPM)	(LPM)	Uncertainty
2.83	2.80	± 0.15	± 0.05

3. Timer

Reference Value	UUT Reading	Tolerance	Uncertainty
10' 00" 19	10 min	± 2 sec/hr	± 0.5 sec/hr

4. Dust Particle (TSP)

Applied Value	UUT Reading (µg/m ³)		
(µg/m³)	K Factor : 0.66	Tolerance	Uncertainty
410	391	± 20 %	± 10 %

Remark : 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. ISO 12103-1 A1 respirable standard test dust was used for the calibration.
- 4. The K Factor had been adjusted from 0.62 to 0.66.

----- END -----

Calibration Certificate

Certificate No	. 401107		Page	1 of 2 Pages
Customer :	Lam Environmental Services Li	mited		
Address :	19/F, Remex Centre, 42 Wong	Chuk Hang Road, I	Hong Kong	
Order No. :	Q40468		Date of receip	t: 5-Feb-24
Item Tested	[
Description	: Aerosol Mass Monitor			
Manufacturer	: Met One		I.D.	:
Model	: Aerocet 831		Serial No.	: Y23153
Test Condit	ions			
Date of Test :	1-Mar-24		Supply Voltag	je :
Ambient Tem	perature: (23 ± 3)°C		Relative Humi	idity:(50 ± 25) %
Test Specif	ications			
Calibration che	rck			
Calibration pro		mended method (o	aravimetric). Z28.	
			,,,,,	
Test Result	S			
All results were	e within the tolerance(s).			
The results are	shown in the attached page(s).			
Main Test equi	pment used:			
Equipment No.	Description	<u>Cert. No.</u>		Traceable to
S136B	Stop Watch	303117		SCL-HKSAR
S238	Micro Balance	108228		NIM-PRC
S201	Std. Test Dust	61291		NIST
S207B	Std. Flowmeter	LL-2104002489		NIM-PRC
will not include allo	n this Calibration Certificate only relate to wance for the equipment long term drift, andling, or the capability of any other lab	variations with environm	iental changes, vibrat	tion and shock during transportation,
for any loss or dan	nage resulting from the use of the equipm	ient.		
 Contraction of the second states in the second s	It used for calibration are traceable to Interply to the above Unit-Under-Test only	ernational System of Un	its (SI), or by reference	ce to a natural constant.
9	\square			Λ
Calibustadu		Α	proved by	(Etc. e
Calibrated by	Kin Wong	Ар	proved by :	Steve Kwan
This Certificate is issued		Dat	e: 1-Mar-24	
Hong Kong Calibration L	td.		in the second seco	
Unit 8B, 24/F., Well Fung Tel: 2425 8801 Fax: 24	g Industrial Centre, No. 58-76, Ta Chuen Ping Street,K 25 8646	wai onung, NT,Hong Kong.		
				0

Calibration Certificate

Certificate No. 4	01	1	07	7
-------------------	----	---	----	---

Page 2 of 2 Pages

Results :

1. General

Internal Filters : checked and found clean.

2. Flow Meter

UUT Nominal	Measured Value	Tolerance	
Value (LPM)	(LPM)	(LPM)	Uncertainty
2.83	2.80	± 0.15	± 0.05

3. Timer

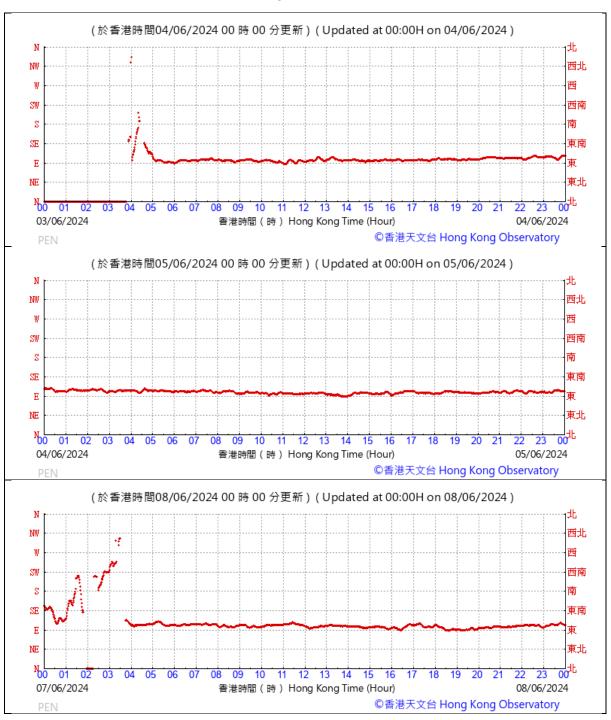
Reference Value	UUT Reading	Tolerance	Uncertainty	
9' 59" 91	10 min	± 2 sec/hr	± 0.5 sec/hr	

