#### Design of Deodorization System

#### DO 1 (Inlet Works + PST)

| Building           | TKO Location                 | Nos. | B.W.L<br>./T.W.<br>L./<br>Base<br>Level<br>(mPD) | Ceiling<br>Level<br>(mPD) | Air<br>Phase<br>Height<br>(m) | Length<br>(m) | Width<br>(m) | Unit<br>Measured<br>Area (m2) | Safety<br>Factor | Total<br>Odour<br>Emission<br>Area (m2) | Air Phase<br>Volume<br>(m3) | Air Exchange<br>Rate (Air<br>Changes / hr) | SOER<br>(ou/m2/s)<br>[1] | Unmitigated<br>Odour<br>Emission Rate<br>(ou/s) | Flow<br>Rate<br>(m3/hr) | Total<br>Flow Rate<br>(m3/s) | Velocity<br>(m/s) | Number<br>of<br>Exhaust<br>Point<br>(nos.) | Elevation<br>(m) | Height of<br>the<br>Deodorizer<br>Exhaust<br>Point<br>(mAG) | Diameter of<br>the<br>Deodorizer<br>Exhaust Point<br>(m) | Removal<br>Efficiency (%) <sup>[2]</sup> | Mitigated<br>Odour<br>Emission Rate<br>(ou/s) | Temperat<br>ure at<br>exhaust<br>point (C) |
|--------------------|------------------------------|------|--------------------------------------------------|---------------------------|-------------------------------|---------------|--------------|-------------------------------|------------------|-----------------------------------------|-----------------------------|--------------------------------------------|--------------------------|-------------------------------------------------|-------------------------|------------------------------|-------------------|--------------------------------------------|------------------|-------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------|
| Inlet Works        | Inlet Channel                | 1    | 2.50                                             | 7.00                      | 4.50                          | 15.00         | 2.00         | 30                            | 1.2              | 36                                      | 162                         | 3                                          | 3.26                     | 117                                             | 486                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Inlet Works        | Coarse Screen Channel        | 4    | 2.45                                             | 7.00                      | 4.55                          | 10.00         | 2.00         | 20                            | 1.2              | 24                                      | 437                         | 3                                          | 3.26                     | 313                                             | 1,310                   |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Inlet Works        | Coarse Screen Outlet Channel | 1    | 2.35                                             | 7.00                      | 4.65                          | 15.00         | 2.00         | 30                            | 1.2              | 36                                      | 167                         | 3                                          | 3.26                     | 117                                             | 502                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Inlet Works        | Wet Well                     | 2    | 0.00                                             | 7.00                      | 7.00                          | 8.00          | 8.00         | 64                            | 1.2              | 77                                      | 1,075                       | 3                                          | 3.26                     | 501                                             | 3,226                   |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Inlet Works        | Fine Screen Inlet Channel    | 1    | 10.90                                            | 12.00                     | 1.10                          | 15.00         | 2.00         | 30                            | 1.2              | 36                                      | 40                          | 3                                          | 3.26                     | 117                                             | 119                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Inlet Works        | Fine Screen Chamber          | 4    | 10.80                                            | 12.00                     | 1.20                          | 12.00         | 2.50         | 30                            | 1.2              | 36                                      | 173                         | 3                                          | 3.51                     | 505                                             | 518                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Inlet Works        | Fine Screen Outlet Channel   | 1    | 10.65                                            | 12.00                     | 1.35                          | 15.00         | 2.00         | 30                            | 1.2              | 36                                      | 49                          | 3                                          | 3.26                     | 117                                             | 146                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Inlet Works        | Grit Trap Inlet Channel      | 4    | 10.50                                            | 12.00                     | 1.50                          | 10.00         | 2.00         | 20                            | 1.2              | 24                                      | 144                         | 3                                          | 3.26                     | 313                                             | 432                     | 14.22                        | 7.50              | 2                                          | 6 75             | 0 00                                                        | 1 10                                                     | 05.0%                                    | 220                                           | Ambient                                    |
| Inlet Works        | Grit Trap                    | 4    | 10.35                                            | 12.00                     | 1.65                          | 6.00          | 6.00         | 36                            | 1.2              | 43                                      | 285                         | 3                                          | 3.26                     | 563                                             | 855                     | 14.22                        | 7.50              | 2                                          | 0.75             | 0.00                                                        | 1.10                                                     | 95.0%                                    | 230                                           | Amplem                                     |
| Inlet Works        | Grit Trap Outlet Channel     | 4    | 10.25                                            | 12.00                     | 1.75                          | 12.00         | 2.00         | 24                            | 1.2              | 29                                      | 202                         | 3                                          | 3.26                     | 376                                             | 605                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST                | PST Inlet Channel            | 1    | 10.15                                            | 12.00                     | 1.85                          | 35.00         | 2.50         | 87.5                          | 1.2              | 105                                     | 194                         | 3                                          | 3.26                     | 342                                             | 583                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST                |                              |      |                                                  |                           |                               |               |              |                               |                  |                                         |                             |                                            |                          |                                                 |                         |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST                | PST Tanks                    | 5    | 9.50                                             | 12.00                     | 2 50                          | 32.00         | 6.00         | 192                           | 12               | 230                                     | 2 880                       | 12                                         | 4.03                     | 4 643                                           | 34 560                  |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST                |                              | J J  | 0.00                                             | 12.00                     | 2.00                          | 52.00         | 0.00         | 152                           | 1.2              | 200                                     | 2,000                       | 12                                         | 4.00                     | 1,040                                           | 34,300                  |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST                |                              |      |                                                  |                           |                               |               |              |                               |                  |                                         |                             |                                            |                          |                                                 |                         |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST                | PST Outlet Channel           | 1    | 9.25                                             | 12.00                     | 2.75                          | 35.00         | 2.50         | 87.5                          | 1.2              | 105                                     | 289                         | 3                                          | 1.54                     | 162                                             | 866                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST                | Scum Tank                    | 2    | 7.00                                             | 12.00                     | 5.00                          | 4.00          | 2.00         | 8                             | 1.2              | 10                                      | 96                          | 3                                          | 4.03                     | 77                                              | 288                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| Sludge Digestion   | Digested Sludge Holding Tank | 2    | 7.00                                             | 16.30                     | 9.30                          | 10.00         | 10.00        | 100                           | 1.2              | 120                                     | 2,232                       | 3                                          | 3.98                     | 955                                             | 6,696                   |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |
| PST = Primary Sedi | mentation Tank               |      |                                                  |                           |                               |               |              |                               |                  |                                         |                             |                                            | sub-total                | 9,220                                           | 51,192                  |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                            |

