TABLE OF CONTENTS

 

1.     Introduction. 2

2.     Model Input. 2

3.     Modelling Scenarios. 3

4.     Model Results. 8

 

 

List of Tables

Table A5-1-1..... Diffuser Configuration of SCISTW Outfall........................................................................... 2

Table A5-1-2..... Density Profile of SCISTW Outfall.................................................................................... 2

Table A5-1-3..... Ambient Current Velocity at SCISTW Outfall..................................................................... 3

Table A5-1-4..... Effluent Flow Adopted in Near-Field Model........................................................................ 3

Table A5-1-5..... Summary of Proposed Model Runs for Scenario 2009........................................................ 4

Table A5-1-6..... Summary of Proposed Model Runs for Scenario 2013........................................................ 5

Table A5-1-7..... Summary of Proposed Model Runs for Scenario 2020........................................................ 6

Table A5-1-8..... Summary of Proposed Model Runs for Ultimate Scenario................................................... 7

Table A5-1-9..... Example of Background Build Up Correction..................................................................... 8

Table A5-1-10.... Summary of Results from VISJET Simulations for Scenario 2009........................................ 9

Table A5-1-11.... Summary of Results from VISJET Simulations for Scenario 2013...................................... 10

Table A5-1-12.... Summary of Results from VISJET Simulations for Scenario 2020...................................... 11

Table A5-1-13.... Summary of Results from VISJET Simulations for Ultimate Scenario................................. 12

Table A5-1-14.... Summary of VISJET Initial Dilution Factors..................................................................... 13

Table A5-1-15.... Summary of Results for Far Field Model......................................................................... 13

 

 

List of Attachments

 

Attachment 1 ... Submarine Outfall of SCISTW


1.                   Introduction

 

1.1               The VISJET model was used to simulate the near-field plume behaviour of the outfall discharges within a relatively short distance from the effluent discharge location.   Hence, the zone of initial dilution (ZID) and vertical structure of the plume could be located.  For a surface plume, initial dilution is defined as the dilution obtained at the centre line of the plume when the sewage reaches the surface.  For a trapped plume, initial dilution is defined as the dilution obtained at the center line of the plume where the plume reaches the maximum rise height when the vertical momentum / buoyancy of the plume becomes zero.

 

1.2               The initial dilution obtained from the near field model was used to assess the TRC and CBP impact in the near field.  Detailed assessment of the TRC and CBP impact is provided under the Human Health and Ecological Risk Assessment in Section 6 of the EIA report.  The near field results were also used to determine where the effluent loading from the SCISTW outfall would be placed within the far field model (both horizontally and vertically).  The near field modelling was carried out with reference to the approach adopted in the EEFS.  Details of the modelling approach are presented in the “EEFS Working Paper No. 7 Scenarios Simulation / Prediction Results (Final)”.

 

2.                   Model Input

 

2.1               Key input to the near-field model include:

 

l                Outfall diffuser configuration

l                Ambient current speed

l                Vertical density profile

l                Effluent flow rate

 

2.2               Details of the outfall diffuser configuration adopted for the near field modelling are given in Table A5-1-1Attachment 1 shows the submarine outfall of SCISTW.

 

Table A5-1-1     Diffuser Configuration of SCISTW Outfall

Description

Value

Remark

Modelling diffuser length (m)

1200

 

Outfall diameter (m)

3.24

 

Riser separation (m)

52

 

No. of risers

24

 

Riser height (m)

1.5

 

Ports per riser

8

The horizontal angles of discharge for 8 ports are 0o, 45o, 90o, 135o, 180o, 225o, 270o and 315o.

Riser radius (m)

0.13

 

Port diameter (m)

0.25

Port diameters ranges from 0.225m to 0.275m.  An average value of 0.25m is adopted for modeling.

 

2.3               Vertical density profiles were derived for the SCISTW outfall under the EEFS using the data from EPD’s routine water quality monitoring for the period from 1994 to 2002.  Four density profiles were available from the EEFS for one dry season profile (D1) and three wet season profiles, representing three degrees of wet season stratification, namely W1, W2 and W3 respectively.   Table A5-1-2 shows the density profiles for D1, W1, W2 and W3 and their probabilities of occurrence.  Details of the vertical density profiles are given in the “EEFS Working Paper No. 7”.   Based on the EEFS, the total water depth was assumed to be 17 m.

 

Table A5-1-2     Density Profile of SCISTW Outfall

Depth (m)

D1 (σt)

W1 (σt)

W2 (σt)

W3 (σt)

1

22.14

19.99

17.23

15.45

2

22.20

20.03

17.35

15.65

3

22.21

20.12

17.59

16.08

4

22.22

20.26

17.81

16.60

5

22.25

20.39

18.07

17.14

6

22.27

20.60

18.48

17.78

7

22.27

20.86

18.99

18.54

8

22.29

21.08

19.34

19.36

9

22.29

21.27

19.71

20.02

10

22.29

21.39

19.92

20.39

11

22.29

21.39

20.43

20.99

12

22.32

21.39

20.65

21.26

13

22.32

21.39

20.65

21.26

14

22.32

21.39

20.65

21.26

15

22.32

21.39

20.65

21.26

16

22.32

21.39

20.65

21.26

17

22.32

21.39

20.65

21.26

Probabilistic Occurrence:

0.58

0.08

0.25

0.08

 

2.4               Measurements of ambient current velocity were conducted under the EEFS.   The current data were analyzed for different vertical depths under the EEFS and were calculated as 10, 50 and 90 percentile values for both dry and wet seasons, namely V10, V50 and V90 respectively as shown in Table A5-1-3.  It is assumed that the outfall would be perpendicular to the orientation of the predominant current direction.