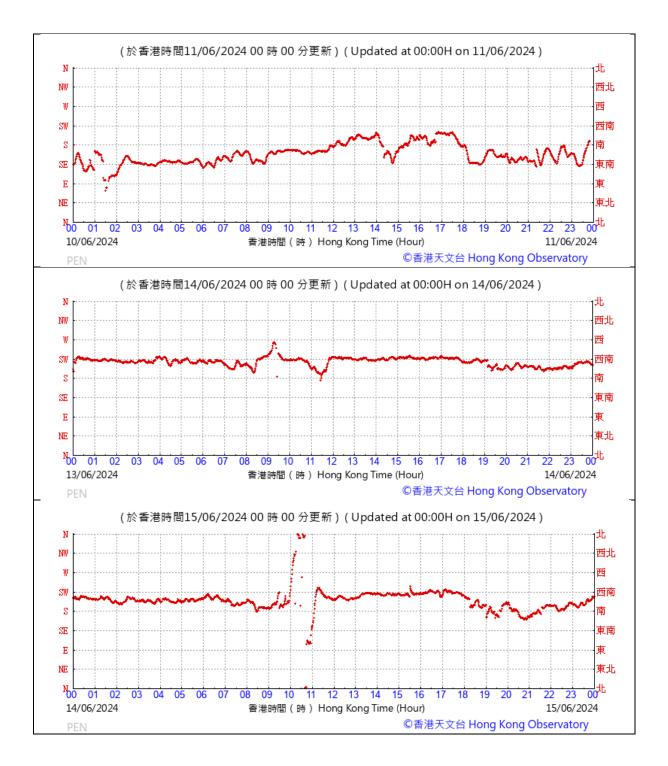
4. Dust Particle (TSP)

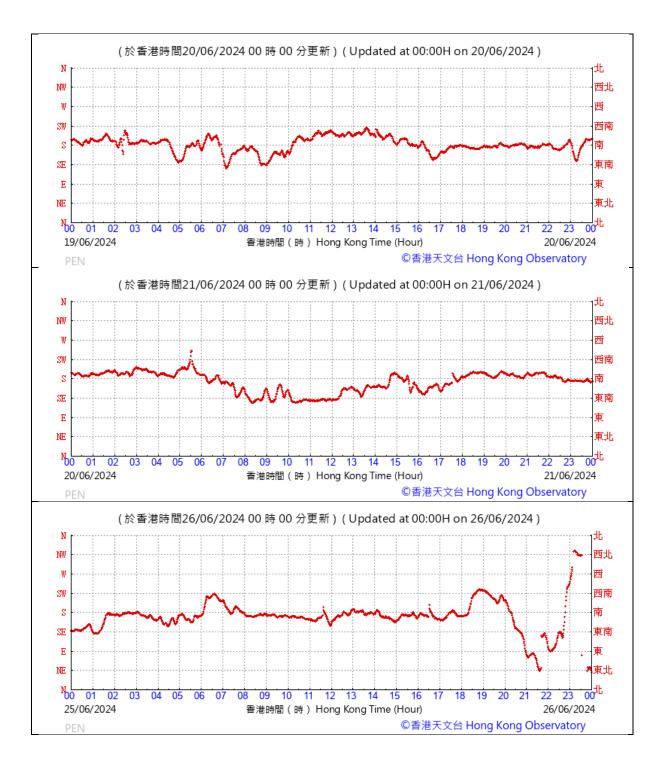
Applied Value (µg/m ³)	UUT Reading (µg/m ³) K Factor : 2.25	Tolerance	Uncertainty
670	704	± 20 %	±10%