#### DO 2 (Biological Treatment + Secondary Treatment + Sludge Thickening)

| Building       | TKO Location                                     | No. of<br>Units<br>(Duty) | B.W.L<br>./T.W.<br>L./<br>Base<br>Level<br>(mPD) | Ceiling<br>Level<br>(mPD) | Air<br>Phase<br>Height<br>(m) | Length<br>(m) | Width<br>(m) | Unit<br>Measured<br>Area (m2) | Safety<br>Factor | Total<br>Odour<br>Emission<br>Area (m2) | Air Phase<br>Volume<br>(m3) | Air Exchange<br>Rate (Air<br>Changes / hr) | SOER<br>(ou/m2/s)<br>[1][4] | Unmitigated<br>Odour<br>Emission Rate<br>(ou/s) | Flow<br>Rate<br>(m3/hr) | Total<br>Flow Rate<br>(m3/s) | Velocity<br>(m/s) | Number<br>of<br>Exhaust<br>Point<br>(nos.) | Elevation<br>(m) | Height of<br>the<br>Deodorizer<br>Exhaust<br>Point<br>(mAG) | Diameter of<br>the<br>Deodorizer<br>Exhaust Point<br>(m) | Removal<br>Efficiency (%) <sup>[2]</sup> | Mitigated<br>Odour<br>Emission Rate<br>(ou/s) | Temperat<br>ure at<br>e exhaust<br>point (C) |
|----------------|--------------------------------------------------|---------------------------|--------------------------------------------------|---------------------------|-------------------------------|---------------|--------------|-------------------------------|------------------|-----------------------------------------|-----------------------------|--------------------------------------------|-----------------------------|-------------------------------------------------|-------------------------|------------------------------|-------------------|--------------------------------------------|------------------|-------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------|
| MBBR           | MBBR Inlet Channel                               | 1                         | 9.20                                             | 10.50                     | 1.30                          | 70            | 2.5          | 175                           | 1.2              | 210                                     | 273                         | 3                                          | 1.65                        | 347                                             | 819                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| MBBR           | MBBR Trains                                      | 5                         | 9.00                                             | 10.50                     | 1.50                          | 13            | 45           | 585                           | 1.2              | 702                                     | 5,265                       | 3                                          | 1.65                        | 5,792                                           | 15,795                  |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| MBBR           | MBBR Outlet Channel                              | 1                         | 8.40                                             | 10.50                     | 2.10                          | 70            | 2.5          | 175                           | 1.2              | 210                                     | 441                         | 3                                          | 0.02                        | 4                                               | 1,323                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| DAF            | DAF Flocculation Tank                            | 6                         | 8.10                                             | 10.50                     | 2.40                          | 8             | 8            | 64                            | 1.2              | 77                                      | 1,106                       | 3                                          | 0.02                        | 9                                               | 3,318                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| DAF            |                                                  | 6                         | 7.80                                             | 10.50                     | 2.70                          | 16            | 8            | 128                           | 1.2              | 154                                     | 2,488                       | 3                                          | 2.09                        | 2,669                                           | 7 465                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| DAF            | DAFTANK                                          | 0                         | 7.60                                             | 10.50                     | 2.90                          |               |              | 0                             | 1.2              | 0                                       | 0                           | 3                                          | 3.90                        | 3,000                                           | 7,405                   |                              |                   | 2                                          |                  |                                                             |                                                          |                                          |                                               |                                              |
| DAF            | DAE Effluent Chennel                             | 6                         | 7.50                                             | 10.50                     | 3.00                          | 8             | 4            | 32                            | 1.2              | 38                                      | 691                         | 3                                          | 2.00                        | 017                                             | 2.074                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| DAF            | DAF Elliuent Channel                             | 0                         | 7.50                                             | 10.50                     | 3.00                          |               |              | 0                             | 1.2              | 0                                       | 0                           | 3                                          | 3.90                        | 917                                             | 2,074                   |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| STH            | Blended Sludge Storage Tank                      | 2                         | 4.00                                             | 10.00                     | 6.00                          | 7             | 7            | 49                            | 1.2              | 59                                      | 706                         | 3                                          | 3.98                        | 468                                             | 2,117                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| STH            | Thickening Centrifuge                            | 3                         | 10.00                                            | 12.00                     | 2.00                          | 6             | 2            | 12                            | 1.2              | 14                                      | 86                          | 3                                          | 3.98                        | 172                                             | 259                     | 12.2                         | 7.50              |                                            | 6.75             | 8.00                                                        | 1.02                                                     | 95.0%                                    | 352                                           | Ambient                                      |
| STH            | Thickened Sludge Storage Tank                    | 2                         | 4.00                                             | 10.00                     | 6.00                          | 6             | 6            | 36                            | 1.2              | 43                                      | 518                         | 3                                          | 3.98                        | 344                                             | 1,555                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| STH            | Centrate Storage Tank                            | 2                         | 4.00                                             | 10.00                     | 6.00                          | 6             | 6            | 36                            | 1.2              | 43                                      | 518                         | 3                                          | 3.98                        | 344                                             | 1,555                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SDH            | Dewatering Centrifuge                            | 3                         | 10                                               | 12                        | 2.00                          | 6             | 2            | 12                            | 1.2              | 14                                      | 86                          | 3                                          | 3.98                        | 172                                             | 259                     | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SDH            | Sludge Silo                                      | 3                         | 7                                                | 9                         | 2.00                          | 6             | 3            | 18                            | 1.2              | 22                                      | 130                         | 3                                          | 0.43                        | 28                                              | 389                     | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SDH            | Sludge Cake Skips                                | 3                         | 7                                                | 10                        | 3.00                          | 6             | 3            | 18                            | 1.2              | 22                                      | 194                         | 12                                         | 3.51                        | 227                                             | 2,333                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SDH            | Screw Conveyor                                   | 3                         | 8                                                | 8.5                       | 0.50                          | 8             | 2            | 16                            | 1.2              | 19                                      | 29                          | 3                                          | 3.51                        | 202                                             | 86                      | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SS             | Anammox Process Tanks                            | 1                         | 14                                               | 16                        | 2.00                          | 12            | 32.0         | 384                           | 1.2              | 461                                     | 922                         | 3                                          | 2.68                        | 1,235                                           | 2,765                   | 1                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SS             | Thickened Sludge Tank                            | 1                         | 10                                               | 16                        | 6.00                          | 2             | 4            | 8                             | 1.2              | 10                                      | 58                          | 3                                          | 3.98                        | 38                                              | 173                     | 7                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SS             | Sludge Mixing Tank                               | 1                         | 10                                               | 16                        | 6.00                          | 2             | 3            | 6                             | 1.2              | 7                                       | 43                          | 3                                          | 3.98                        | 29                                              | 130                     |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| SS             | Sludge Holding Tank                              | 1                         | 10                                               | 16                        | 6.00                          | 3             | 6            | 18                            | 1.2              | 22                                      | 130                         | 3                                          | 3.98                        | 86                                              | 389                     | 7                            |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |
| MBBR = Membran | e Bioreactor, DAF = Dissolved Air Floatation, ST | H = Sludae                | Thicken                                          | ina                       |                               |               |              |                               |                  |                                         |                             |                                            | sub-total                   | 14.081                                          | 43.969                  |                              |                   |                                            |                  |                                                             |                                                          |                                          |                                               |                                              |