 

Table A5-1-3     Ambient Current Velocity at SCISTW Outfall

Depth (m)

Dry V10 (cm/s)

Dry V50 (cm/s)

Dry V90 (cm/s)

Wet V10 (cm/s)

Wet V50 (cm/s)

Wet V90 (cm/s)

0-6

9.3

24.2

45.7

9.0

24.0

46.0

>6

8.4

22.1

43.0

8.0

22.0

43.0

Probabilistic Occurrence:

0.2

0.6

0.2

0.2

0.6

0.2

 

3.                   Modelling Scenarios

 

3.1               The near field impact was modelled for different combinations of vertical density profile and ambient current velocity for 2009, 2013, 2020 and ultimate scenarios. For each assessment year, a set of three effluent flow rates, Q10, Q50 and Q90 were used, all based on the percentile of occurrence. The Q50 flow rate (the flow rate below which 50 percent of all effluent flow rates occur) was based on the average flow rate. The Q10 flow rate (the flow rate below which 10 percent of all flow rates occur) was calculated using a Q10 to Q50 ratio of 0.60. The Q90 flow rate was calculated using a Q90 to Q50 ratio of 1.28. These ratios are based on the findings from EEFS which are also in line with the actual measurement of effluent flow from SCISTW in 2004 and 2005. Based on the EEFS, the Q10 was representative of the flow rates that occurred between the 0 and 20 percentile (20 percent) and the Q90 was representative of the flow rates that occurred between the 80 and 100 percentile (20 percent) whereas the Q50 was representative of the remaining 60 percent. Table A5-1-4 below summarizes the adopted effluent flows.

 

Table A5-1-4     Effluent Flow Adopted in Near-Field Model

Scenarios

ID

% of occurrence

Total Flow

Flow per Riser

Flow Per Port

(m3/d)

(m3/s)

(m3/s)

2009

Q10

20

   945,780

0.4561

0.0570

Q50

60

1,576,300

0.7602

0.0950

Q90

20

2,017,567

0.9730

0.1216

2013

Q10

20

   996,660

0.4806

0.0601

Q50

60

1,661,100

0.8011

0.1001

Q90

20

2,126,105

1.0253

0.1282

2020

Q10

20

1,404,960

0.6775

0.0847

Q50

60

2,341,600

1.1292

0.1412

Q90

20

2,997,103

1.4454

0.1807

Ultimate

Q10

20

1,680,000

0.8102

0.1013

Q50

60

2,800,000

1.3503

0.1688

Q90

20

3,584,000

1.7284

0.2160

Note: Flows are divided equally amongst the risers and ports in the SCISTW outfall.

 

3.2               Based on the ambient density profile and current velocity, a total of 36 model runs was carried out under each scenario as listed in Table A5-1-5 to Table A5-1-8.

 