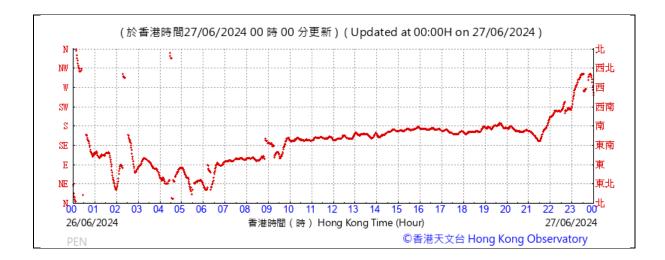
Remark : 1. UUT: Unit-Under-Test

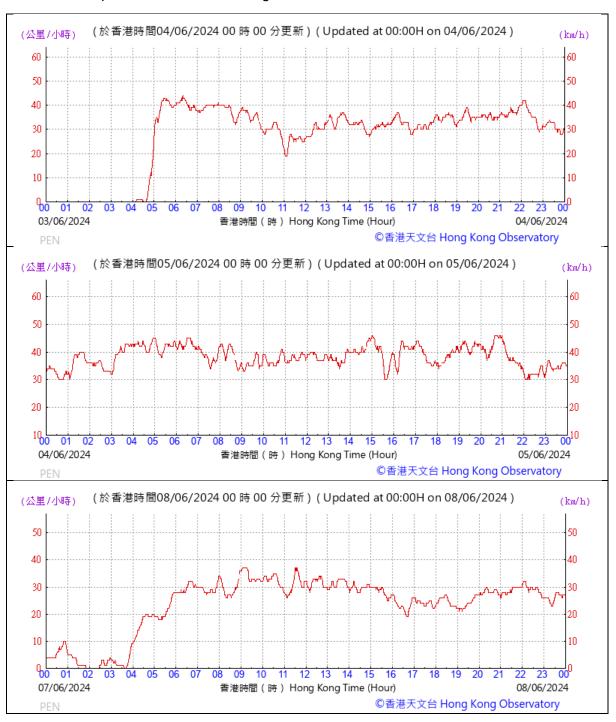
- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. ISO 12103-1 A1 respirable standard test dust was used for the calibration.
- 4. The K Factor had been adjusted from 1.00 to 2.25.