SDH = Sludge Dewatering House, SS = Side Stream Remarks:

[1] SOER Reference: Shek Wu Hui effluent polishing plant https://www.epd.gov.hk/eia/register/report/eia\_2132013/eia/pdf/appendix\_3-8.pdf. The SOER from SWHEPP was adopted because SWHEPP receives similar nature of sewage without seawater flushing, adopts the same sewage treatment process of the EPP. Among Hong Kong's sewage treatment works with the above similar nature of sewage and treatment process, SWHEPP is of the nearest order of capacity compared to EPP, with the capacity of SWHEPP at 190000 m<sup>3</sup>/day and that of EPP at 54000 m<sup>3</sup>/day. Note that the approved EIA for Hung Shui Kiu effluent polishing plant (AEIAR-240/2022) also refers to Shek Wu Hui effluent plant for the SOER.

[2] The odour removal efficiency for deodourization units is referenced from Scottish Executive Environment Group Code of Practice on Assessment and Control of Odour Nuisance from Waste Water Treatment Works.

[3] Iowa State University Extension (May 2004). "The Science of Smell Part 1: Odor perception and physiological response" (PDF). PM 1963a)
 [4] SOER of Anammox Process Tank: approved EIA for Hung Shui Kiu effluent polishign plant (AEIAR-240/2022).