Table A5-1-5     Summary of Proposed Model Runs for Scenario 2009

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

S1-1

Q10

0.2

D1

0.58

Dry V10

0.2

0.0232

S1-2

Q50

0.6

D1

0.58

Dry V10

0.2

0.0696

S1-3

Q90

0.2

D1

0.58

Dry V10

0.2

0.0232

S1-4

Q10

0.2

D1

0.58

Dry V50

0.6

0.0696

S1-5

Q50

0.6

D1

0.58

Dry V50

0.6

0.2088

S1-6

Q90

0.2

D1

0.58

Dry V50

0.6

0.0696

S1-7

Q10

0.2

D1

0.58

Dry V90

0.2

0.0232

S1-8

Q50

0.6

D1

0.58

Dry V90

0.2

0.0696

S1-9

Q90

0.2

D1

0.58

Dry V90

0.2

0.0232

S1-10

Q10

0.2

W1

0.08

Wet V10

0.2

0.0032

S1-11

Q50

0.6

W1

0.08

Wet V10

0.2

0.0096

S1-12

Q90

0.2

W1

0.08

Wet V10

0.2

0.0032

S1-13

Q10

0.2

W1

0.08

Wet V50

0.6

0.0096

S1-14

Q50

0.6

W1

0.08

Wet V50

0.6

0.0288

S1-15

Q90

0.2

W1

0.08

Wet V50

0.6

0.0096

S1-16

Q10

0.2

W1

0.08

Wet V90

0.2

0.0032

S1-17

Q50

0.6

W1

0.08

Wet V90

0.2

0.0096

S1-18

Q90

0.2

W1

0.08

Wet V90

0.2

0.0032

S1-19

Q10

0.2

W2

0.25

Wet V10

0.2

0.01

S1-20

Q50

0.6

W2

0.25

Wet V10

0.2

0.03

S1-21

Q90

0.2

W2

0.25

Wet V10

0.2

0.01

S1-22

Q10

0.2

W2

0.25

Wet V50

0.6

0.03

S1-23

Q50

0.6

W2

0.25

Wet V50

0.6

0.09

S1-24

Q90

0.2

W2

0.25

Wet V50

0.6

0.03

S1-25

Q10

0.2

W2

0.25

Wet V90

0.2

0.01

S1-26

Q50

0.6

W2

0.25

Wet V90

0.2

0.03

S1-27

Q90

0.2

W2

0.25

Wet V90

0.2

0.01

S1-28

Q10

0.2

W3

0.08

Wet V10

0.2

0.0032

S1-29

Q50

0.6

W3

0.08

Wet V10

0.2

0.0096

S1-30

Q90

0.2

W3

0.08

Wet V10

0.2

0.0032

S1-31

Q10

0.2

W3

0.08

Wet V50

0.6

0.0096

S1-32

Q50

0.6

W3

0.08

Wet V50

0.6

0.0288

S1-33

Q90

0.2

W3

0.08

Wet V50

0.6

0.0096

S1-34

Q10

0.2

W3

0.08

Wet V90

0.2

0.0032

S1-35

Q50

0.6

W3

0.08

Wet V90

0.2

0.0096

S1-36

Q90

0.2

W3

0.08

Wet V90

0.2

0.0032


Table A5-1-6     Summary of Proposed Model Runs for Scenario 2013

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

S2-1

Q10

0.2

D1

0.58

Dry V10

0.2

0.0232

S2-2

Q50

0.6

D1

0.58

Dry V10

0.2

0.0696

S2-3

Q90

0.2

D1

0.58

Dry V10

0.2

0.0232

S2-4

Q10

0.2

D1

0.58

Dry V50

0.6

0.0696

S2-5

Q50

0.6

D1

0.58

Dry V50

0.6

0.2088

S2-6

Q90

0.2

D1

0.58

Dry V50

0.6

0.0696

S2-7

Q10

0.2

D1

0.58

Dry V90

0.2

0.0232

S2-8

Q50

0.6

D1

0.58

Dry V90

0.2

0.0696

S2-9

Q90

0.2

D1

0.58

Dry V90

0.2

0.0232

S2-10

Q10

0.2

W1

0.08

Wet V10

0.2

0.0032

S2-11

Q50

0.6

W1

0.08

Wet V10

0.2

0.0096

S2-12

Q90

0.2

W1

0.08

Wet V10

0.2

0.0032

S2-13

Q10

0.2

W1

0.08

Wet V50

0.6

0.0096

S2-14

Q50

0.6

W1

0.08

Wet V50

0.6

0.0288

S2-15

Q90

0.2

W1

0.08

Wet V50

0.6

0.0096

S2-16

Q10

0.2

W1

0.08

Wet V90

0.2

0.0032

S2-17

Q50

0.6

W1

0.08

Wet V90

0.2

0.0096

S2-18

Q90

0.2

W1

0.08

Wet V90

0.2

0.0032

S2-19

Q10

0.2

W2

0.25

Wet V10

0.2

0.01

S2-20

Q50

0.6

W2

0.25

Wet V10

0.2

0.03

S2-21

Q90

0.2

W2

0.25

Wet V10

0.2

0.01

S2-22

Q10

0.2

W2

0.25

Wet V50

0.6

0.03

S2-23

Q50

0.6

W2

0.25

Wet V50

0.6

0.09

S2-24

Q90

0.2

W2

0.25

Wet V50

0.6

0.03

S2-25

Q10

0.2

W2

0.25

Wet V90

0.2

0.01

S2-26

Q50

0.6

W2

0.25

Wet V90

0.2

0.03

S2-27

Q90

0.2

W2

0.25

Wet V90

0.2

0.01

S2-28

Q10

0.2

W3

0.08

Wet V10

0.2

0.0032

S2-29

Q50

0.6

W3

0.08

Wet V10

0.2

0.0096

S2-30

Q90

0.2

W3

0.08

Wet V10

0.2

0.0032

S2-31

Q10

0.2

W3

0.08

Wet V50

0.6

0.0096

S2-32

Q50

0.6

W3

0.08

Wet V50

0.6

0.0288

S2-33

Q90

0.2

W3

0.08

Wet V50

0.6

0.0096

S2-34

Q10

0.2

W3

0.08

Wet V90

0.2

0.0032

S2-35

Q50

0.6

W3

0.08

Wet V90

0.2

0.0096

S2-36

Q90

0.2

W3

0.08

Wet V90

0.2

0.0032


Table A5-1-7     Summary of Proposed Model Runs for Scenario 2020

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

S3-1

Q10

0.2

D1

0.58

Dry V10

0.2

0.0232

S3-2

Q50

0.6

D1

0.58

Dry V10

0.2

0.0696

S3-3

Q90

0.2

D1

0.58

Dry V10

0.2

0.0232

S3-4

Q10

0.2

D1

0.58

Dry V50

0.6

0.0696

S3-5

Q50

0.6

D1

0.58

Dry V50

0.6

0.2088

S3-6

Q90

0.2

D1

0.58

Dry V50

0.6

0.0696

S3-7

Q10

0.2

D1

0.58

Dry V90

0.2

0.0232

S3-8

Q50

0.6

D1

0.58

Dry V90

0.2

0.0696

S3-9

Q90

0.2

D1

0.58

Dry V90

0.2

0.0232

S3-10

Q10

0.2

W1

0.08

Wet V10

0.2

0.0032

S3-11

Q50

0.6

W1

0.08

Wet V10

0.2

0.0096

S3-12

Q90

0.2

W1

0.08

Wet V10

0.2

0.0032

S3-13

Q10

0.2

W1

0.08

Wet V50

0.6

0.0096

S3-14

Q50

0.6

W1

0.08

Wet V50

0.6

0.0288

S3-15

Q90

0.2

W1

0.08

Wet V50

0.6

0.0096

S3-16

Q10

0.2

W1

0.08

Wet V90

0.2

0.0032

S3-17

Q50

0.6

W1

0.08

Wet V90

0.2

0.0096

S3-18

Q90

0.2

W1

0.08

Wet V90

0.2

0.0032

S3-19

Q10

0.2

W2

0.25

Wet V10

0.2

0.01

S3-20

Q50

0.6

W2

0.25

Wet V10

0.2

0.03

S3-21

Q90

0.2

W2

0.25

Wet V10

0.2

0.01

S3-22

Q10

0.2

W2

0.25

Wet V50

0.6

0.03

S3-23

Q50

0.6

W2

0.25

Wet V50

0.6

0.09

S3-24

Q90

0.2

W2

0.25

Wet V50

0.6

0.03

S3-25

Q10

0.2

W2

0.25

Wet V90

0.2

0.01

S3-26

Q50

0.6

W2

0.25

Wet V90

0.2

0.03

S3-27

Q90

0.2

W2

0.25

Wet V90

0.2

0.01

S3-28

Q10

0.2

W3

0.08

Wet V10

0.2

0.0032

S3-29

Q50

0.6

W3

0.08

Wet V10

0.2

0.0096

S3-30

Q90

0.2

W3

0.08

Wet V10

0.2

0.0032

S3-31

Q10

0.2

W3

0.08

Wet V50

0.6

0.0096

S3-32

Q50

0.6

W3

0.08

Wet V50

0.6

0.0288

S3-33

Q90

0.2

W3

0.08

Wet V50

0.6

0.0096

S3-34

Q10

0.2

W3

0.08

Wet V90

0.2

0.0032

S3-35

Q50

0.6

W3

0.08

Wet V90

0.2

0.0096

S3-36

Q90

0.2

W3

0.08

Wet V90

0.2

0.0032

 