----- END -----

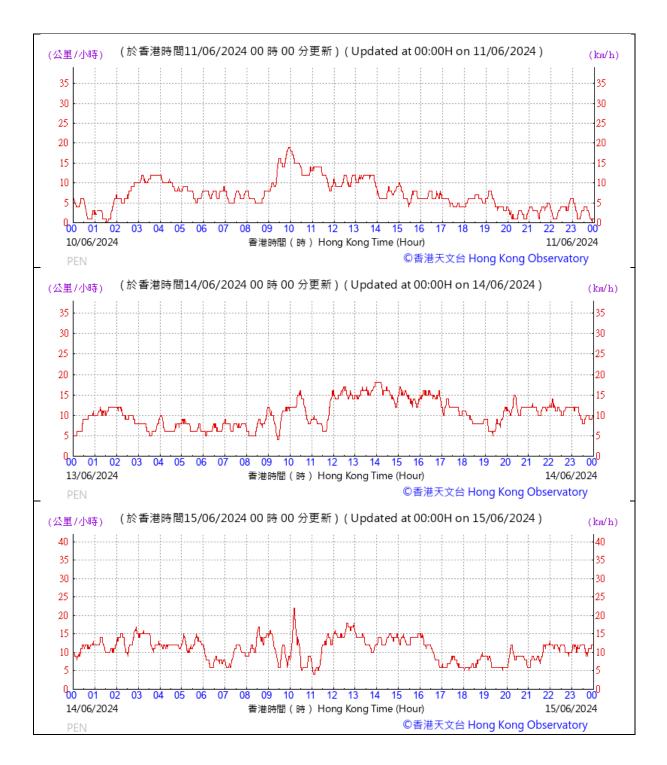

Contract No: HY/2019/14 New Wang Tong River Bridge

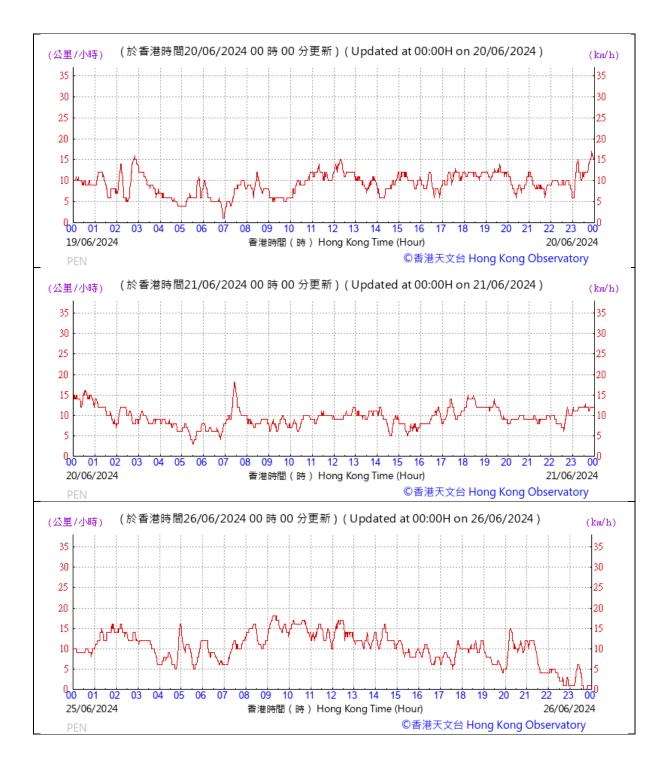

Appendix 4.3


Wind data extracted from HKO Automatic Weather Station



A. Wind Direction extracted from Peng Chau Automatic Weather





B. Wind Speed extracted from Peng Chau Automatic Weather Station

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 5.1

Monitoring Schedules for Reporting Month

Contract No. HY/2019/14 New Wang Tong River Bridge

Tentative Impact Air Quality, Noise and Water Quality Monitoring Schedule Jun 2024

			Jun 2024			
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
26 May	27 May	28 May	29 May	30 May	31 May	01 Jun
02 Jun	03 Jun	04 Jun 24-hr TSP	05 Jun 1-hr TSP NM	06 Jun	07 Jun	08 Jun 24-hr TSP
09 Jun	10 Jun	11 Jun 1-hr TSP NM	12 Jun	13 Jun	14 Jun 24-hr TSP	15 Jun 1-hr TSP
16 Jun	17 Jun	18 Jun	19 Jun	20 Jun 24-hr TSP	21 Jun 1-hr TSP NM	22 Jun
23 Jun	24 Jun	25 Jun	24-hr TSP	27 Jun 1-hr TSP NM	28 Jun	29 Jun
30 Jun	lut 10	02 Jul	Jul	04 Jul	05 Jul	Jul 90

Remarks:

24-hr TSP stands for 24-hour Total Suspended Particulates Monitoring;

1-hr TSP stands for 1-hour Total Suspended Particulate Monitoring;

NM stands for Noise Monitoring;

WQM stands for Water Quality Monitoring tenatively scheduled and

Based on previous discussion with contractor and IEC, all monitoring will not be scheduled on any public holidays and Sundays as there will be no construction works.

With the completion of all piling and substructure works for new footbridge and cycle bridge and the associated cofferdam removal on 8 March 2024, water quality impact monitoring is temporary suspended.

Contract No. HY/2019/14 New Wang Tong River Bridge

Tentative Impact Air Quality, Noise and Water Quality Monitoring Schedule Jul 2024

			Jul 2024			
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
30 Jun	01 Jul	02 Jul <mark>24-hr TSP</mark>	03 Jul 1-hr TSP NM	04 Jul	05 Jul	06 Jul
		WQM Mid-Ebb 9:39 Mid-Flood 16:28		WQM Mid-Ebb 11:13 Mid-Flood 18:39		WQM Mid-Ebb 12:40 Mid-Flood 18:30
07 Jul	08 Jul 24-hr TSP	09 Jul 1-hr TSP NM	10 Jul	11 Jul	12 Jul	13 Jul 24-hr TSP
	WQM Mid-Ebb 14:01 Mid-Flood 7:06		WQM Mid-Ebb 15:10 Mid-Flood 8:06		WQM Mid-Ebb 16:06 Mid-Flood 9:21	
	15 Jul <mark>1-hr TSP</mark> NM	16 Jul	17 Jul	18 Jul	19 Jul 24-hr TSP	20 Jul 1-hr TSP
	WQM Mid-Ebb 7:21 Mid-Flood 13:29		WQM Mid-Ebb 9:30 Mid-Flood 16:30		WQM Mid-Ebb 10:47 Mid-Flood 18:35	
21 Jul	22 Jul	23 Jul	24 Jul	25 Jul <mark>24-hr TSP</mark>	26 Jul 1-hr TSP NM	27 Jul
	WQM Mid-Ebb 12:59 Mid-Flood 18:15		WQM Mid-Ebb 14:29 Mid-Flood 7:41		WQM Mid-Ebb 15:54 Mid-Flood 9:26	
28 Jul	29 Jul	30 Jul	31 Jul 24-hr TSP	01 Aug	02 Aug	03 Aug
	WQM Mid-Ebb 7:11 Mid-Flood 13:35		WQM Mid-Ebb 9:32 Mid-Flood 16:55			

Remarks:

24-hr TSP stands for 24-hour Total Suspended Particulates Monitoring;

1-hr TSP stands for 1-hour Total Suspended Particulate Monitoring;

NM stands for Noise Monitoring;

WQM stands for Water Quality Monitoring tenatively scheduled and

Based on previous discussion with contractor and IEC, all monitoring will not be scheduled on any public holidays and Sundays as there will be no construction works.