EPP Detail Calculation of Source Odour Emission Rate

Exhaust Design

| Deodouriser | Description                                                                                       | Sourco Typo | Exhaust   | Location  | Exhaust Diamotor (m) | Hoight $(m \land C)$ | Exit Tomporaturo (K) | Exit Valacity (m/s)   |
|-------------|---------------------------------------------------------------------------------------------------|-------------|-----------|-----------|----------------------|----------------------|----------------------|-----------------------|
| Deouourisei | Description                                                                                       | source rype | Х         | Y         |                      | Theight (ITIAG)      |                      | Exit velocity (III/S) |
| EPP01A      | Exhaust point (Inlet Works + PST)                                                                 | POINTHOR    | 846494.21 | 814654.77 | 1.10                 | 8.00                 | Ambient              | 7.5                   |
| EPP01B      | Exhaust point (Inlet Works + PST)                                                                 | POINTHOR    | 846494.21 | 814654.77 | 1.10                 | 8.00                 | Ambient              | 7.5                   |
| EPP02A      | Exhaust point (Membrane Bioreactor + Dissolved Air<br>Floatation + Sludge Thickening + Digesters) | POINTHOR    | 846549.67 | 814621.57 | 1.02                 | 8.00                 | Ambient              | 7.5                   |
| EPP02B      | Exhaust point (Membrane Bioreactor + Dissolved Air<br>Floatation + Sludge Thickening + Digesters) | POINTHOR    | 846549.67 | 814621.57 | 1.02                 | 8.00                 | Ambient              | 7.5                   |

Remark

1. The desgin parameters are provided by engineeres.

#### Conversion of 1-hour Average to 5-second Average Concentration

| Deodouriser | Emission Rate (OU/s) | Stability Class  | Conversion Multiplier | Emission Rate with 5-second<br>Peak Factor (OU/s) | Reference                                                                                                                        |
|-------------|----------------------|------------------|-----------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| EPP01A      | 230                  | A, B, C, D, E, F | 2.3                   | 530.12                                            | - Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales.                                        |
| EPP01B      | 230                  | A, B, C, D, E, F | 2.3                   | 530.12                                            | - Katestone Scientific 1995, The Evaluation of Peak-to-Mean Ratios for Odour Assessments,                                        |
| EPP02A      | 352                  | A, B, C, D, E, F | 2.3                   | 809.67                                            |                                                                                                                                  |
| EPP02B      | 352                  | A, B, C, D, E, F | 2.3                   | 809.67                                            | - Katestone Scientific 1998, Peak-to-Mean Concentration Ratios for Odour Assessments,<br>Katestone Scientific Pty Ltd, Brisbane. |

#### Emission Source Listing in AERMOD

| Source ID | Туре     | Х         | Y         | Exhaust Diameter (m) | Height (mAG) | Exit Temperature (K) | Exit Velocity(m/s) | Emission Rate with 5-second<br>Peak Factor (OU/s) |
|-----------|----------|-----------|-----------|----------------------|--------------|----------------------|--------------------|---------------------------------------------------|
| EPP01A    | POINTHOR | 846494.21 | 814654.77 | 1.10                 | 8.00         | 0                    | 7.5                | 530.12                                            |
| EPP01B    | POINTHOR | 846494.21 | 814654.77 | 1.10                 | 8.00         | 0                    | 7.5                | 530.12                                            |
| EPP02A    | POINTHOR | 846549.67 | 814621.57 | 1.02                 | 8.00         | 0                    | 7.5                | 809.67                                            |
| EPP02B    | POINTHOR | 846549.67 | 814621.57 | 1.02                 | 8.00         | 0                    | 7.5                | 809.67                                            |

### Proposed Sewage Pumping Station

#### Design of Sewage Pumping Station

| Location                      | Total Odour Emission Area (m <sup>2</sup> ) <sup>1</sup> | SOER (ou/m <sup>2</sup> ·s) <sup>2</sup> | Unmitigated Odour<br>Emission Rate (ou/s) | Removal Efficiency<br>(%) | Mitigated Odour<br>Emission Rate (OU/s) |
|-------------------------------|----------------------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------|-----------------------------------------|
| SPS at Inlet Channel          | 3.75                                                     | 8.79                                     | 32.96                                     | 95.00                     | 1.65                                    |
| SPS at Coarse Screen Channels | 15.75                                                    | 8.79                                     | 138.44                                    | 95.00                     | 6.92                                    |
| SPS at Outlet Channel         | 5.00                                                     | 8.79                                     | 43.95                                     | 95.00                     | 2.20                                    |
| SPS at Wet Well               | 21.00                                                    | 8.79                                     | 184.59                                    | 95.00                     | 9.23                                    |
| Total                         | 45.50                                                    | 8.79                                     | 399.95                                    | 95.00                     | 20.00                                   |

Remark

The odour emission area is provided by engineers.
 The SOER refers to the approved EIA for Sai O Trunk Sewage Pumping Station (AEIAR-230/2021) because of their similar operation nature.

