With reference to *Review of Methods for NO to NO*₂ *Conversion in Plumes at Short Ranges,* Jenkin Method was adopted in this assessment to determine NO₂ concentration based on the cumulative annual average NOx concentration.

Jenkin Equation 2004:

$$[NO_2] = \frac{([NOx] + [Ox] + \frac{J}{k}) - \sqrt{([NOx] + [Ox] + \frac{J}{k})^2 - 4[NOx][Ox]}}{2}$$

Where:

[NO₂]: Concentration of NO₂

[NOx]: Concentration of NOx

[Ox]: Sum of concentration of NO_2 and O_3

J: Photolysis rate of NO2 and O3

k: Rate coefficient for oxidation of NO by O₃

The predicted annual average NO₂ concentration was estimated with empirical relationship derived using the latest available 5 years, including Years 2017, 2018, 2019, 2020 and 2021, of data from EPD's air quality monitoring stations (AQMS). Monitoring data at Tung Chung general station, Tuen Mun general station and Mong Kok roadside station were adopted as input for the curve fitting to calculate the J/k and Ox value and obtain the cumulative NO₂.

Annual NO₂ vs. NOx monitoring data from selected AQMS was plotted in the form of scatter plot. The relationship of the selected annual NO₂ and NOx monitoring data was described by a fitted curve with reference to the formula presented in Jenkin (2004a) and Environment Agency UK (2007).

With the adoption of values for J/k of 18.9 μ g/m³ and Ox of 99.4 μ g/m³, the fitted curve defined by Jenkin Method could cover the upper bounds of data points. J/k and Ox adopted in this assessment have been optimised to obtain the fitted curve. The annual NO₂ concentrations were determined from the fitted curve using the total NOx concentrations.

Reference:

Environment Agency UK, 2007. Review of methods for NO to NO₂ conversion in plumes at short range.

Jenkin, M. E., 2004. Analysis of sources and partitioning of oxidant in the UK – Part 1: The NOx-dependence of annual mean concentrations of nitrogen dioxide and ozone. Atmospheric Environment, 38, 5117-5129.

Year	Station	AQMS Annual Mean NOx (μg/m ³)	AQMS Annual Mean NO ₂ (µg/m ³)	Calculated NO ₂ using the Functional Curve of Jenkin Method (μg/m ³)
2017	Tuen Mun	70	46	50
2018	Tuen Mun	68	47	49
2019	Tuen Mun	69	47	50
2020	Tuen Mun	55	40	41
2021	Tuen Mun	59	44	44
2017	Mong Kok	164	81	81
2018	Mong Kok	163	79	81
2019	Mong Kok	154	78	79
2020	Mong Kok	162	74	81
2021	Mong Kok	139	70	76
2017	Tung Chung	51	36	39
2018	Tung Chung	47	33	36
2019	Tung Chung	46	33	36
2020	Tung Chung	37	28	29
2021	Tung Chung	35	26	28