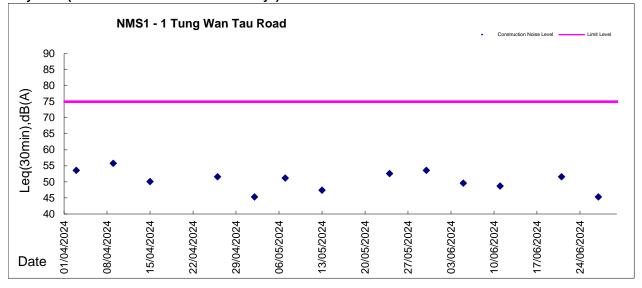
Actual WQM starting date will be subjected to the date of actual commencement of retaining wall S1 and Wing wall construction works after finishing the sheet-piling works.

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result


Day Time (0700 - 1900hrs on normal weekdays)

Location: NMS1 - 1 Tung Wan Tau Road

			Measure	ement Noi	se Level	Average Noise Level#	Baseline Level	Construction Noise Level	Limit Level
Date	Weather	Time	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}	L _{eq}	L _{eq}
			Unit:	dB(A), (30)-min)		Unit: dl	B(A), (30-min)	
5 Jun 2024	Sunny	10:30	49.6	52.1	41.0	49.6	60.1	<baseline level<="" td=""><td>75</td></baseline>	75
11 Jun 2024	Sunny	10:30	48.7	51.2	40.1	48.7	60.1	<baseline level<="" td=""><td>75</td></baseline>	75
21 Jun 2024	Sunny	10:30	47.8	50.4	40.2	47.8	60.1	<baseline level<="" td=""><td>75</td></baseline>	75
27 Jun 2024	Sunny	10:30	48.8	51.4	41.3	48.8	60.1	<baseline level<="" td=""><td>75</td></baseline>	75

Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 5.3

Air Quality Monitoring Results and Graphical Presentations

Report on 1-hour TSP monitoring at AMS1 - Slivermine Beach Resort Limit Level (μ g/m³) -

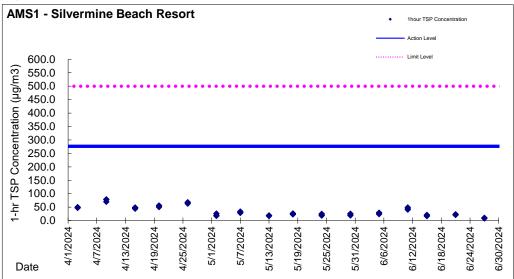
500.0

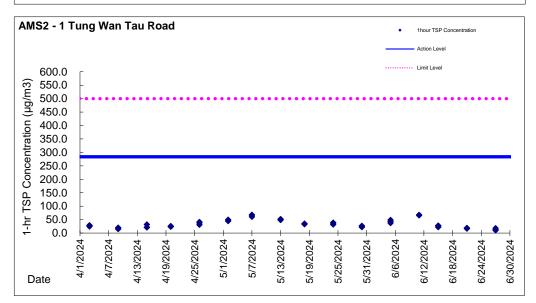
Date	Weather Condition	Time	TSP Level (µg/m³)
5-Jun-24	Cloudy	9:31	24.3
5-Jun-24	Cloudy	10:31	28.7
5-Jun-24	Cloudy	11:31	29.5
11-Jun-24	Cloudy	9:44	43.6
11-Jun-24	Cloudy	10:44	48.9
11-Jun-24	Cloudy	11:44	41.2
15-Jun-24	Cloudy	13:21	18.6
15-Jun-24	Cloudy	14:21	21.3
15-Jun-24	Cloudy	15:21	16.7
21-Jun-24	Sunny	9:14	21.4
21-Jun-24	Sunny	10:14	22.6
21-Jun-24	Sunny	11:14	23.8
27-Jun-24	Sunny	13:28	9.7
27-Jun-24	Sunny	14:28	8.6
27-Jun-24	Sunny	15:28	10.4

Report on 1-hour TSP monitoring at AMS2 - 1 Tung Wan Tau Road Limit Level (μ g/m³) -