#### Exhaust Design

| Deedeuriser | Description          | Source Turpe | Exhaust   | Location  | Exhaust Diamator (m) | $H_{olight}(mAC)$ | Exit Tomporaturo (K) | Exit Vol |  |
|-------------|----------------------|--------------|-----------|-----------|----------------------|-------------------|----------------------|----------|--|
| Deodouriser | Description          | Source Type  | Х         | Y         | Exhaust Diameter (m) | Height (ITAG)     | Exit temperature (K) | EXILVEI  |  |
| TKO 132 SPS | Exhaust point of SPS | POINTHOR     | 843656.12 | 817028.70 | 2.00                 | 4.35              | Ambient              | ţ        |  |
| Remark      |                      |              |           |           |                      |                   |                      |          |  |

1. The exhaust parameters are provided by engineers.

#### Conversion of 1-hour Average to 5-second Average Concentration

| Deodouriser | Emission Rate (OU/s) | Stability Class  | Conversion Multiplier | Emission Rate with 5-second<br>Peak Factor (OU/s) | Reference                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|----------------------|------------------|-----------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPS01       | 20                   | A, B, C, D, E, F | 2.3                   | 45.99                                             | <ul> <li>Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales.</li> <li>Katestone Scientific 1995, The Evaluation of Peak-to-Mean Ratios for Odour Assessments, volumes I and II, Katestone Scientific Pty Ltd, Brisbane.</li> <li>Katestone Scientific 1998, Peak-to-Mean Concentration Ratios for Odour Assessments, Katestone Scientific Pty Ltd, Brisbane.</li> </ul> |

#### Emission Inventory for Odour Emission (SPS)

| Source ID | Туре     | Х         | Y         | Exhaust Diameter (m) | Height (mAG) | Exit Temperature (K) | Exit Velocity (m/s) | Mitigated Odour E |
|-----------|----------|-----------|-----------|----------------------|--------------|----------------------|---------------------|-------------------|
| SPS01     | POINTHOR | 843656.12 | 817028.70 | 2.00                 | 4.35         | 0.00                 | 5.00                | 45                |

locity (m/s)

5.00

Emission Rate (OU/s) 45.99

#### Proposed Refuse Transfer Station

#### H2S and NH3 Monitoting data at WKTS

| Maximum Total Odour  |                                               |                                       |
|----------------------|-----------------------------------------------|---------------------------------------|
| Emssion at DO Inlets |                                               | Odour contribution by NH <sub>3</sub> |
| (OU/s)               | Odour Contribution by H <sub>2</sub> S (OU/s) | (OU/s)                                |
| 1879840.11           | 1834999.62                                    | 44840.49                              |

Remark:

Based on the monitoring data recorded from Jan 2021 to Sep 2024 in West Kowloon Refuse Transfer Station (WKTS) and it covers the odour from the wastewater treatment plant.

Odour thershold of H<sub>2</sub>S = 0.00047 ppm

Odour thershold of NH<sub>3</sub> = 0.037 ppm

| MSW Handling Capacity | MSW Handling Capacity of WKTS | Odour Emission Adjustment |
|-----------------------|-------------------------------|---------------------------|
| of Proposed RTS (tpd) | (tpd)                         | factor                    |
| 4000                  | 2700                          | 1.48                      |

Remark:

The MSW handling capacity of WKTS is provided by WKTS.

#### Estimation of Odour Emission from Proposed RTS

|                           |                      |                   |                             | Controlled Odour Emission |
|---------------------------|----------------------|-------------------|-----------------------------|---------------------------|
|                           | Emission Rate (OU/s) | Adjustment factor | Removal Efficiency          | (OU/s)                    |
| Odour by H <sub>2</sub> S | 1834999.62           | 1.48              | 99.90%                      | 2718.52                   |
| Odour by NH <sub>3</sub>  | 44840.49             | 1.48              | 90.00%                      | 6643.04                   |
|                           |                      |                   | Total odour emission (OU/s) | 9361.55                   |

Remark:

The emission rates are calculated based on the monitoring data recorded from Jan 2021 to Sep 2024 in WKTS.

Two stage deodorisation system with 99.9% and 90% removal efficiency for H2S and NH3 are adopted for the proposed RTS.

Continuous monitoring of actual  $\rm H_2S$  and  $\rm NH_3$  concentrations after commissioning is required.

The odour emission rate is the total emission rate to be evenly distributed among the six deodourizing units RTS\_DO1-RTS\_DO6 below.

#### Exhaust Points of Waste Transfer Building

| Deodouriser | Description   | Source Type | Exhaust   | Location  | Exhaust Diamotor (m) | Hoight $(mAC)$ | Exit Tomporaturo (K) | Exit Valacity (m/s)                                                 |
|-------------|---------------|-------------|-----------|-----------|----------------------|----------------|----------------------|---------------------------------------------------------------------|
|             | Description   | Source Type | Х         | Y         |                      | neight (mAG)   | Exit Temperature (K) | Exit Velocity (m/s)<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 |
| RTS_DO1     | Exhaust point | POINT       | 843675.43 | 816739.17 | 1.20                 | 41.41          | Ambient              | 15.0                                                                |
| RTS_DO2     | Exhaust point | POINT       | 843681.94 | 816745.95 | 1.20                 | 41.41          | Ambient              | 15.0                                                                |
| RTS_DO3     | Exhaust point | POINT       | 843754.78 | 816662.98 | 1.20                 | 41.41          | Ambient              | 15.0                                                                |
| RTS_DO4     | Exhaust point | POINT       | 843761.29 | 816669.76 | 1.20                 | 41.41          | Ambient              | 15.0                                                                |
| RTS_DO5     | Exhaust point | POINT       | 843767.80 | 816676.54 | 1.20                 | 41.41          | Ambient              | 15.0                                                                |
| RTS_DO6     | Exhaust point | POINT       | 843774.31 | 816683.32 | 1.20                 | 41.41          | Ambient              | 15.0                                                                |

Remark:

The exhaust parameters refers to the RTS in the approved EIA for San Tin / Lok Ma Chau Development Node (AEIAR-261/2024).