Table A5-1-8     Summary of Proposed Model Runs for Ultimate Scenario

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

ID

Probability of occurrence

S4-1

Q10

0.2

D1

0.58

Dry V10

0.2

0.0232

S4-2

Q50

0.6

D1

0.58

Dry V10

0.2

0.0696

S4-3

Q90

0.2

D1

0.58

Dry V10

0.2

0.0232

S4-4

Q10

0.2

D1

0.58

Dry V50

0.6

0.0696

S4-5

Q50

0.6

D1

0.58

Dry V50

0.6

0.2088

S4-6

Q90

0.2

D1

0.58

Dry V50

0.6

0.0696

S4-7

Q10

0.2

D1

0.58

Dry V90

0.2

0.0232

S4-8

Q50

0.6

D1

0.58

Dry V90

0.2

0.0696

S4-9

Q90

0.2

D1

0.58

Dry V90

0.2

0.0232

S4-10

Q10

0.2

W1

0.08

Wet V10

0.2

0.0032

S4-11

Q50

0.6

W1

0.08

Wet V10

0.2

0.0096

S4-12

Q90

0.2

W1

0.08

Wet V10

0.2

0.0032

S4-13

Q10

0.2

W1

0.08

Wet V50

0.6

0.0096

S4-14

Q50

0.6

W1

0.08

Wet V50

0.6

0.0288

S4-15

Q90

0.2

W1

0.08

Wet V50

0.6

0.0096

S4-16

Q10

0.2

W1

0.08

Wet V90

0.2

0.0032

S4-17

Q50

0.6

W1

0.08

Wet V90

0.2

0.0096

S4-18

Q90

0.2

W1

0.08

Wet V90

0.2

0.0032

S4-19

Q10

0.2

W2

0.25

Wet V10

0.2

0.01

S4-20

Q50

0.6

W2

0.25

Wet V10

0.2

0.03

S4-21

Q90

0.2

W2

0.25

Wet V10

0.2

0.01

S4-22

Q10

0.2

W2

0.25

Wet V50

0.6

0.03

S4-23

Q50

0.6

W2

0.25

Wet V50

0.6

0.09

S4-24

Q90

0.2

W2

0.25

Wet V50

0.6

0.03

S4-25

Q10

0.2

W2

0.25

Wet V90

0.2

0.01

S4-26

Q50

0.6

W2

0.25

Wet V90

0.2

0.03

S4-27

Q90

0.2

W2

0.25

Wet V90

0.2

0.01

S4-28

Q10

0.2

W3

0.08

Wet V10

0.2

0.0032

S4-29

Q50

0.6

W3

0.08

Wet V10

0.2

0.0096

S4-30

Q90

0.2

W3

0.08

Wet V10

0.2

0.0032

S4-31

Q10

0.2

W3

0.08

Wet V50

0.6

0.0096

S4-32

Q50

0.6

W3

0.08

Wet V50

0.6

0.0288

S4-33

Q90

0.2

W3

0.08

Wet V50

0.6

0.0096

S4-34

Q10

0.2

W3

0.08

Wet V90

0.2

0.0032

S4-35

Q50

0.6

W3

0.08

Wet V90

0.2

0.0096

S4-36

Q90

0.2

W3

0.08

Wet V90

0.2

0.0032

 

3.3   There are 24 risers for the SCISTW outfall.  Thus, modelling all 24 risers would produce 192 sets of output information (8 jets per riser). Following the approach adopted under the EEFS, the number of risers to be analyzed for the outfall was reduced to 5 for each model run to simplify the modelling effort.  As it is assumed in the near field model that the flow rate for each individual jet and each individual riser would be the same, the results obtained from modelling 5 risers would be the same as those from modelling all the 24 risers given that the ambient conditions were assumed to be the same for all the risers.

.

 

4.                   Model Results

 

Model Output

 

4.1               Key model outputs include initial dilution, the plume depth, the plume half width, the plume thickness and the downstream distance at the edge of the ZID.    Table A5-1-10 to Table A5-1-13 summarize the results from the VISJET simulations.     Merging of plumes from adjacent risers was only found in 6 out of 144 model runs (namely run ID S3-12, S3-21, S3-30, S4-12, S4-21 and S4-30).  Merging of plumes from adjacent jets on individual riser was observed in nearly all model runs.  The plume merging would reduce the initial dilution. The composite dilution of merged jets was determined by the VISJET model.

 

4.2               The predicted composite initial dilution was corrected for the background concentration build up due to the tidal effects based on the “EEFS Working Paper No. 7”.  Explanation of the background build up correction is extracted from Section 7.5.4 of the “EEFS Working Paper No. 7” as follows:  

 

The basic assumption of any near field model is that the effluent plume is mixed with clean water. In actuality this is not true, particularly in a tidally mixed environment. It is known that the ebbing tide takes estuarine water out towards the open ocean, mixes and then returns on the following flood tide. This returning mixed water never returns as completely new ocean water. If this were so, one would never observe a build up of pollutants in an estuarine environment. In the case of the HATS, a portion of the effluent that was discharged into the receiving water on the ebbing tide remains with incoming flood tide after mixing with the off shore waters. This remaining concentration is referred to as “background build up”, which must be accounted for or else risk that the calculated initial dilutions will be overestimated.

 

The HATS far field model was used to account for this background build up under the EEFS.  This build up was quantified by performing a conservative tracer run on the effluent from the SCISTW outfalls. A conservative tracer, i.e. without decay or reaction, was used. The initial concentration of the tracer in the effluent was set to be 1000 mg/l.  The direct results of this far field tracer run cannot be used to determine the dynamics of the near field (less than 50 to 100 meters of the outfalls), due to the lack of vertical and horizontal grid resolution needed for accurate simulation of the latter. The average annual results of the far field tracer run can provide the necessary details to supplement the near field modelling to incorporate the background build up. It should be noted that the results from the grid cell into which the tracer is loaded is not representative of the true background build up as this cell will always contain the background build up plus the continuous tracer loading, therefore, the necessary far field tracer results were taken from a cell located adjacent to the outfall grid cells.

 

4.3               The average tracer background build up concentrations for the SCISTW effluent were updated under this Study for the corrections. The far field HATS model was used to predict the background build up concentrations for the four different time horizons (2009, 2013, 2020 and ultimate) and for both dry and wet seasons.   Table A5-1-9 shows an example of background build up correction for the minimum initial dilution in the ultimate year.  The corrected initial dilutions for the other model runs are included in Table A5-1-10 to Table A5-1-13.

 

Table A5-1-9     Example of Background Build Up Correction

Year

Minimum Initial Dilution1

Initial Tracer Concentration in Effluent 2 (mg/L)

Average Tracer Concentration   (mg/L)

Corrected Initial Dilution 5

Dry Season 3

Wet Season 4

(A)

(B)

(C)

(D)

(E)

Ultimate

49.6 (round up to 50)

1000

9.105

9.196

34.4 (round up to 34)

Note:

1.        Minimum initial dilution predicted by VISJET model for the ultimate year.  This dilution occurred under the dry season scenario (run ID S4-3)

2.        Effluent tracer concentration assumed in the far field modelling.

3.        Average background buildup concentration for dry season under the ultimate scenario predicted by the far field model. 