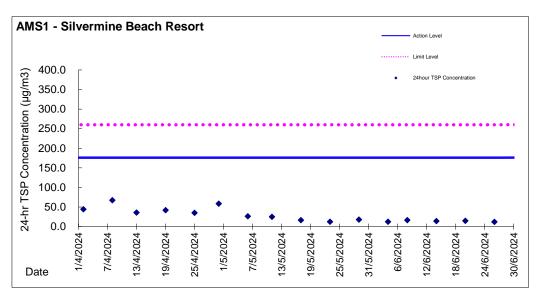
500.0

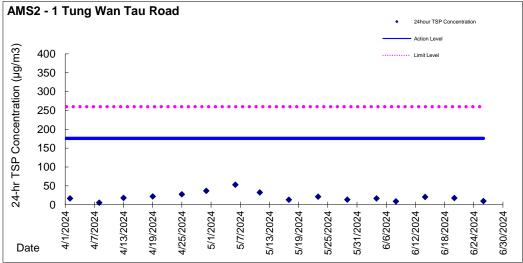
Date	Weather Condition	Time	TSP Level (µg/m³)
5-Jun-24	Cloudy	9:52	36.9
5-Jun-24	Cloudy	10:52	48.6
5-Jun-24	Cloudy	11:52	42.7
11-Jun-24	Cloudy	10:13	66.8
11-Jun-24	Cloudy	11:13	67.4
11-Jun-24	Cloudy	12:13	65.6
15-Jun-24	Cloudy	13:48	27.8
15-Jun-24	Cloudy	14:48	26.3
15-Jun-24	Cloudy	15:48	22.0
21-Jun-24	Sunny	9:26	17.9
21-Jun-24	Sunny	10:26	18.6
21-Jun-24	Sunny	11:26	16.5
27-Jun-24	Sunny	13:46	10.1
27-Jun-24	Sunny	14:46	17.6
27-Jun-24	Sunny	15:46	12.4


a	m											Nou		o. HY/2019/04 River Bridge
	Dete	Sampling	Weather	Elles and a	Filter V	/eight, g	Elapse	Time, hr	Sampling	FI	ow Rate, m ³ /n		Total	TSP Level,
	Date	Time	Condition	Filter paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Qsi	Final, Qsf	Average	Volume, m ³	µg/m³
AMS1	04/06/24	8:00	Cloudy	011676	2.7712	2.7884	5416.41	5440.41	24.00	0.74	1.21	0.98	1407	12.2
AMS1	08/06/24	8:00	Cloudy	011675	2.7591	2.7832	5440.41	5464.41	24.00	0.82	1.21	1.02	1463	16.5
AMS1	14/06/24	8:00	Cloudy	011674	2.7772	2.7982	5464.41	5488.41	24.00	0.88	1.20	1.04	1500	14.0
AMS1	20/06/24	8:00	Sunny	011673	2.7687	2.7920	5488.41	5512.41	24.00	0.99	1.20	1.09	1573	14.8
AMS1	26/06/24	8:00	Sunny	011672	2.7771	2.7959	5512.41	5536.41	24.00	0.99	1.20	1.09	1575	11.9
AMS2	04/06/24	8:00	Cloudy	011639	2.7733	2.8142	5893.27	5917.27	24.00	1.69	1.69	1.69	2440	16.8
AMS2	08/06/24	8:00	Cloudy	011638	2.7759	2.7947	5917.27	5941.27	24.00	1.47	1.47	1.47	2117	8.9
AMS2	14/06/24	8:00	Cloudy	011637	2.7612	2.8107	5941.27	5965.27	24.00	1.68	1.68	1.68	2420	20.5
AMS2	20/06/24	8:00	Sunny	011636	2.7706	2.8134	5965.27	5989.27	24.00	1.68	1.68	1.68	2417	17.7
AMS2	26/06/24	8:00	Sunny	011635	2.7634	2.7865	5989.27	6013.27	24.00	1.68	1.68	1.68	2422	9.5


Remarks:

New Wang Tong River Bridge





Graphic Presentation of TSP Result

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 5.4

Water Quality Monitoring Results and Graphical Presentations

Water Quality Monitoring Data

Due to no marine-based construction works in the reporting period, no water quality monitoring was conducted. Thus, no water quality monitoring data is presented.