#### Conversion of 1-hour Average to 5-second Average Concentration

| Deodouriser | Emission Rate (OU/s) | Stability Class  | Conversion Multiplier | Emission Rate with 5-second<br>Peak Factor (OU/s) | Reference                                                                                                                                                                 |
|-------------|----------------------|------------------|-----------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RTS_DO1     | 1560                 | A, B, C, D, E, F | 2.3                   | 3588.60                                           | - Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales.                                                                                 |
| RTS_DO2     | 1560                 | A, B, C, D, E, F | 2.3                   | 3588.60                                           | <ul> <li>Katestone Scientific 1995, The Evaluation of Peak-to-Mean Ratios for Odour Assessments,<br/>volumes I and II, Katestone Scientific Pty Ltd, Brisbane.</li> </ul> |
| RTS_DO3     | 1560                 | A, B, C, D, E, F | 2.3                   | 3588.60                                           | - Katestone Scientific 1998, Peak-to-Mean Concentration Ratios for Odour Assessments,                                                                                     |
| RTS_DO4     | 1560                 | A, B, C, D, E, F | 2.3                   | 3588.60                                           | Katestone Suentinic Pty Ltu, bisbane.                                                                                                                                     |
| RTS_DO5     | 1560                 | A, B, C, D, E, F | 2.3                   | 3588.60                                           |                                                                                                                                                                           |
| RTS_DO6     | 1560                 | A, B, C, D, E, F | 2.3                   | 3588.60                                           |                                                                                                                                                                           |

Remark:

6-stack configuration is assumed for the proposed RTS, with reference to the expansion of WKTS with 3,182 tpd in Refurbishment and Upgrading Studies for (A) West Kowloon Transfer Station and (B) Island West and Island East Transfer Stations.

#### Emission Source Listing in AERMOD

| Source ID | Туре  | х         | Y         | Exhaust Diameter (m) | Height (mAG) | Exit Temperature (K) | Exit Velocity(m/s) | Emission Rate with 5-seco<br>Peak Factor (OU/s) |
|-----------|-------|-----------|-----------|----------------------|--------------|----------------------|--------------------|-------------------------------------------------|
| RTS_DO1   | POINT | 843675.43 | 816739.17 | 1.20                 | 41.41        | Ambient              | 15.00              | 3588.60                                         |
| RTS_DO2   | POINT | 843681.94 | 816745.95 | 1.20                 | 41.41        | Ambient              | 15.00              | 3588.60                                         |
| RTS_DO3   | POINT | 843754.78 | 816662.98 | 1.20                 | 41.41        | Ambient              | 15.00              | 3588.60                                         |
| RTS_DO4   | POINT | 843761.29 | 816669.76 | 1.20                 | 41.41        | Ambient              | 15.00              | 3588.60                                         |
| RTS_DO5   | POINT | 843767.80 | 816676.54 | 1.20                 | 41.41        | Ambient              | 15.00              | 3588.60                                         |
| RTS_DO6   | POINT | 843774.31 | 816683.32 | 1.20                 | 41.41        | Ambient              | 15.00              | 3588.60                                         |

| nd |  |
|----|--|
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |

# ASB Biodiesel (Hong Kong) Limited Emission Sources Listing in AERMOD

|                                   | Sourco ID | Typo  | v         | v         | Elovation (m) | n (m) Stack Height (mAC) Evit Tomporature |        | Exit Volocity (m/s) Stack Diamotor (m) |      | Emission Rate |
|-----------------------------------|-----------|-------|-----------|-----------|---------------|-------------------------------------------|--------|----------------------------------------|------|---------------|
| Emission source                   | Source ID | туре  | ^         | I         |               | Stack Height (IIIAO)                      |        | LAIL VEIDUITY (III/S)                  |      | Odour (OU/s)  |
| ASB Biodiesel (Hong Kong) Limited | ASB02     | POINT | 845687.00 | 816178.00 | 5.00          | 31.00                                     | 373.00 | 1.75                                   | 0.75 | 1.0000E+03    |
| ASB Biodiesel (Hong Kong) Limited | ASB05     | POINT | 845687.00 | 816178.00 | 5.00          | 13.80                                     | 0.00   | 0.17                                   | 1.20 | 2.8600E+01    |
| ASB Biodiesel (Hong Kong) Limited | ASB06     | POINT | 845687.00 | 816178.00 | 5.00          | 4.40                                      | 0.00   | 0.17                                   | 0.49 | 5.0000E+00    |

Remark

1. Emission inventory of ASB Biodiesel (Hong Kong) Limited refers to SP Licence No.: L-25-019(4).

Emission Inventory for Odour Emission (SENTX)

| Source     | Source ID | Туре | х      | Y      | Elevation (m) | Odour Emission Rate<br>(Operation Phase of<br>SENTX, OU/m <sup>2</sup> · s) | Capacity (Aftercare<br>Phase of SENTX, %) | Odour Emission Rate<br>(Aftercare Phase of<br>SENTX, OU/m <sup>2</sup> · s) | Release Height (mAG) | Xlength (m) | Ylength (m) | Angle |
|------------|-----------|------|--------|--------|---------------|-----------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|----------------------|-------------|-------------|-------|
| MBR tank 1 | M1_1      | AREA | 846511 | 814694 | 6.00          | 0.04900                                                                     | 32%                                       | 0.01568                                                                     | 5                    | 20          | 30          | -20   |
| MBR tank 2 | M1_2      | AREA | 846535 | 814704 | 6.00          | 0.04900                                                                     | 32%                                       | 0.01568                                                                     | 5                    | 20          | 30          | -20   |

Remark

1. The odour emission rate during the operation phase of SENTX and the stack parameters refer to the approved Environmental Review of the Revised Scheme of SENT Landfill Extension, 2016.