4.        Average background buildup concentration for wet season under the ultimate scenario predicted by the far field model.

5.        The average background buildup concentration for dry season was used for the correction in this case as the minimum dilution occurred under the dry season scenario. Corrected Initial Dilution, (E) = (B) ÷ {[1 x (B) + ((A) – 1) x (C)] ÷ (A)}

 


Table A5-1-10   Summary of Results from VISJET Simulations for Scenario 2009

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Prob. of Occurrence

Initial Dilution1

Corrected Initial Dilution 2

Average Plume Depth

Average Plume Thickness

Average Plume Half-Width per Riser

Downstream Distance at Edge of ZID

ID

Prob.

ID

Prob.

ID

Prob.

(m)

(m)

(m)

(m)

S1-1

10

0.2

D1

0.58

Dry V10

0.2

0.0232

91

58

2.2

9.9

11.9

21

S1-2

50

0.6

D1

0.58

Dry V10

0.2

0.0696

79

53

4.2

8.0

10.4

14

S1-3

90

0.2

D1

0.58

Dry V10

0.2

0.0232

66

47

4.3

8.8

12.8

16

S1-4

10

0.2

D1

0.58

Dry V50

0.6

0.0696

198

88

3.3

11.6

10.4

70

S1-5

50

0.6

D1

0.58

Dry V50

0.6

0.2088

197

88

2.0

12.4

13.1

84

S1-6

90

0.2

D1

0.58

Dry V50

0.6

0.0696

197

88

1.8

14.1

14.9

92

S1-7

10

0.2

D1

0.58

Dry V90

0.2

0.0232

317

105

4.0

11.4

9.6

153

S1-8

50

0.6

D1

0.58

Dry V90

0.2

0.0696

264

99

3.6

12.0

11.3

145

S1-9

90

0.2

D1

0.58

Dry V90

0.2

0.0232

251

97

3.4

12.4

12.5

145

S1-10

10

0.2

W1

0.08

Wet V10

0.2

0.0032

80

57

6.2

12.2

8.9

15

S1-11

50

0.6

W1

0.08

Wet V10

0.2

0.0096

90

62

5.6

14.3

11.8

16

S1-12

90

0.2

W1

0.08

Wet V10

0.2

0.0032

100

67

5.3

16.0

13.5

20

S1-13

10

0.2

W1

0.08

Wet V50

0.6

0.0096

119

75

8.2

9.1

7.4

38

S1-14

50

0.6

W1

0.08

Wet V50

0.6

0.0288

118

74

7.8

10.9

9.6

38

S1-15

90

0.2

W1

0.08

Wet V50

0.6

0.0096

115

73

7.7

11.7

10.9

34

S1-16

10

0.2

W1

0.08

Wet V90

0.2

0.0032

176

94

8.7

8.4

6.6

91

S1-17

50

0.6

W1

0.08

Wet V90

0.2

0.0096

160

89

8.4

9.4

8.2

84

S1-18

90

0.2

W1

0.08

Wet V90

0.2

0.0032

155

87

8.3

10.1

9.2

79

S1-19

10

0.2

W2

0.25

Wet V10

0.2

0.01

66

50

8.9

10.1

7.6

13

S1-20

50

0.6

W2

0.25

Wet V10

0.2

0.03

78

56

8.4

14.3

10.6

14

S1-21

90

0.2

W2

0.25

Wet V10

0.2

0.01

98

66

8.2

17.0

12.3

17

S1-22

10

0.2

W2

0.25

Wet V50

0.6

0.03

75

55

10.7

6.8

5.8

25

S1-23

50

0.6

W2

0.25

Wet V50

0.6

0.09

78

56

10.9

7.5

7.8

26

S1-24

90

0.2

W2

0.25

Wet V50

0.6

0.03

80

57

10.4

9.8

9.2

25

S1-25

10

0.2

W2

0.25

Wet V90

0.2

0.01

101

67

11.1

5.9

5.0

56

S1-26

50

0.6

W2

0.25

Wet V90

0.2

0.03

100

67

10.9

7.1

6.5

55

S1-27

90

0.2

W2

0.25

Wet V90

0.2

0.01

101

67

10.8

7.8

7.5

54

S1-28

10

0.2

W3

0.08

Wet V10

0.2

0.0032

64

48

9.2

10.6

7.3

12

S1-29

50

0.6

W3

0.08

Wet V10

0.2

0.0096

80

57

8.7

14.7

10.0

13

S1-30

90

0.2

W3

0.08

Wet V10

0.2

0.0032

86

61

8.6

15.9

12.7

17

S1-31

10

0.2

W3

0.08

Wet V50

0.6

0.0096

73

54

10.6

6.7

5.8

24

S1-32

50

0.6

W3

0.08

Wet V50

0.6

0.0288

76

55

10.4

8.9

7.8

25

S1-33

90

0.2

W3

0.08

Wet V50

0.6

0.0096

78

56

10.4

9.7

9.1

24

S1-34

10

0.2

W3

0.08

Wet V90

0.2

0.0032

101

67

11.0

5.9

5.0

55

S1-35

50

0.6

W3

0.08

Wet V90

0.2

0.0096

100

67

10.9

7.1

6.5

53

S1-36

90

0.2

W3

0.08

Wet V90

0.2

0.0032

100

67

10.8

7.8

7.5

53

Note:       1.      Values calculated by VISJET model. 

2.     Initial dilution was corrected using the background buildup concentration predicted by the far field model for year 2009 (see S4.2 and S4.3).  Bolded and shaded values indicated minimum initial dilution.  The minimum dilution occurred under a different model run after the correction because the background buildup concentration for dry season was predicted to be larger than that for the wet season in year 2009.


Table A5-1-11      Summary of Results from VISJET Simulations for Scenario 2013

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Prob. of Occurrence

Initial Dilution1

Corrected Initial Dilution 2

Average Plume Depth

Average Plume Thickness

Average Plume Half-Width per Riser

Downstream Distance at Edge of ZID

ID

Prob.

ID

Prob.