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 5.5

Monthly Summary Waste Flow Table

Contract No.: <u>HY/2019/14</u>

(Notes: The following Waste Flow Table should be used for contracts either not included under the Pay for Safety and Environment Scheme or exempted from the full requirement for environmental management)

	Actual Quantities of Inert C&D Materials Generated							ctual Quantiti	es of C&D W	astes Generat	ed
Monthly ending	Total Quantity Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0
Mar	0.014	0.007	0	0	0	0	0	0	0	0	0.007
Apr	0	0	0	0	0	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0	0
Jun	0.01	0	0	0	0	0	0	0	0.003	0	0.007
Sub Total	0.024	0.007	0	0	0	0	0	0	0.003	0	0.014
Jul	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	0
Sept	0	0	0	0	0	0	0	0	0	0	0
Oct	0.007	0	0	0	0	0	0	0	0	0	0.007
Nov	0	0	0	0	0	0	0	0	0	0	0
Dec	0.005	0	0	0	0	0	0	0	0	0	0.005
Total	0.036	0.007	0	0	0	0	0	0	0.003	0	0.026

Monthly Summary Waste Flow Table for 2021

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Contract No.: <u>HY/2019/14</u>

(Notes: The following Waste Flow Table should be used for contracts either not included under the Pay for Safety and Environment Scheme or exempted from the full requirement for environmental management)

		Actual Quan	tities of Inert	C&D Materia	ls Generated		A	ctual Quantiti	es of C&D W	Actual Quantities of C&D Wastes Generated			
Monthly ending	Total Quantity Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse		
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000m ³)		
Jan	0	0	0	0	0	0	0	0	0	0	0		
Feb	0	0	0	0	0	0	0	0	0	0	0		
Mar	0.01	0	0	0	0.01	0	0	0	0	0	0		
Apr	0.01	0	0	0	0.01	0	0	0	0	0	0		
May	0.019	0	0	0	0.019	0	0	0	0	0	0.015		
Jun	0	0	0	0	0	0	0	0	0	0	0		
Sub Total	0.039	0	0	0	0.039	0	0	0	0	0	0.015		
Jul	0.009	0	0	0	0.009	0	0	0	0	0	0		
Aug	0.056	0	0	0	0.056	0	0	0	0	0	0.0672		
Sept	0.25	0	0	0	0.25	0	0	0	0	0	0		
Oct	0.022	0	0	0	0.022	0	0	0	0	0	0		
Nov	0.004	0	0	0	0.004	0	0	0	0	0	0.0111		
Dec	0.013	0	0	0	0.013	0	0	0	0	0	0.0114		
Total	0.393	0	0	0	0.393	0	0	0	0	0	0.1047		

Monthly Summary Waste Flow Table for 2022

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Contract No.: <u>HY/2019/14</u>

(Notes: The following Waste Flow Table should be used for contracts either not included under the Pay for Safety and Environment Scheme or exempted from the full requirement for environmental management)

		Actual Quan	tities of Inert	C&D Materia	ls Generated	_	A	ctual Quantiti	es of C&D W	astes Generat	ed
Monthly ending	Total Quantity Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0	0.0183
Apr	0	0	0	0	0	0	0	0	0	0	0.0134
May	0.008	0	0	0	0.008	0	0	0	0	0	0.0125
Jun	0	0	0	0	0	0	0	0	0	0	0
Sub Total	0.401	0	0	0	0.401	0	0	0	0	0	0.1489
Jul	0.0132	0	0	0	0.0132	0	0	0	0	0	0.0092
Aug	0.04147	0	0	0	0.04147	0	0	0	0	0	0
Sept	0.01687	0	0	0	0.01687	0	0	0	0	0	0.0312
Oct	0.05277	0	0	0	0.05277	0	0	0	0	0	0.0081
Nov	0	0	0	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0	0	0	0	0
Total	0.52531	0	0	0	0.52531	0	0	0	0	0	0.1974

Monthly Summary Waste Flow Table for 2023

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Contract No.: <u>HY/2019/14</u>

(Notes: The following Waste Flow Table should be used for contracts either not included under the Pay for Safety and Environment Scheme or exempted from the full requirement for environmental management)

		Actual Quan	tities of Inert	C&D Materia	ls Generated		A	ctual Quantiti	es of C&D W	astes Generat	ed
Monthly ending	Total Quantity Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000 kg)	(in'000m ³)
Jan	0.22423	0	0	0	0.22423	0	0	0	0	0	0.0089
Feb	0.04492	0	0	0	0.04492	0	0	0	0	0	0.0089
Mar	0	0	0	0	0	0	0	0	0	0	0.007
Apr	0.03549	0	0	0	0.03549	0	0	0	0	0	0.01925
May	0.08588	0	0	0	0.08588	0	0	0	0	0	0.00785
Jun	0.06943	0	0	0	0.06943	0	0	0	0	0	0.0157
Sub Total	0.98526	0	0	0	0.98526	0	0	0	0	0	0.2650
Jul											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	0.98526	0	0	0	0.98526	0	0	0	0	0	0.2650