2. According to the approved *Environmental Review of the Revised Scheme of SENT Landfill Extension*, 2016, the potential odour emission source during the aftercare phase would only be the open SBR tanks, with about 32% of the original emission strength.

## Location of Odour Emission Sources



# Location of Odour Emission Sources



- The design of tanks and covers should minimise the need for regular access for maintenance and inspection as confined space entry systems will be required
- The vent volumes need to be adequate to ensure no odour escape and also to account for air quality inside the cover (occupational exposure, corrosion and explosion hazard).
- Ventilation rates will depend upon the exact process operations but for tanks the design flows are typically 0.5 - 12 air changes per hour based upon the empty tank volume or 120% of the maximum filling rate. In the case of thickener tanks, the volume may increase to 200% of the maximum fill rate
- The design will take account of the fill and empty rate, maximum rate of change in headspace, likely gaps and leakage, evolution rate of flammables to maintain <25% LEL for methane (10% is good design)
- Allowance should be made for emergency ventilation of the tanks
- One problem with tank covers is that they cannot be easily inspected therefore tend to be poorly maintained.

Additionally, guidance on the design of waste water treatment plants in BS EN 12255 advises designers to :-

- Locate sources requiring abatement close together to optimise abatement options and minimise costs
- Consider explosion risk, corrosion, access and health and safety.

## 14.2 Odour Abatement Equipment

The air which is exhausted from enclosures usually requires abatement to avoid odour nuisance. It is possible to establish performance criteria to reflect what constitutes best practicable means (bpm) in relation to abatement equipment. This can be specified as follows:-

and outlet.

There is a wide range of odour abatement equipment that can be used to treat emissions of contained air from WWTW. There are many factors which will affect the choice of equipment including required odour removal efficiency, flow rate and inlet odour concentration, type of chemical species in the odour, variability in flow and load, space requirements and infrastructure (power, drainage etc.). The range of technologies available is detailed in the Environment Agency H4 Guidance Note on odour.

## Scottish Executive Environment Group

## Code of Practice on Assessment and **Control of Odour Nuisance from Waste** Water Treatment Works

April 2005 Paper 2005/9

- Any odour abatement equipment installed on contained emissions (ventilation air from the process building) should have an odour removal efficiency of not less than  $95\%^2$ . Determination of the destruction efficiency should be by dynamic olfactometry based upon manual extractive sampling undertaken simultaneously at the inlet and outlet of the odour control equipment. At least three samples should be taken from both the inlet

<sup>&</sup>lt;sup>2</sup> Where the inlet odour concentrations are very low and the 95% destruction efficiency is difficult to demonstrate due to measurement reproducibility and equipment efficiency at low concentrations, the final discharge to air should contain less than 500 odour units/ $m^3$ .

It is important when evaluating the most appropriate control technology to consider both total cost (capital and operating) and environmental impact (such as energy use, chemical use and secondary pollutant generation). Often operating costs are closely linked with environmental impact (that is costs for energy, raw materials etc.) and wherever possible the most environmentally sustainable technique should be selected.

As odour abatement plant capacity is usually tightly specified (little spare capacity), the assumption is that all other measures are being correctly used – covers, doors, chemicals replenished etc. This therefore becomes a key management issue that should be included in the Odour Management Plan.

The site layout may permit a centralised plant or due to locational constraints it may be necessary to use more than one system for example on the inlet works and the sludge process. It may be economical to provide a number of smaller biofilters for individual sources but if the selected technology is wet scrubbing it may be more cost effective to provide a single system. In some cases it may be appropriate to divide the odour streams and use different technology based upon the load and characteristics of each system.