ID

Prob.

(m)

(m)

(m)

(m)

S2-1

10

0.2

D1

0.58

Dry V10

0.2

0.0232

82

53

3.3

6.7

10.5

17

S2-2

50

0.6

D1

0.58

Dry V10

0.2

0.0696

76

55

4.2

8.3

10.7

15

S2-3

90

0.2

D1

0.58

Dry V10

0.2

0.0232

64

48

4.3

8.3

12.8

16

S2-4

10

0.2

D1

0.58

Dry V50

0.6

0.0696

183

94

3.3

11.3

10.6

67

S2-5

50

0.6

D1

0.58

Dry V50

0.6

0.2088

199

99

2.3

13.5

13.4

86

S2-6

90

0.2

D1

0.58

Dry V50

0.6

0.0696

195

97

1.7

14.3

15.3

91

S2-7

10

0.2

D1

0.58

Dry V90

0.2

0.0232

313

120

3.9

11.5

9.7

154

S2-8

50

0.6

D1

0.58

Dry V90

0.2

0.0696

260

111

3.6

12.1

11.5

144

S2-9

90

0.2

D1

0.58

Dry V90

0.2

0.0232

248

109

3.4

12.4

12.8

145

S2-10

10

0.2

W1

0.08

Wet V10

0.2

0.0032

80

57

6.2

12.3

9.1

15

S2-11

50

0.6

W1

0.08

Wet V10

0.2

0.0096

91

62

5.5

14.9

12.0

17

S2-12

90

0.2

W1

0.08

Wet V10

0.2

0.0032

102

67

5.2

16.3

13.9

21

S2-13

10

0.2

W1

0.08

Wet V50

0.6

0.0096

119

74

8.1

9.3

7.6

38

S2-14

50

0.6

W1

0.08

Wet V50

0.6

0.0288

118

74

7.8

11.3

9.8

39

S2-15

90

0.2

W1

0.08

Wet V50

0.6

0.0096

117

73

7.6

12.4

11.3

35

S2-16

10

0.2

W1

0.08

Wet V90

0.2

0.0032

172

91

8.6

8.5

6.7

90

S2-17

50

0.6

W1

0.08

Wet V90

0.2

0.0096

159

88

8.4

9.6

8.4

83

S2-18

90

0.2

W1

0.08

Wet V90

0.2

0.0032

154

86

8.3

10.3

9.5

79

S2-19

10

0.2

W2

0.25

Wet V10

0.2

0.0100

68

51

8.9

10.7

7.9

13

S2-20

50

0.6

W2

0.25

Wet V10

0.2

0.0300

83

58

8.4

15.0

11.0

14

S2-21

90

0.2

W2

0.25

Wet V10

0.2

0.0100

100

66

8.2

17.0

12.7

18

S2-22

10

0.2

W2

0.25

Wet V50

0.6

0.0300

75

54

10.6

6.9

6.0

25

S2-23

50

0.6

W2

0.25

Wet V50

0.6

0.0900

80

57

10.4

9.2

8.1

26

S2-24

90

0.2

W2

0.25

Wet V50

0.6

0.0300

80

57

10.3

9.9

9.5

26

S2-25

10

0.2

W2

0.25

Wet V90

0.2

0.0100

100

66

11.0

6.0

5.1

56

S2-26

50

0.6

W2

0.25

Wet V90

0.2

0.0300

100

66

10.9

7.2

6.7

55

S2-27

90

0.2

W2

0.25

Wet V90

0.2

0.0100

101

67

10.8

8.0

7.8

54

S2-28

10

0.2

W3

0.08

Wet V10

0.2

0.0032

64

48

9.1

10.9

7.6

12

S2-29

50

0.6

W3

0.08

Wet V10

0.2

0.0096

84

59

8.7

15.4

10.4

14

S2-30

90

0.2

W3

0.08

Wet V10

0.2

0.0032

91

62

8.5

16.1

12.1

18

S2-31

10

0.2

W3

0.08

Wet V50

0.6

0.0096

73

53

10.6

6.9

6.0

24

S2-32

50

0.6

W3

0.08

Wet V50

0.6

0.0288

79

56

10.4

9.1

8.0

25

S2-33

90

0.2

W3

0.08

Wet V50

0.6

0.0096

79

56

10.3

9.8

9.4

25

S2-34

10

0.2

W3

0.08

Wet V90

0.2

0.0032

101

67

11.0

6.0

5.1

55

S2-35

50

0.6

W3

0.08

Wet V90

0.2

0.0096

100

66

10.8

7.2

6.7

53

S2-36

90

0.2

W3

0.08

Wet V90

0.2

0.0032

101

67

10.8

8.0

7.7

53

Note:       1.      Values calculated by VISJET model. 

2.     Initial dilution was corrected using the background buildup concentration predicted by the far field model for year 2013 (see S4.2 and S4.3).  Bolded and shaded values indicated minimum initial dilution. 

Table A5-1-12            Summary of Results from VISJET Simulations for Scenario 2020

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Prob. of Occurrence

Initial Dilution1

Corrected Initial Dilution 2

Average Plume Depth

Average Plume Thickness

Average Plume Half-Width per Riser

Downstream Distance at Edge of ZID

ID

Prob.

ID

Prob.

ID

Prob.

(m)

(m)

(m)

(m)