Monthly Summary Waste Flow Table for 2024

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 6.1

Event Action Plans

Event and Action Plan for Construction Air Quality

EVENT		ACTIO	N	
LVLIVI	ET	IEC	ER	CONTRACTOR
ACTION LEVE	L			
1. Exceedance for one sample	 Inform IEC, ER and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Repeat measurement to confirm finding. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Inform IEC, ER and Contractor; Identify source; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC, ER and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET/ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER and IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

Event and Action Plan for Construction Air Quality

EVENT		A	ACTION	
	ET	IEC	ER	CONTRACTOR
LIMIT LEVEL				
1.Exceedance for one sample	 Inform IEC, ER, Contractor and EPD; Identify source, investigate the causes of exceedance and propose remedial measures; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Discuss with ET and IEC on remedial actions Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2.Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER and Contractor to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to terminate that portion of work until the exceedance ceases. 	 Take immediate action to avoid further exceedance; Discuss with ET and IEC on remedial actions Submit proposals for remedial actions to ER and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance ceases.

Event and Action Plan for Construction Noise

EVENT	ACTION								
	ET	IEC	ER	CONTRACTOR					
Action Level	 Notify IEC, ER and Contractor of exceedance; Identify source Investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC, ER and Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to ER with copy to ET and IEC; Implement noise mitigation proposals. 					
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented; If exceedance continues, investigate what portion of the work is responsible and instruct the Contractor to terminate that portion of work until the exceedance ceases. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to ER with copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Terminate the relevant portion of works as determined by the ER until the exceedance ceases. 					

Event and Action Plan for Water Quality

	ACTION							
EVENT	ET Leader	IEC	ER	Contractor				
ACTION LEVEL								
Action level being exceeded by one sampling day	 Repeat in situ measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods. 	1. Check monitoring data submitted by ET and Contractor's working methods.	 Confirm receipt of notification of non-compliance in writing; Notify Contractor. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate. 				
Action level being exceeded by two or more consecutive sampling days	 Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Supervise the implementation of mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures. 				

Event and Action Plan for Water Quality

	ACTION							
EVENT	ET Leader	IEC	ER	Contractor				
LIMIT LEVEL								
Limit level being exceeded by one sampling day	 Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER. 				
Limit level being exceeded by two or more consecutive sampling days	 Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 				

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 6.2

Summary for Notification of Exceedance

Summary for Notification of Exceedance

Ref No.	Date	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up Action
-	-	-	-	-	-	-	-

Ref. No.	Date	Time	Location	Construction Noise Level	Parameter	Action Level	Limit Level	Follow-up action
-	-	-	-	-	-	-	-	-

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 8.1

Complaint Log

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
-	-	-	-	-		-

Contract No: HY/2019/14 New Wang Tong River Bridge

Appendix 9.1

Construction Programme of Individual Contracts

韱別碼	Task Name	Period	Start	End	2024年上半年
1	Trial trench inspection along the Sea Wall	13 days	5月27日星期一	6月11日星期二	27/5 11/6
2	Design modification by GEO for retaining walls D	9 days	6月12日星期三	6月21日星期五	12/6 🎽 2
3	Retaining walls Types D Construction	30 days	6月22日星期六	7月27日星期六	22/6
4	Stainless steel hand railing material testing	14 days	6月26日星期三	7月12日星期五	26/6
5	Stainless steel hand railing fabrication for footbridge	30 days	7月13日星期六	8月16日星期五	1
6	Stainless steel hand railing installation for footbridge	25 days	8月17日星期六	9月14日星期六	
7	Type II railing fabrication at footbridge northern end	18 days	6月22日星期六	7月13日星期六	22/6
8	Type II railing installation at footbridge northern end	10 days	7月13日星期六	7月24日星期三	1
9	Design modification by GEO for S1 Retaining Wall	33 days	6月22日星期六	7月31日星期三	22/6
.0	Sheet piling installation for wing wall and S1 retaining construction	5 days	8月1日星期四	8月6日星期二	
.1	Wing Wall Construction	15 days	8月7日星期三	8月23日星期五	
2	S1 Retaining Wall Construction	30 days	8月24日星期六	9月28日星期六	
.3	RCS1, RCS2 and Outlet Construction	15 days	9月30日星期一	10月18日星期五	
4	S2 Retaining Wall Construction	20 days	9月30日星期一	10月24日星期四	
15	Stainless steel hand railing fabrication for Cycle bridge	25 days	8月17日星期六	9月14日星期六	
.6	Bicycle parking rail installation	4 days	9月16日星期一	9月20日星期五	
17	Stainless steel hand railing installation for Cycle bridge	25 days	9月16日星期一	10月17日星期四	

12/7