| SYSTEM                                               | CAPITAL                   | CONSUMABLES                                                                                       | EFFECTIVENESS                                                                                                                             |
|------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Biofilters                                           | Moderate                  | Need space, fan energy, media<br>replacement 3 – 5 years                                          | High >95% - not able to rapidly adjust to changes in flow or load                                                                         |
| Bioscrubbers                                         | Moderate                  | Fan energy, effluent needs oxygenation                                                            | High >95% - can handle higher<br>H <sub>2</sub> S loads than biofilters                                                                   |
| Activated sludge<br>plant<br>Wet scrubbers           | Low<br>additional<br>High | Needs fully aerobic sludge         Fan energy, pump energy,         dosing chemicals and effluent | 90 – 95% for H <sub>2</sub> S and NH <sub>3</sub> ; may<br>be ideal as a polishing stage<br>Single stage <80% but multiple<br>stage ->98% |
| Dry scrubbing<br>(carbon or<br>impregnated<br>media) | High                      | Media replacement is a high<br>cost with strong odours, suffer<br>with moisture loading           | > 95% ; Widely used for passive<br>sources. Need several seconds<br>residence for treatment                                               |
| Catalytic iron oxidation                             | Moderate                  | Low operating cost                                                                                | Specific for H <sub>2</sub> S – good for low<br>flow high load                                                                            |
| Thermal oxidation                                    | High                      | Fan energy and support fuel                                                                       | >98% ; good for dryer vents and VOC loads                                                                                                 |
| Ozone                                                | Moderate                  | Replacement of source and<br>energy for fan and ozone<br>generator                                | >90% on low concentrations –<br>good for building vents                                                                                   |
| Counteractants<br>and masking                        | Low                       | Replenishment of chemicals                                                                        | Not an abatement method – may<br>be suitable for short-term use                                                                           |

Table 2 below summarises the main types of abatement equipment and the odour abatement efficacy that may be achieved.

#### **TABLE 2– ODOUR ABATEMENT**

Experience in operation of peat and heather type biofilters has shown that they do not perform well when the flow or odour load from the process is variable although other media (shell-type material) appears to perform better for these applications. There has been a considerable amount

of biofilter and bioscrubber equipment installed at WWTW. The units range in size from 75 – 435,000m<sup>3</sup>/hr but are typically 1600 – 3000m<sup>3</sup>/hr. The suppliers tend to offer 95-98% odour removal, 95-99.9% H<sub>2</sub>S removal and 300  $ou_E/m^3$  in exhaust gases.

The industry approach is that emission sources which exhibit strong odour peaks are best treated in wet scrubbers or carbon systems as some bio systems have been overloaded previously. It is increasingly common to have scrubbers on the sludge processing operations (often 3 or 4-stage scrubbers are used).

#### Quantification of NH<sub>3</sub> Emission From Sidestream Anammox Process

The NH<sub>3</sub> emission from the sidestream anammox process is calculated as 13.4 ppm in total according to *Appendix A of Dynamic of nitric oxide and nitrous oxide emission during full-scale reject water treatment (Kampschreur, et. al, 2008)* (12 ppm from the nitritation reactor and 1.4 ppm from the anammox reactor, therefore a total of 13.4 ppm emission).

In anammox process, there are two main reactors, the nitritation reactor and the anammox reactor. Air is blown from the bottom of the nitritation reactor, which is referred to as aeration. In the literature, the average aeration rate is  $2.2 \times 10^4$  Nm<sup>3</sup>/day over the measurement period, which is equivalent to  $2.2 \times 10^{-4}/24 = 916.7$  m<sup>3</sup>/hr, assuming the aeration rate is constant.

The ammonia and Total Kjeldahl Nitrogen (TKN) loading of the quoted process is also similar to HSKEPP design. Therefore, the  $NH_3$  gaseous emission from the quoted paper is considered representative of the HSKEPP  $NH_3$  gaseous emission and adopted in this calculation of  $NH_3$  emission for HSKEPP's anammox process.

Converting 13.4 ppm gas phase NH<sub>3</sub> to OU, by using 0.037 ppm NH<sub>3</sub> = 1 OU/m<sup>3</sup> (Odour threshold of NH3 is 0.037 ppm, reference from *Iowa State University Extension (May 2004).* "The Science of Smell Part 1: Odor perception and physiological response" (PDF). PM 1963a)

The OU concentration of gas phase  $NH_3 = 13.4 \text{ ppm } NH_3 / (0.037 \text{ ppm } NH_3/(OU/m^3)) = 362 OU/m^3$ . This is corresponding to the WWTP studied by the reference paper which treated 773 m<sup>3</sup> of influent per day.

The dewatering centrate flow for HSKEPP is estimated to be 1300 m<sup>3</sup> per day so the OU concentration can be prorated as  $362 / 773 \times 1300 = 609 \text{ OU/m}^3$ .

The odour extraction air flow rate of the anammox process in HSKEPP's design is  $3,854 \text{ m}^3/\text{hr} = (3,854 \text{ m}^3/\text{hr} / (3600 \text{s}/\text{hr}) = 1.07 \text{ m}^3/\text{s}$  while the total surface area of the sidestream treatment facility is 631 m<sup>2</sup>.

Hence, the Specific Odour Emission Rate (SOER) of sidestream treatment in the proposed HSKEPP due to NH<sub>3</sub> emission = 609 OU/m<sup>3</sup> x 1.07 m<sup>3</sup>/s /631 m<sup>2</sup> = 1.03 OU/m<sup>2</sup>/s.

The total SOER adopted for sidestream treatment = 1.65 (SOER value referenced from bioreactor of Shek Wu Hui STW) +1.03 (due to  $NH_3$  gas emission) = 2.68 OU/m<sup>2</sup>/s.

#### Reference:

Kampschreur, M. J.; van der Star, W.R.L.; Wielders, H.A.; Mulder, J.W.; Jetten, M.S.M.; van Loosdrecht, M.C.M. 2008. Dynamic of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research 42 (2008), p812 – 826

Iowa State University Extension (May 2004). "The Science of Smell Part 1: Odor perception and physiological response" (PDF). PM 1963a