S3-1

10

0.2

D1

0.58

Dry V10

0.2

0.0232

87

48

4.3

8.3

9.6

14

S3-2

50

0.6

D1

0.58

Dry V10

0.2

0.0696

60

39

4.3

8.1

13.4

17

S3-3

90

0.2

D1

0.58

Dry V10

0.2

0.0232

53

36

4.5

8.6

14.9

20

S3-4

10

0.2

D1

0.58

Dry V50

0.6

0.0696

193

70

2.7

12.8

12.3

78

S3-5

50

0.6

D1

0.58

Dry V50

0.6

0.2088

193

70

1.5

14.5

16.1

90

S3-6

90

0.2

D1

0.58

Dry V50

0.6

0.0696

172

67

1.2

14.9

18.2

78

S3-7

10

0.2

D1

0.58

Dry V90

0.2

0.0232

273

78

3.7

11.8

10.8

146

S3-8

50

0.6

D1

0.58

Dry V90

0.2

0.0696

240

75

3.2

12.5

13.4

144

S3-9

90

0.2

D1

0.58

Dry V90

0.2

0.0232

227

74

2.9

13.1

15.1

145

S3-10

10

0.2

W1

0.08

Wet V10

0.2

0.0032

87

54

5.7

14.2

11.0

15

S3-11

50

0.6

W1

0.08

Wet V10

0.2

0.0096

104

60

5.1

16.5

14.8

22

S3-12

90

0.2

W1

0.08

Wet V10

0.2

0.0032

106

60

4.9

17.0

17.5

26

S3-13

10

0.2

W1

0.08

Wet V50

0.6

0.0096

117

64

7.9

10.3

9.0

38

S3-14

50

0.6

W1

0.08

Wet V50

0.6

0.0288

121

65

7.6

13.5

12.0

38

S3-15

90

0.2

W1

0.08

Wet V50

0.6

0.0096

132

68

7.4

14.7

14.0

42

S3-16

10

0.2

W1

0.08

Wet V90

0.2

0.0032

162

75

8.5

9.2

7.8

85

S3-17

50

0.6

W1

0.08

Wet V90

0.2

0.0096

157

74

8.2

10.8

10.0

80

S3-18

90

0.2

W1

0.08

Wet V90

0.2

0.0032

158

74

8.1

11.9

11.6

81

S3-19

10

0.2

W2

0.25

Wet V10

0.2

0.0100

76

49

8.5

13.7

9.9

13

S3-20

50

0.6

W2

0.25

Wet V10

0.2

0.0300

94

56

8.1

17.0

13.5

20

S3-21

90

0.2

W2

0.25

Wet V10

0.2

0.0100

118

64

8.1

17.0

14.9

24

S3-22

10

0.2

W2

0.25

Wet V50

0.6

0.0300

77

50

10.5

8.4

7.3

26

S3-23

50

0.6

W2

0.25

Wet V50

0.6

0.0900

84

52

10.3

10.0

10.1

27

S3-24

90

0.2

W2

0.25

Wet V50

0.6

0.0300

95

57

10.3

12.1

11.8

31

S3-25

10

0.2

W2

0.25

Wet V90

0.2

0.0100

100

58

10.9

6.8

6.1

55

S3-26

50

0.6

W2

0.25

Wet V90

0.2

0.0300

103

59

10.8

8.3

8.3

53

S3-27

90

0.2

W2

0.25

Wet V90

0.2

0.0100

107

61

10.7

9.5

9.6

54

S3-28

10

0.2

W3

0.08

Wet V10

0.2

0.0032

73

48

8.8

12.9

9.3

12

S3-29

50

0.6

W3

0.08

Wet V10

0.2

0.0096

106

61

8.5

17.0

12.2

19

S3-30

90

0.2

W3

0.08

Wet V10

0.2

0.0032

99

58

8.4

17.0

14.0

22

S3-31

10

0.2

W3

0.08

Wet V50

0.6

0.0096

75

49

10.5

8.3

7.2

24

S3-32

50

0.6

W3

0.08

Wet V50

0.6

0.0288

85

53

10.3

10.0

9.9

26

S3-33

90

0.2

W3

0.08

Wet V50

0.6

0.0096

94

56

10.3

12.0

11.7

30

S3-34

10

0.2

W3

0.08

Wet V90

0.2

0.0032

99

58

10.9

6.8

6.1

54

S3-35

50

0.6

W3

0.08

Wet V90

0.2

0.0096

102

59

10.7

8.3

8.2

52

S3-36

90

0.2

W3

0.08

Wet V90

0.2

0.0032

105

60

10.7

9.5

9.5

52

Note:       1.      Values calculated by VISJET model. 

2.     Initial dilution was corrected using the background buildup concentration predicted by the far field model for year 2020 (see S4.2 and S4.3).  Bolded and shaded values indicated minimum initial dilution.


Table A5-1-13            Summary of Results from VISJET Simulations for Ultimate Scenario

Run ID

Effluent Flow

Density Profile

Ambient Current Velocity

Joint Prob. of Occurrence

Initial Dilution1

Corrected Initial Dilution 2

Average Plume Depth

Average Plume Thickness

Average Plume Half-Width per Riser

Downstream Distance at Edge of ZID

ID

Prob.

ID

Prob.

ID

Prob.

(m)

(m)

(m)

(m)

S4-1

10

0.2

D1

0.58

Dry V10

0.2

0.0232

62

40

4.3

6.7

10.9

16

S4-2

50

0.6

D1

0.58

Dry V10

0.2

0.0696

55

37

4.6

5.7

15.1

22

S4-3

90

0.2

D1

0.58

Dry V10

0.2

0.0232

50

34

4.7

5.8

16.9

25

S4-4

10

0.2

D1

0.58

Dry V50

0.6

0.0696

213

73

2.8

14.2

13.3

96

S4-5

50

0.6

D1

0.58

Dry V50

0.6

0.2088

207

72

1.4

16.0

17.8

106

S4-6

90

0.2

D1

0.58

Dry V50

0.6

0.0696

188

70

1.0

16.7

20.3

92

S4-7

10

0.2

D1

0.58

Dry V90

0.2

0.0232

259

77

4.5

12.5

11.0

136

S4-8

50

0.6

D1

0.58

Dry V90

0.2

0.0696

245

76

3.8

13.9

14.1

146

S4-9

90

0.2

D1

0.58

Dry V90

0.2

0.0232

255

77

3.4

15.1

16.3

163

S4-10

10

0.2

W1

0.08

Wet V10

0.2

0.0032

90

50

5.5

14.9

12.1

17

S4-11

50

0.6

W1

0.08

Wet V10

0.2

0.0096

107

54

5.0

17.0

16.7

24

S4-12

90

0.2

W1

0.08

Wet V10

0.2

0.0032

89

49

4.7

17.0

19.5

28

S4-13

10

0.2

W1

0.08

Wet V50

0.6

0.0096

118

57

7.8

11.3

9.9

38

S4-14

50

0.6

W1

0.08

Wet V50

0.6

0.0288

129

59

7.5

14.5

13.4

41

S4-15

90

0.2

W1

0.08

Wet V50

0.6

0.0096

141

62

7.3

16.3

15.5

44

S4-16

10

0.2

W1

0.08

Wet V90

0.2

0.0032

147

63

8.4

9.6

8.8

73

S4-17

50

0.6

W1

0.08

Wet V90

0.2

0.0096

157

65

8.1

11.5

11.1

80

S4-18

90

0.2

W1

0.08

Wet V90

0.2

0.0032

164

66

8.0

12.8

13.0

81

S4-19

10

0.2

W2

0.25

Wet V10

0.2

0.0100

85

48

8.2

15.1

11.1

14

S4-20

50

0.6

W2

0.25

Wet V10

0.2

0.0300

120

57

7.9

17.0

14.5

22

S4-21

90

0.2

W2

0.25

Wet V10

0.2

0.0100

79

46

7.9

17.0

16.6

26

S4-22

10

0.2

W2

0.25

Wet V50

0.6

0.0300

81

47

10.2

9.4

8.3

26

S4-23

50

0.6

W2

0.25

Wet V50

0.6

0.0900

95

51

10.1

11.8

11.6

30

S4-24

90

0.2

W2

0.25

Wet V50

0.6

0.0300

104

53

10.0

12.8

13.5

34

S4-25

10

0.2

W2

0.25

Wet V90

0.2

0.0100

104

54

10.7

7.4

6.9

56

S4-26

50

0.6

W2

0.25

Wet V90

0.2

0.0300

109

55

10.6

9.4

9.4

55

S4-27

90

0.2

W2

0.25

Wet V90

0.2

0.0100

136

61

10.5

10.3

11.0

55

S4-28

10

0.2

W3

0.08

Wet V10

0.2

0.0032

85

48

8.7

15.4

10.4

14

S4-29

50

0.6

W3

0.08

Wet V10

0.2

0.0096

121

57

8.4

17.0

13.5

20

S4-30

90

0.2

W3

0.08

Wet V10

0.2

0.0032

117

57

8.4

17.0

15.3

24

S4-31

10

0.2

W3

0.08

Wet V50

0.6

0.0096

76

45

10.4

9.0

8.1

23

S4-32

50

0.6

W3

0.08

Wet V50

0.6

0.0288

91

50

10.3

11.5

11.2

28

S4-33

90

0.2

W3

0.08

Wet V50

0.6

0.0096

98

52

10.5

12.5

13.2

31

S4-34

10

0.2

W3

0.08

Wet V90

0.2

0.0032

99

52

10.8

7.3

6.8

53

S4-35

50

0.6

W3

0.08

Wet V90

0.2

0.0096

104

53

10.7

9.1

9.1

51

S4-36

90

0.2

W3

0.08

Wet V90

0.2

0.0032

109

55

10.6

10.4

10.7

53

Note:       1.      Values calculated by VISJET model. 

2.     Initial dilution was corrected using the background buildup concentration predicted by the far field model for the ultimate year (see S4.2 and S4.3).  Bolded and shaded values indicated minimum initial dilution.

 


4.4               It is noted that all the predicted minimum dilution rates occurred in the dry season under the 90%ile effluent flow (Q90) with the smallest ambient current (V10).  Table A5-1-14 summarizes the initial dilution factors.

 

Table A5-1-14   Summary of VISJET Initial Dilution Factors

 

Ultimate Year

2020

2013

2009

Minimum

34

36

48

47

5%ile

39

46

50

49

10%ile

46

49

53

53

 

 

Input to the Far Field Model

 

4.5               The near field modeling results were used to determine the appropriate vertical and horizontal grid cell(s) into which the Project discharge would be allocated into the far field 3D model.  Under each of the four assessment years, two weighted averages of the plume depth were calculated for wet (W1, W2 and W3) and dry seasons (D1) respectively based on their joint probabilities of occurrence as shown in Table A5-1-5.  Two weighted averages of the plume thicknesses were also calculated for wet (W1, W2 and W3) and dry seasons (D1) respectively. The weighted average plume depths and plume thicknesses for dry and wet seasons were used to determine the appropriate vertical grid cell(s) into which the Project discharge would be allocated.

 

4.6               The number of horizontal grid cell(s) of the far field model to be used for loading input was based on the average dimensions of the ZID.  Under each of the four assessment years, the average of all the downstream distances predicted amongst the 36 model runs was used as the average width of the ZID.  The average of all the plume width results predicted amongst the 36 model runs was used for calculating the average length of the ZID.  It is assumed that the ZID would be the same in dry and wet seasons for far field modelling. Table A5-1-15 illustrates the calculation.

 

Table A5-1-15   Summary of Results for Far Field Model

Scenario

Weighted Average Plume Depth

(m below surface)

Weighted Average Plume Thickness (m)

Average Half Plume Width (m)

Average Downstream Distance (m)

Average Dimension of ZID (m)

2009

Dry: 2.8

Dry: 11.6

10

48

1220 ii x 96 iii

Wet: 9.8

Wet: 9.4

2013

Dry: 3.0

Dry: 11.9

10

48

1220 ii x 96 iii

Wet: 9.6

Wet: 10.0

2020

Dry: 2.5

Dry: 12.7

12

49

1224 ii x 98 iii

Wet: 9.5

Wet: 11.4

Ultimate

Dry: 2.6

Dry: 13.4

13

51

1226 ii x 102 iii

Wet: 9.3

Wet: 12.4

Notes:

i.                Total joint probabilities of occurrence for dry season is based on the density profile “D1” and for wet season, “W1 to W3”

ii.               Length of ZID = 1200 (diffuser length) + average half plume width x 2

iii.              Width of ZID = average downstream distance x 2

 

4.7               Based on the predicted dimension of ZID, pollution loading from the Project discharge would be evenly distributed to 6 grid cells of the water quality model along the alignment of the diffuser for all the modelling scenarios.  The vertical allocation of pollution load would be based on the average plume depth and average plume thickness.  Given that the HATS model is a 3 dimensional model which consists of 10 evenly distributed vertical layers and the total water depth assumed in the VISJET modelling was 17 m, the pollution loads for dry season were specified in the first to fifth layer from the surface for 2009 and first to sixth layer for the remaining scenarios whilst for the wet season, the pollution loads were allocated in the fourth to ninth layer from the surface for 2009, and third to ninth layer for 2013 and 2020; and second to tenth layer from the surface for the ultimate scenario.